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ABSTRACT

PERRY L. GILLESPIE JR.. The study of ”loop” markov chains.
(Under the direction of DR. STANISLAV MOLCHANOV AND ISAAC SONIN)

The purpose of my research is the study of ”Loop” Markov Chains. This model contains

several loops, which could be connected at several different points. The focal point of this

thesis will be when these loops are connected at one single point. Inside each loop are

finitely many points. If the process is currently at the position where all the loops are

connected, it will stay at its current position or move to the first position in any loop

with a positive probability. Once within the loop, the movement can be deterministic or

random. We’ll consider the Optimal Stopping Problem for finding the optimal stopping

set and the Spectral Analysis for our ”Loop” system. As a basis, we’ll start with the

Elimination Algorithm and a modified version of the Elimination Algorithm. None of these

algorithms are efficient enough for finding the optimal stopping set of our ”Loop” Markov

Chain; therefore, I propose a second modification of the Elimination Algorithm, the Lift

Algorithm. The ”Loop” Markov Chain will dictate which algorithm or combination of

algorithms, would be appropriate to find the optimal set. The second part of this thesis will

examine the Analysis of the Covariance Operator for our ”Loop” Markov Chain system.
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CHAPTER 1: INTRODUCTION

Many decision makers use a certain type of random process to make decisions. The

main feature of this type of process is that it’s ”memoryless” of the past. Such a process

is called a Markov Process. First proposed by Andrey Markov in 1906 and modified by

Andrey Kolmogorov in 1936, Markov Processes are Stochastic Processes (which are defined

as a family of random variables) with the Markov Property. The Markov Property implies

that the next transition depends only on the current position and is independent of the

past. In other words, the present state contains all the information needed to determine

any future movement of the process. Markov Processes are used in various disciplines, such

as Biological, Physical, and Social Sciences along with Business and Engineering, just to

name a few. Markov Chains are special cases of Markov Processes.

This research addresses the topic of ”Loop” Markov Chains. Let’s look at a brief

description of the system. A loop is defined as a finite set of points contained in a circle.

The state space of our Markov Chains consist of finitely many loops joined at a single

point called the orign. Inside each loop, there are finitely many positions called states. If

the process is currently at the origin, then it will stay or move to the first state on some

loop with a positive probability. Transitions within the loops can be either deterministic or

random.

The next chapter starts with the framework and an introduction of terms for Markov

Chains. In particular, we’ll address the following question: ”After observing the movement

of the chain, does a pattern, if one exists, converge?” Furthermore, the author will examine

the different types of chains. The Fundamental Matrices for the Transient and Ergodic

Chains will be explored, and we’ll look at why these matrices are different. I’ll state some

basic properties that utilize these fundamental matrices.

There will be a review of some basic facts about the Central Limit Theorem, Hilbert

Space, and its application to Markov Chains. We’ll discuss the Homological (Poisson)
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Equation and later find the invariant distribution for our ”Loop” Markov Chain in L2-

space (deterministic only). The solution for our ”Loop” Markov Chain system will be given

in chapter 5.

Markov Decision Problems employ dynamical models based on well-understood stochas-

tic processes and performance criteria based on established theory in operations research,

economics, combinatorial optimization, and social science (Putterman 1994). A Markov

Decision Problem is a Markov Decision Process together with a performance criterion. A

Markov Decision Process is a controlled stochastic process satisfying the Markov Property

with costs assigned to each state transition. The process can be described as follows: Let’s

assume the chain starts at an initial state. Each state has a set of actions assigned to them.

The decision maker chooses any action from the action set for the current state. The process

moves randomly to the next state and a reward is collected. The process continues until

the decision maker chooses the option ”quit”. Chapter 3 will give a formal description of

this process.

The Optimal Stopping Problem is a special case of the Markov Decision Problem. If

the action space for each state contains only two actions (continue, quit), then the Decision

Problem reduces to the Optimal Stopping Problem. The theory of optimal stopping is

concerned with the problem of choosing a time to take a given action based on sequentially

observed random variables in order to maximize an expected payoff or to minimize an

expected cost. A famous example of an Optimal Stopping Problem is the Secretary Problem.

There are various methods used to solve optimal stopping problems for Markov Chains.

Numerical Solution, Linear Programming and Dynamic Programming are just a few exam-

ples of these methods. The first algorithm, proposed by Isaac Sonin, that will be used to

solve Optimal Stopping Problems is the ”Elimination Algorithm”. After giving a detailed

description of this method, we will look at two examples implementing this algorithm.

Even though the ”Elimination Algorithm” works well, it poses some limitations with

our ”Loop” model. Chapter 4 begins with a modification of this algorithm. The modified

version of the Elimination Algorithm, called the Full Size Matrix Algorithm, has some

advantages over the ”Elimination Algorithm”, but it is not efficient enough for our ”Loop”

Markov Chains model; therefore, I propose the ”Lift” Algorithm. We’ll see that this new
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modification along with the first modified version of the Elimination Algorithm is a better

fit for our problem. One goal of this thesis is to illustrate the combination of these two

algorithms on the ”Loop” Markov Chain Model.

The author was also responsible for creating Excel programs to aid in the computation

of the 3 algorithms mentioned above. All examples in this thesis used one of these programs

to generate the optimal stopping set.

The second part of my thesis is devoted to the Spectral Analysis of the Covariance

Operator. I’ll discuss the Doëblin Condition and its connection to the invariant distribution.

Also, by applying the classical Central Limit Theorem for the Martingale-difference, we’ll

obtain the Covariance Operator. The final chapter describes this Covariance Operator and

how it applies to our ”Loop” Markov Chain Model.



CHAPTER 2: BASIC NOTATION AND MAIN PROPERTIES FOR MARKOV CHAINS

2.1 Basic Definitions and Classification of States

A Stochastic Process, in discrete time, is a sequence of random variables. The stochastic

process {Zn;n = 0, 1, . . .} with discrete state space S is a homogeneous Markov Chain if

the following holds for each j ∈ E and n = 0, 1, . . .

P {Zn+1 = j|Zn = i, . . . , Z1 = i1, Z0 = i0} = P {Zn+1 = j|Zn = i} = pij (2.1)

for any states i0, · · · , in in the state space and in = i.

Matrix P = {pij} is called the one-step Transition Probability Matrix. The elements

in this square matrix P must satisfy the following conditions: The pijs are non-negative

and
∑
j
pij = 1.

Markov Chains are generally depicted using graphs. Circles and/or ovals represent

states. Directed arrows represent the one-step transitions. Often these directed arrows are

labeled by their transition probability values (see figure 2.1).

Figure 2.1: Transition Graph
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The transition matrix of figure 2.1 is P =


.3 .5 .2

.5 .5 0

0 1 0

.

A n-step transition probability, denoted as P (n) =
{
p

(n)
ij

}
, is the probability that a

process in state i will be in state j after n additional transitions. It is well known that the

discrete homogeneous Markov Chains n-step become the n-th power, i.e., P (n) = Pn.

Notice we can compute P (n) from the following recursive formula, called the Chapman-

Kolmogorov Equation:

p
(n+m)
ij =

∑
allk

p
(n)
ik p

(m)
kj (2.2)

.

The matrix notation of equation 2.2 is:

Pn+m = Pn · Pm (2.3)

Let’s start by introducing some important definitions concerning individual states. A

state j is accessible (reachable) from state i if there exists a path from i to j, which is

denoted by i → j and P {i→ j} > 0. If i is accessible from j and j is accessible from

i, then i and j communicate, denoted by i ↔ j. A communicating class is closed if the

probability of leaving the class is zero. States are recurrent, if the process is guaranteed,

with a probability of 1, to return to state j after it leaves. A recurrent state j is called

positive recurrent, if starting at state j, the expected time until the process returns to

state j is finite. If this expected time is infinite, then the recurrent state is called null

recurrent. States are considered transient if there is a positive probability that the Markov

Chain will never return to state j after it leaves j. Please note, a transient state can be

visited only a finite number of times. State i is an absorbing state if the path from i to i

has a probability of 1. When a process enters an absorbing state, it will never leave this

state; it’s trapped. If all states communicate with each other in a class, then it’s called an

irreducible class. A Markov Chain is said to be a regular Markov Chain if for some power,

n, the transition matrix, Pn, has only positive elements. Finally, the period of state j is
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defined as d (j) = gcd
{
n ≥ 1 : p

(n)
jj > 0

}
, the gcd (greatest common divisor) of lengths of

cycles through which it is possible to return to j. In other words, if after leaving state j it’s

possible to return in a finite number of transitions that is a multiple of the integer k > 1. If

d (j) = 1, then the state j is aperiodic: otherwise it’s periodic. A Markov Chain is called

an ergodic if it’s positive recurrent and aperiodic. Some textbooks refers to Ergodic Markov

Chains as Irreducible.

Let’s consider figure 2.1. We have only one communicating classes, which is {0, 1, 2}.

The class is closed, which means you cannot exit from this class. Because we can return to

every state in {0, 1, 2}, it is also a recurrent class. Since gcd for the number of transitions

from i back to i is 1, this example is aperiodic.

2.2 Transient and Embedded Markov Chains

Now, let’s consider the general construction of the absorbing(transient) Markov Chains

(see figure 2.2).

Figure 2.2: Fundamental Matrix Diagram

Formally speaking, let D be a subset of X and M = (X,P ) be a Markov model which

will visit D with a probability of 1 from any point inside X\D. The transition matrix P is

P =

 Q T

R P ′

 (2.4)

where Q = {p (i, j) , i, j ∈ D} is a substochastic matrix which describes the transition
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inside of D, P ′ is the transition inside of X\D, R is the transition probability from X\D

to D, and T is the transition probability from D to X\D.

The classical way of calculating N , which was proposed by Kemeny [13], is as follows.

N =
∞∑
n=0

Qn = (I −Q)−1 (2.5)

where I is a k × k identity matrix. Matrix N is known as the Fundamental Matrix. One

special feature of this matrix is N only needs one part of P , that is Q, which is a sub-

stochastic matrix. This takes transitions that leaves and returns to transient states. The

definition of the fundamental matrix for a regular (ergodic) Markov chain is different please

refer to 2.12.

From 2.5, we will get the following equality.

N = I +NQ = I +QN (2.6)

When N goes through set D, then the first visit to X\D from this distribution of the

Markov Chain is given by the matrix

U = NT (2.7)

The equation 2.7 has the following interpretation. For any state x ∈ X\D, a Markov

Chain can either jump directly to state y ∈ X\D in one step or move to state z ∈ D and

make several cycles before going to y ∈ X\D, see figure 2.3.

Let’s look at some interesting quantities that can be expressed in terms of the fun-

damental matrix. If a process starts and ends in set D, then the following equations are

true: N = (I −Q)−1 is known as the Mean and N2 = N(2Ndg − I)−Nsq is known as the

Variance. Ndg is the matrix that contains only the diagonal elements from the fundamental

matrix and all other entries are zero. Nsq is the square of the fundamental matrix. If the

process starts in set D and ends in set X\D, then the following are true: τ = Nξ is called

the Mean. ξ is the unit vector. τ2 = (2N − I)τ − τsq is the Variance.

Let’s consider when the Markov Chain can be reduced. We will denote this as Em-
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Figure 2.3: Fundamental Probability Diagram

bedded Markov Chain. There is a lot of information on computing many characteristics of

Markov Chains. We will be referencing the text ”Probability, Markov Chain, Queues, and

Simulation” by William J. Stewart (see [32]) for a linear algebra approach.

With the Strong Markov Property and probabilistic reasoning, we can get the following

lemma of the State Reduction Approach (SR).

Suppose M1 = (X1, P1) is a finite Markov model and let’s assume that (Zn) n = 1, 2, . . .

be a Markov Chain specified by the model M1. Let X2 ⊂ X1 and let τ1, τ2, . . . , τn, . . . be

the sequence of Markov times of first, second, and etc on visits of (Zn) to the set of X2, so

that τ1 = min {k > 0 : Zk ∈ X2}, τn+1 = min {k : τn < k,Zk ∈ X2}, 0 < τ1 < τ2 < . . .. Let

uX2
1 be the distribution of the Markov Chain (Zn) for the initial model M1 at the moment

τ1 of the first visit to set X2. Let’s consider the random sequence Yn = Zτn , n = 1, 2, . . ..

Lemma 2.1. (Kolmogorov-Doëblin )

1. The random sequence (Yn) is a Markov Chain in a model M2 = (X2, P2), where

2. The transition matrix P2 = {p2 (x, y)} is given by the equation

p2 (x, y) = p1 (x, y) +
∑
z∈D

p1 (x, z)u1 (z, y) , (x, y ∈ X2) (2.8)

where u1 (z, y) is the probability from set D to X2 = X1 D. This formula can be found

in Kemeny and Snell [13]



9

The strong Markov property for (Zn) is implied immediately in part 1, meanwhile, the

proof for 2 is obvious, see figure 2.3. We will present equation (2.8) in matrix form. If P1

is decomposed as follows

P =

 Q1 T1

R1 P ′1

 , (2.9)

then

P2 = P ′1 +R1U1 = P ′1 +R1N1T1. (2.10)

One would notice that matrix P has the same form as matrix 2.4.

The matrix U1 gives the distribution of Markov Chain at the moment of the first exit

from D (the exit probability matrix), N1 = (I −Q)−1 is the fundamental matrix for the

substochastic matrix Q1, and I is the |D| × |D| identity matrix. If one is given set D, then

matrices N1 and U1 are connected by U1 = N1T1.

M1 and M2 (which is the X2-reduced model) will be known as adjacent models in this

thesis. Let’s take a look at the case when set D consists of one non-absorbing point z. We

have the formula (2.8) which will be converted to the following form:

p2 (x, y) = p1 (x, ·) + p1 (x, z)n1 (z) p1 (z, ·) , (x ∈ X2) (2.11)

where n1 (z) = 1
1−p1(z,z) .

By implementing the formula above, each row-vector of the new stochastic matrix P2

is a linear combination of P1, with the z-column deleted. This procedure is similar to the

one step Gaussian elimination method for solving a linear system.

Suppose that the initial Markov model M1 = (X1, P1) is finite, that is |X1| = k, and

one state is eliminated at a time, then we have a sequence of stochastic matrices (Pn),

n = 2, ...., k. This sequence can be calculated recursively using formula (2.8) as a basis.

Equation (2.8) can be written as follows

pn+1 (x, y) = pn (x, ·) + pn (x, z)nn (z) pn (z, ·) , (x ∈ Xn+1)

After calculating these probabilities, we will be able to calculate various characteristic
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Figure 2.4: Gaussian Elimination Table

of the initial Markov model M1 recursively starting from a point in the reduced model Ms,

where 1 < s ≤ k. There are two conditions that must be satisfied: First, we need to identify

a relationship between the characteristic in the reduced model. Secondly, find a model with

one more point. This relationship could be obvious or very complicated.

2.3 Ergodic Markov Chain and Its Fundamental Matrix

Let’s πi (n) denote the probability that a Markov Chain is at a given state i at step n.

State probabilities at any time step n may be obtained from knowledge of the initial distri-

bution and the transition matrix. Formally, we have πi (n) =
∑
k

P {Zn = i|Z0 = k}πk (0) =∑
πk {0} pki, that is, π (n) = π (0)P (n) = π (0)Pn, where π (n) is the Distribution, at

time n and π (0) is the initial state distribution. Since we’re dealing with homogeneous

discrete-time Markov Chains only, P (n) = Pn.

Let Z = {Zn;n = 0, 1, . . .} be a Markov Chain with a finite space state E and let

P be the transition probability matrix. Then the vector π is the Stationary (Invariant)

Distribution if this vector is the solution to the following system of equations: π = πP and∑
i∈E π(i) = 1.

Let’s recall the definition from section 2.1 of Regular and Ergodic Markov Chain. After

stating a theorem, we’ll see how these two chains relate to one another.

Theorem 2.2. If P is a regular transition matrix, then the following statements are valid:
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1. Pn → A, where A is known as the Limiting Matrix.

2. Each row of matrix A contains the same probability vector α = (α1, α2, · · · , αn), i.e.

A = ξα, where ξ is a column unit vector.

3. All components of α are positive.

Figure 2.1 is a regular Markov chain and the limiting matrix is A =


5
13

7
13

1
13

5
13

7
13

1
13

5
13

7
13

1
13

.

A Markov Chain is Ergodic, if there’s a path leading from every state to every other

state with a positive probability. Unlike regular Markov chains, if P is any Ergodic matrix,

then not necessarily all Pn → A. In this case, the sequence of powers Pn is Euler-Summable

to the limiting matrix A. If it’s possible to go from any state to any other state in n steps,

then the chain is regular and also ergodic (see definition 2.1). The converse is not not true.

Suppose transition matrix P =

 0 1

1 0

. Then one can clearly see from the matrices below

that matrix P is ergodic but not regular.

P = P 3 = P 5 =

 0 1

1 0

, P 2 = P 4 = P 6 =

 1 0

0 1


We have seen in section (2.2) that the fundamental matrix for the Absorbing Markov

Chain contained a substochastic matrix, Q. Since Qn approaches 0 as n approaches infinity,

(I −Q)−1 is invertible. This is not the case for the Ergodic Markov Chain. So, one need to

modify the fundamental matrix definition that would apply to Ergodic Markov Chains.

Definition 2.1. The Fundamental Matrix for the regular (ergodic) Markov Model is

Z = (I − (P −A))−1 = (I − P +A)−1 (2.12)

= I +

∞∑
n=1

(P −A)n = I +

∞∑
n=1

(Pn −A) (2.13)

Some other properties which uses the fundamental matrix are the following:

1. Mean matrix is M = (I − Z + EZdg)D, where I is the identity matrix, Zdg is the

fundamental diagonal matrix, D is diagonal matrix with elements dii = 1
ai

, and E is



12

a unit matrix, that is, a matrix that has every position as 1.

2. Variance matrix is M2 = W−Msq, whereW = M (2ZdgD − I)+2
(
ZM − E (ZM)dg

)
and Msq represents squaring the mean.

3. Covariance matrix, C, formula is as follows: ϕ = ai (2zii − 1− ai) is the calculations

for the diagonal and cij = aizij + ajzji − aidij − aiaj is the calculation for the off

diagonal. It will look like the following: Cov =


ϕ11 · · · c13

· · · · · · · · ·

cn1 · · · ϕnn

.

2.4 Basic Facts about the Central Limit Theorem

Let’s recall briefly basic facts about Central Limit Theorem (CLT) for Markov Chains.

If xt, t = 1, 2, . . . is an ergodic aperiodic Markov Chain or (in much more general situation)

Markov Chains on the measurable space X satisfying the Doëblin condition, then there

exist an unique invariant distribution π(y) and

|p(t, x, y)− π(y)| ≤ ce−γt

for appropriate c, γ > 0 (finite dimensional). One can introduce the Hilbert space

L2(X,π) = {f ∈ X → R1...

∫
f(y)π(y) = 0,

∫
f2π(dy) 6= ‖f‖2π <∞} (2.14)

Markovian process xt t ≥ 0 with initial distribution π is ergodic and the stationary one.

Remark. Among several forms (see [15]) of the Doëblin condition, we select the following

one [D2]. Let (X,B(X)) be a measurable space, P (x,Γ) x ∈ X , Γ ∈ B(X) be a transition

function. [D2] holds if there are reference probabilistic measure µ(Γ) on B(X), integer

k0 > 0 and constant δ > 0 such that for any x,Γ

P (k0, x,Γ) ≥ δµ(Γ)
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One can prove now that under D2 there exist unique invariant probabilistic measure

π(·) : π(Γ) =

∫
x

π(dx)P (x,Γ)

and for n→∞

sup
x,Γ
|P (n, x,Γ)− π(Γ)| ≤ (1− δ)

[
n
k0

]

The following series (fundamental operator, fundamental matrix) converges on L2(X,π)

in the strong operator sense (see [13])

F = I + P + P 2 + · · ·

Assume that P ∗ is the operator conjugated to P in L2(X,π). It means that for

∀(Ψ1,Ψ2 ∈ L2(·))

(PΨ1 ·Ψ2)π = (Ψ1 · P ∗Ψ2)

For finite or countable Markov Chains

P ∗(x, y) =
π(y)P (y, x)

π(x)
(2.15)

Note that P ∗ is a stochastic matrix (or a stochastic operator in the general case) and one can

introduce (Markov Chains) x∗(t), t = 0, 1, ... with probabilities P ∗. It is easy to understand

that x∗(t) is the initial chain x(t) but in the inverted time. Invariant measure of x∗(t) is

again π.

The Fundamental Matrix is closely related to the martingale approach to the Central

Limit Theorem. Let’s recall the equation (2.14) and fix f ∈ L2(X,π). The following is

known as the homological(Poisson) equation,

f = g − Pg, g ∈ L2(·) (2.16)

Formally,

g = (I − P )−1f =

∞∑
k=0

P kf = Ff (2.17)
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but due to the estimation of (*), the last series converges in L2(·) norm.

Let’s consider the additive functional

Sn = f(x0) + · · ·+ f(xn−1) = g(x0)− (Pg)(x0) + · · ·+ g(xn−1)− (Pg)(xn−1)

= [g(x0)− (Pg)(x0)]︸ ︷︷ ︸
m0

+ [g(x1)− (Pg)(x1)]︸ ︷︷ ︸
m1

+ · · ·+ [g(xn−1)− (Pg)(xn−1)]︸ ︷︷ ︸
mn−1

The first term is bounded and the sequence (m1, F1), (m2, F2), . . . , (mn−1, Fn−1) where

Fk = σ(x0, . . . , xk), k = 0, 1, 2, . . . is a stationary ergodic martingale difference (as

E [g(xk)− (Pg)(xk−1) | Fk−1] = E[g(xk) | Fk−1]−(Pg)(xk−1) = (Pg)(xk−1)−(Pg)(xk−1) = 0)

We can use now the classical Central Limit Theorem for the martingale-difference

(see [2]). It gives the following:

Sn√
n

=
m0√
n

+
m1 + · · ·+mn−1√

n

law→ N(0, σ2) (2.18)

where (after simple calculations)

σ2 = Em2
1 = E [g(x1)− (Pg)(x0)]2 = E(g2(x1))− E((Pg)2(x0)) = (g · g)π − (Pg · Pg)π

(2.19)

= (g−Pg; g+Pg)π = (f, f+2Pf+2P 2f+· · · )π = (f, f+Pf+P ∗f+· · ·+P kf+(P ∗)kf+· · · )π

= (f, (F + F ∗ − I)f)π (2.20)
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Operator B = F + F ∗ − I = I + PF + P ∗F ∗ will be called the covariance operator for

the Markov Chain xt and quadratic form σ2(f) = (f · Bf)π gives the limiting variance in

the CLT:

Sn√
n

law→ N(0, σ2(f))

2.5 ”Loop” Markov Chain

This idea of ”Loop” Markov Chains (LMC) was proposed first by Kai Lai Chung, see [5]

in a sightly different setting then what I will be considering.

Let’s consider a fixed number k ≥ 2 and the integers n1, . . . , nk such that GCD(n1, . . . , nk) =

1. The phase space X has the following structure: there is a common point O of all k loops,

each loop lj consist of successive points.

lj = (0, 1j , 2j , . . . , nj − 1), j = 1, 2, . . . , k (2.21)

Transition probabilities of loop Markov Chains have a simple structure:

a. p(0, 1j) = pj > 0, j = 1, 2, . . . , k
k∑
j=1

pj = 1

b. Inside each loop, the motion is deterministic: p(1j , 2j) = 1, . . . , p(nj − 1, 0) = 1,

j = 1, 2, . . . , k This chain is ergodic and aperiodic (due to arithmetic condition on

(n1, . . . , nk))

It means that transition probability Pn = [p(n, x, y], x, y ∈ X are strictly positive for

n ≥ n0 and for appropriate γ > 0, c > 0

‖p(n, x, y)− π(y)‖ ≤ ce−γn

.



CHAPTER 3: THE OPTIMAL STOPPING PROBLEM FOR MARKOV CHAINS AND
KNOWN ALGORITHMS

3.1 General Markov Decision Problem and Basic Notation

Since the Optimal Stopping Problem is a special case of the Markov Decision Problem,

we’ll start with a review of the general structure of this problem. The general Markov

Decision Problem is described by a tuple M = (X,A,A (x) , P a, r (x, a) , β, L), where X is

the state space, A is the action space, A (x) is the set of actions available at each state

x ∈ X, P a = {p (x, y|a)} is the transition matrix, r (x, a) is the (current) reward function

and β is the discount factor, 0 < β ≤ 1. P a describes the transitions of each state x

and the actions a assigned to them. Finally, L is a functional which is defined on all

trajectories in this system. We consider the important case of total discounted reward, i.e.

L (·) =
∑
r (xiai.....)β

i.

The time parameters t, s, and n ∈ N and the sequence x0a0x1a1...... represents the

trajectory. H∞ = (X ×A)∞ denotes the set of trajectories, while hn = x0a0x1a1......xnan

describes the trajectory history of length n. Let Hn = X × (X ×A)n−1 be the space of

histories up to n ∈ N .

A non-randomized policy is a sequence of measurable function φn, n ∈ N , from Hn to

A such that φn (x0a0x1a1......xnan) ∈ A (xn). If the φn depend only on Xn for each n, we

will say the policy φ is Markov. φn is stationary if φ is a Markov Policy and does not depend

on n. Formally speaking, a stationary policy is a single measurable mapping φ : X −→ A

such that φ (x) ∈ A (x) for every x ∈ X.

It is possible to increase the set of policies by selecting actions at random. A random

policy, π, is as sequence of transition probabilities πn (dan|hn) from Hn to A, where n ∈ N ,

such that πn (A (xn) |x0a0...xn−1an−1xn) = 1. A policy π is known as a randomized Markov

if πn (·|x0a0...xn−1an−1xn) = πn (·|xn). If πm (·|xm) = πn (·|xn) for every m,n ∈ N , then

the randomized Markov policy π is a randomized stationary policy.
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Let x be the initial state and π a policy. P πx is the induced probability and Eπx is the

expectation of this measure.

Now, we will introduce the reward operators:

P af (x) = E [f (x1) |x0 = x, a0 = a] , F af (x) = r (x, a) + βP af (x)

β = 1 for the averaging and the total cost operators.

The optimality operators are as follows:

Pf (x) = sup
a∈A(x)

P af (x) , Ff (x) = sup
a∈A(x)

F af (x)

Let π = (π (·|hn)). wπ (x) is the value of π at an initial state x, that is, wπ (x) =

Eπx

[ ∞∑
n=0

βnr (Zn, An)

]
. Eπx is the expectation with respect to π, while Zn and An are

the random state and action taken at moment n. The value function v (x), defined by

v (x) = supπ w
π (x), and satisfies the Bellman (optimality) equation

v (x) = sup
a∈A(x)

(r (x, a) + βP av (x))

where P af (x) =
∑
y
p (x, y|a) f (y) is the averaging operator on transition P a.

3.2 Optimal Stopping Problem For Markov Chains

Let’s review some basic notation for the Optimal Stopping Problem (OSP). The Op-

timal Stopping Problem is a special case of Markov Decision Problem which was consid-

ered in section 3.1, where the action space contains just two actions,for all x, A(x) =

{stop, continue}. The Optimal Stopping Problem is defined as a tuple M = (X,P, c, g, β)

where X is the state space, P is the transition (probability) matrix, c(x) = r (x, stop) is the

one step cost function, g(x) = r (x, continue) is the terminal reward, and β is the discount

factor, 0 ≤ β ≤ 1. A tuple that doesn’t contain a terminal reward, M = (X,P, c, β), is

called a Reward Model. A tuple that doesn’t have a terminal reward, cost function, and

discount factor, M = (X,P ), is called a Markov Model. The value function, v(x), for an
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Optimal Stopping Problem is defined as

v(x) = sup
τ≥0

Ex

[
τ−1∑
i=0

βic(Zi) + βτg(Zτ )

]

where the sup is taken over all stopping times τ, τ ≤ ∞If τ =∞ with positive probability,

we will assume that g(Z∞) = 0. Pf (x) is the averaging operator, Pf (x) =
∑
p (x, y) f (y)

and Ff (x) = c (x)+βPf (x) be the reward operator. Finally, S = {x : v (x) = g (x)} is the

optimal stopping set.

If β < 1, it will be better handled by converting to the model β = 1. Using this

technique, one would need to introduce another state, the absorbing state, which will be

denoted as e. We will multiply the existing transition (probability) matrix by the discount

factor, which will be denoted by β, that is, pβ (x, y) = βp (x, y) for x, y ∈ X. Next, we will

add another row and column which would represents the absorbing state. The added row

represents the transition from the absorbing state to any of the other states in the system,

pβ (e, x) = 0. The added column represents the transition from any other state in the model

to the absorbing state. The probability is one minus the discount factor, pβ (x, e) = 1− β.

Finally, the transition probability from the absorbing state back to the absorbing state is

one, pβ (e, e) = 1. It’s convenient to consider a more general setting when β is replaced by

a function β (x), 0 ≤ β (x) ≤ 1, the probability of ”survival”, β (x) = Px (Z1 6= e) .

Assume G ⊆ X. Let’s denote τG be the moment of first visit to G, i.e., τG =

min (n ≥ 0 : xn ∈ G) . The following is an important result of OSP with countable X.

Theorem 3.1. (Shiryayev 1969, 2008)

(a) The value function v(x) is minimal solution of the Bellman (optimality) equation v =

max (g, c+ Pv), i.e. the minimal function satisfying v(x) ≥ g(x), v(x) ≥ Fv(x) for

all x ∈ X;

(b) v(x) = lim
n
vn (x), where vn (x) is the value function for the optimal stopping prob-

lem on a finite time interval of length n; satisfying the recurrent relations vn+1 =

max (g, c+ Pvn), v0 = g

(c) for any ε > 0 the random time τε = min {n ≥ 0 : g (Zn) ≥ v (Zn)− ε}, is an ε-optimal
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stopping time;

(d) if Px (τ0 <∞) = 1 then the random time τ0 = min {n ≥ 0 : g (Zn) = v (Zn)} is an

optimal stopping time;

(e) if state space X is finite then set S = {x : g (x) = v (x)} is not empty and τ0 is an

optimal stopping time.

3.3 The Elimination Algorithm

The objective of the Optimal Stopping Problem is to find the set of optimality, if it

exists. This task could be very difficult directly; however, a lot easier indirectly. Let identify

the state(s) that don’t belong to the stopping set. Next, we will ”eliminate” them from the

state space. This idea was proposed by Isaac Sonin, see [25].

Assume the state space is finite and the states that don’t belong to the stopping set

is removed one at a time. Also, let M1 = (X1, P1, c1, g) be an Optimal Stopping Problem

with finite X1 = {x1, ..., xk} and F1 be corresponding averaging operator. The first step

is to calculate the difference g (xi) − Fg (xi), i = 1, 2, ..., k until the first state is identified

whose difference is negative. If all differences are nonnegative, then the following statement

is true.

Proposition 3.2. Let M = (X,P, g) be an optimal stopping problem, and g (x) ≥ Fg (x)

for all x ∈ X. Then X is the optimal stopping set in the problem M , and v (x) = g (x) for

all x ∈ X.

If g (x) ≥ Fg (x) for all x ∈ X is not true, then there exist a z where g (z) < F (z).

This implies that g (z) < v (z) and z is not a part of the stopping set. The next step is to

”reduced” model of OSP M2 = (X2P2, c2, g) with state set X2 = (X1 \ {z}) and transition

probabilities p2 (x, y), x, y ∈ X2, recalculated by P2 = P ′1 + R1U1 = P ′1 + R1N1T1. Notice

this is the same formula used in lemma 2.1.

The following theorem guarantees the stopping set in the reduced model M2 coincides

with the optimal stopping set in the initial model M1.

Theorem 3.3. (Elimination Algorithm Theorem, [25]) Let M1 = (X1, P1, c1, g) be an op-

timal stopping model D ⊆ C1 = {z ∈ X1 : g (z) < Fg (z)}. Consider an Optimal stopping
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model M2 = (X2, P2, c2, g) with X2 = X1 \ D, p2 (x, y) defined by P2 = P ′1 + R1U1 =

P ′1 +R1N1T1, and c2 is defined by c2 = c1,x2 +R1N1c1,D. Let S be the optimal stopping set

in M2. Then

1. S is the optimal stopping set in M1 also,

2. v1 (x) = v2 (x) ≡ v (x) for all x ∈ X2, and for all z ∈ D

v1 (z) = E1,z

[
τ−1∑
n=0

c1 (Zn) + v (Zτ )

]
=
∑
w∈D

n1 (z, w) c1 (w)+
∑
y∈X2

u1 (z, y) v (y) , (3.1)

where u (z, ·) is the distribution of a MC at the moment τ of first visit to X2, and

N1 = {n1 (z, w) , z, w ∈ D} is the fundamental matrix for the substochastic matrix Q1.

After some set is eliminated, we need to check the differences g (x)−F2g (x) for x ∈ X2,

where F2 is an averaging operator for the stochastic matrix P2 and so on. This process

continues for no more than k steps, producing the model Mk = (XkPk, ck, g) , where

g (x) − Fkg (x) ≥ 0 for all x ∈ Xk. This implies Xk is the stopping set in this and all

previous models.

Finally, the recursively calculate of the values of v (x) for all x ∈ X1, using the formula

v1 (z) = n1 (z)

[
c1 (z) +

∑
y∈X2

p1 (z, y) v (y)

]
, starting with the equalities v (x) = g (x) for

x ∈ S = Xk, where k is the iteration number in the reduction stage of the algorithm where

it stopped.

The examples below show how the elimination algorithm is implemented.

Example 3.1. From figure 3.1, one sees that X1 = {1, 2, 3}, the transition probabilities are

given by a matrix P0. Assume the cost function vector c (x) is: c0 (x) = −.5 .9 1 . Also

the terminal reward vector g (x) is: g = 2 −1.5 4 . The discount factor is β = 0.9. Be-

cause we have a discount factor, an absorbing state, e, must be introduced. The cost function

and terminal reward for the absorbing state is 0, that is, c (e) = g (e) = 0. Now, our tran-

sition matrix becomes matrix P1. The cost and terminal reward are c = −.5 .9 1 0
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Figure 3.1: Triangle

and g = 2 −1.5 4 0 respectively. Step one, we need to calculate g (x) − F1g (x) ≡

g (x) − (c1 (x) + P1g (x)) and obtain that g (2) − (c1 (2) + F1g (2)) = −4.1625 < 0; there-

fore, state 2 must be eliminated. After some simple calculations, we have a new transition

matrix (rounded), P2 and the cost function values are: c2 = −.08194 1.156774 0 .

After calculating g (x) − F1g (x) , we obtain that g (1) − (c2 + F2g (1)) = −.33355 < 0;

therefore, state 1 must be eliminated. Again, after some simple calculations, we have

a new transition matrix, P3 and the cost function value is: c3 = 1.059845 0 . If

we execute this equation g (x) − F1g (x) one more time, the result will be positive, i.e.

g (3) − (c3 (3) + F3g (3)) = .102835 > 0. The optimal stopping set is S = {3, e} and

v (3) = g (3) = 4. By applying equation f (z) = nn (z)

[ ∑
y∈X2

pn (z, y) f (y) + cn (z)

]
for n = 1, we get v (1) = f (1) =

(
1

.500645

)
[.354194 ∗ 4− .08194] = 2.666237. By ap-

plying equation f (z) = nn (z)

[ ∑
y∈X2

pn (z, y) f (y) + cn (z)

]
again for n = 2, we obtain

v (2) = f (2) =
(

1
.775

)
[.3 ∗ 2.666237 + .375 ∗ 4 + .9] = 4.128866.
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P0 =

2
5

2
5

1
5

1
3

1
4

5
12

3
5

3
20

1
4

P1 =

.36 .36 .18 .1

.3 .225 .375 .1

.54 .135 .225 .1

0 0 0 1

P2 =

.499355 .354194 .146452

.592258 .290323 .117419

0 0 1

P3 =
.70933 .29067

0 1

Figure 3.2: Loop Example

Example 3.2. Elimination Algorithm From figure 3.2, the state space is

X1 = {11, 12, 13, 21, 22, 23, 31, 32, 33} ,

where the first (larger) number represents the loop number and the second (smaller) number

represents the state. The transition probability matrix is
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P0 =

.15 .3 0 0 .3 0 0 .25 0 0

.45 0 .55 0 0 0 0 0 0 0

0 .15 0 .85 0 0 0 0 0 0

.4 0 .6 0 0 0 0 0 0 0

1
3 0 0 0 1

3
1
3 0 0 0 0

0 0 0 0 .5 .25 .25 0 0 0

.4 0 0 0 0 .1 .5 0 0 0

.3 0 0 0 0 0 0 .4 .3 0

0 0 0 0 0 0 0 .4 .4 .2

.2 0 0 0 0 0 0 0 .2 .6

Assume that the cost vector c(x) is zero, i.e. c ≡ 0 and the terminal reward vector

g (x) is: g = 1 2 3.1 −.5 3 1 2 −1 2 3.5 .

Just as in the previous example, when considering a discount factor an absorbing state,

e, must be introduced into the model. With the terminal reward value for the absorbing

state being zero, that is, g(e) = 0 and the new transition matrix becomes

P0 =

.13 .27 0 0 .27 0 0 .23 0 0 .1

.405 0 .495 0 0 0 0 0 0 0 .1

0 .135 0 .765 0 0 0 0 0 0 .1

.36 0 .54 0 0 0 0 0 0 0 .1

.3 0 0 0 .3 .3 0 0 0 0 .1

0 0 0 0 .45 .22 .23 0 0 0 .1

.36 0 0 0 0 .09 .45 0 0 0 .1

.27 0 0 0 0 0 0 .36 .27 0 .1

0 0 0 0 0 0 0 .36 .36 .18 .1

.18 0 0 0 0 0 0 0 .18 .54 .1

0 0 0 0 0 0 0 0 0 0 1

.

After calculating g(x) − P0g(x) and realizes that g(0) − P0g(0) ≈ −.26 < 0, state 0

must be eliminated (see figure 3.3).
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Figure 3.3: First Iteration

Again, utilizing the excel program to calculate g(x) − P1g(x), we obtain that g(11) −

P1g(11) ≈ −.06 < 0; therefore, state 11 is the next candidate for elimination (see figure

3.4).

Figure 3.4: Second Iteration

Executing the excel program again, g(13)−P2g(13) ≈ −2.15 < 0 which means state 13

is eliminated (see figure 3.5).
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Figure 3.5: Third Iteration

Recalculating the states left in the space state, g(21) − P3g(21) ≈ −1.03 < 0 state 21

needs to be eliminated (see figure 3.6).

Figure 3.6: Fourth Iteration
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Finally, state 31 is eliminated because g(31)− P4g(31) ≈ −1.54 < 0 (see figure 3.7).

Figure 3.7: Final Iteration

Because g(x)− P5g(x) < 0 for all x ∈ X5, we are optimal. The optimal stopping set is

X5 = {12, 21, 23, 32, 33}.

Using a excel program (a backward recursive procedure), the results for the Bellman’s

equation, v(x) is

0 1, 1 1, 2 1, 3 2, 1 2, 2 2, 3 3, 1 3, 2 3, 3 e

2.14 2.40 3.1 2.44 3 2.32 2 1.74 2 3.5 0



CHAPTER 4: A MODIFICATION OF THE ELIMINATION ALGORITHM AND LIFT
ALGORITHM

4.1 A Modified Version of Elimination Algorithm with Using Full Size Matrices Technique

Because of tedious calculations for these stochastic matrices of equal size, it was sug-

gested to develop an excel program. Three different programs were created for each al-

gorithm; Elimination Algorithm (which was introduced in section 3.3), a modification to

the Elimination Algorithm, which I will call the Full Size Matrix Algorithm and the Lift

Algorithm (which will be introduce in this chapter). After the development of these excel

programs, E. Presman suggested the following modification to the Elimination Algorithm.

Consider the Markov Chain (Yn) a MC with the same state space X, but with a new tran-

sition matrix. For clarity, we will use the following notation: D is the deleted set, X \

D = S, two diagonal characteristic matrices ID and IS . ID is a diagonal matrix with di = 1

if i ∈ D and 0 otherwise. IS is a diagonal matrix with Si = 1 if i ∈ S and 0 otherwise.

Remember, multiplication of diagonal matrix on the right is equivalent to multiplication of

column, and on the left – rows. In the initial model, we removed index 1, that is, P1 = P .

In the new model M2 we’re replacing index 2 with D, i.e. P2 = PD. Now, P, PD, ND, ID, IS

are full size |X| × |X| square matrices.

The (Kolmogorov, Doëblin) lemma 2.1 remains true, but now we assume the (Yn) is

a Markov Chain with the same state space X, specifically, we allow the initial point x be

in D as well as in S = X \ D, even though after the first step MC is always in S. In

addition to P2 = P ′1 +R1U1 = P ′1 +R1N1T1 for x, y ∈ S , we have the equation T +QNT =

(I +QN)T = NT for x ∈ D, y ∈ S. The last equation is true by N = I +QN = I +NQ.

Instead of P2 = P ′1 + R1U1 = P ′1 + R1N1T1 , we obtain the following stochastic matrix for
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a MC (Yn)

PD = PIS + PIDNDPIS = (I + PIDND)PIS = NDPIS =

 0 N1T1

0 P 0
1 +R1N1T1

 (4.1)

where in formula P2 = P ′1 + R1U1 = P ′1 + R1N1T1, P
0
1 is replaced by PIS , R1 is replaced

by PID, T1 is replaced by PIS , and N1 = (I −Q1)−1 is replaced with ND, where ND =

(I − PID)−1,Q1N1 = N1 − I

PIDND =

 Q1N1 0

R1N1 0

 , I + PIDND = ND =

 N1 0

R1N1 I

 (4.2)

The Full Size Matrix analog of c2 = c1,x2 +R1N1c1,D will be

cD = c+ PIDNDc = (I + PIDND) c = NDc =

 N1c1,D

R1N1c1,D + c1,S

 (4.3)

where c1,D and c1,S are apart of vector c = c1 with coordinates in D and S respectively.

Now c and cD are both full vectors defined on the complete state space X = X1. As

in c2 (x) = Ex
τ−1∑
n=0

c1 (Zn) = c1 (x) +
∑
z∈D

p1 (x, z)
∑
w∈D

n1 (z, w) c1 (w) function cD can be

described as

cD (x) = E1x

τ−1∑
n=0

c1 (Zn) , x ∈ X (4.4)

where E1x = Ex is an initial expectation, τ = τ+
S is the moment of first return to S = X \

D if x ∈ S.

Theorem 4.1. (Modified Elimination Theorem) Let M1 = (X1, P1, c1, g) be an Optimal

Stopping (OS) model, D ⊆ C1 = {z ∈ X1 : g (z) < F1g (z)} . Consider an OS model MD =

(XD, PD, cD, g) with pD (x, y) defined by 4.1 and cD is defined by 4.3. Let S be the optimal

stopping set in M2. Then

1. S is the optimal stopping set in M1.
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2. v1 (x) = v2 (x) ≡ v (x) for all x ∈ X1, and for all z ∈ D

v1 (z) = E1,z

[
τ−1∑
n=0

c1 (Zn) + v (Zτ )

]
=
∑
w∈D

n1 (z, w) c1 (w) +
∑
y∈X2

u1(z,y)v(y) (4.5)

where u1 (z, ·) is the distribution of a MC at the moment τ of first visit to X2, and

N1 = {n1 (z, w) , z, w ∈ D} is the fundamental matrix for the substochastic matrix Q1.

Remark. The significant feature of State Elimination Algorithm (SEA) is that the elimina-

tion of setD1 andD2 in two steps is equivalent of a setD1∪D2 in one step. When using State

Elimination Algorithm in Excel, we only need the formulas for one step initial elimination:

setD will serve as input, cD, PD and the output, new setD′ = {x : (g (x)− (c′ (x) + P ′g (x))) < 0}

serves as input for D. We can initiate an iterative process, where D0 = ∅ and Dn ⊂ Dn+1,

n = 0, 1, ... any time after. The stopping condition is when Dn = Dn+1. We will implement

a recursive procedure to calculate the value function. More specifically, the value function

will start with v(n) = g on Sn = X \ Dn and implement v(n) = cn + Png on Dn recursively.

We also will have v(n) ↗ v and v(n) = v when the iterations stop.

4.2 The Lift Algorithm

The previous algorithms, State Reduction Elimination and the modification of the

Elimination Algorithm ”Full Size Matrix Algorithm”, work when finite Markov Chain is

small. However, when the length and the number of loops are substantial, it could pose a

serious drawback to our loop system. Inside each loop, no matter the amount of states, both

algorithms work efficiently. A potential problem arises when the origin becomes a candidate

for elimination. Let’s refer to example 3.2. Notice in both examples, the origin is eliminated.

There is really no sufficient difference when the State Elimination Algorithm is used verses

the Full Size Matrix Algorithm because the system is small. Suppose the system has about

a thousand loops connected at the origin. If the origin become a candidate for elimination,

then this could become a serious problem. When the origin is eliminated, it creates a new

(complicated) connections, see figures 4.3, 4.4, and 4.5. The first and last states of each loop

will be connected to one another. The amount of new connections made are (2k
2 ), where k

denotes the number of loops. After the introduction of the next algorithm, I’ll use example
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4.2 to further explain this problem. In order to avoid this situation, I propose the following

algorithm.

Suppose we have the same optimal stopping model that was described earlier in this

chapter, that is, M1 = (X1, P1, c1, g) and set D ⊆ C1 = {z ∈ X1 : g (z) < F1g (z)} which

satisfied the condition for elimination. Let’s introduce new notation to denote the two

previous models and the third one that will be in presented in this section as MD,i where

i = 1, 2, 3. Let’s review

Figure 4.1: MD,1 = (X2, P2, c2, g)

1. The optimal stopping model MD,1 = (X2, P2, c2, g) (see figure 4.1) and new reduced

state space is X2 = X1 \ D. This model also has a new transition matrix, p2 (x, y)

defined by 2.10 and a new cost matrix,

c2 = c1,x2 +R1N1c1,D, (4.6)

but the terminal reward function, g stays the same. These two models M1 and MD,1

are equivalent to Theorem 1.

2. Again, assume we have a optimal stopping model MD,2 = (X1, PD, cD, g) but this

time, the state space stays the same. The transition matrix, PD and cost function,
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cD changes. The terminal reward function remains that same. These two models M1

and MD,2 are equivalent to Theorem 2.

Now using this transition matrix PD we consider one more interpretation which also

has some practical applications.

Let us introduce also function gD(x) = Ex[
∑τ−1

n=0 c1(Zn) + g(Zτ )], where τ = τS is the

moment of first return to S = X \D. In other words, gD is the expected reward if we

stop at S. (This is the same function mentioned in Remark 3M). Then

gD(x) = g(x) if x ∈ S, gD(x) = cD(x) + PDg(x), if x ∈ D. (4.7)

In matrix form we have

gD = IDNDc + (IDPD + IS)g. (4.8)

In other words the computation of function gD(x) can be obtained instead of PD using

also matrix IDPD + IS = PD,

PD =

 0 N1T1

0 I

 . (4.9)

The new matrix in a reduced form is P0D = P10 +R1N1T1

Now we can introduce one more model

3. Consider an OS model MD,3 = (X1, P1, c2, gD) with the same state space X1 and the

same initial transition matrix P1 , with new function cD = cIS and with new elevated

terminal reward function gD = vD.

Now we can present

Theorem 4.2. (The Triple equality Theorem) Let M1 = (X1, P1, c1, g) be an initial OS

model, D ⊆ C1 = {z ∈ X1 : g(z) < F1g(z)}, and MD,i, i = 1, 2, 3 be three models described

above. Let S be the optimal stopping set in M1. Then
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(a) S is the optimal stopping set in all four models, M1,MD,i, i = 1, 2, 3

(b) value function is the same in all four models.

The equivalence of the first three models, i.e M1 and MD,i, i = 1, 2 was proved by Sonin

in cite [25] and [26]

So we need only to prove that model MD,4, i.e. ”lift” model has the same solution.

First we prove two Lemmas. To simplify our presentation we assume that c(x) = 0 for

all x.

Lemma 4.3. Let M = (X,P, g) be a finite OS model, D ⊂ X, S ⊂ X be an absorbing set

and g(x) < Pg(x) for all x /∈ S. Then the value function vD(x)satisfies

vD(x) = Exg(Zτ ) > g(x) for all x /∈ S, (4.10)

where τ = τS is the moment of the first visit to set S.

Proof. For all x ∈ S, we obviously have vD(x) = g(x). According to Theorem 3.1, the value

function vD(x) = lim vD,n(x), where the sequence of nondecreasing functions vD,n(x) defined

as: vD,0(x) = g(x), vD,n(x) = max(g(x), PvD,n−1(x)), n = 1, 2, ....The assumption of the

lemma implies that vD,1(x) = max(g(x), Pg(x)) = Pg(x) > g(x) for all x /∈ S. Therefore,

for all such x, we have vD(x) ≥ Pg(x) > g(x), where set S is an optimal stopping set and

formula (4.10) holds. Q.E.D.

Note: The function vD coincides with function gD(x) which was defined by equation

4.7.

Lemma 4.4. Let M = (X,P, c, g) be a finite OS model, S be an optimal stopping set and

v(x) be the value function in this model. Let function g′(x) satisfies inequality

g(x) ≤ g′(x) ≤ v(x) (4.11)

for all x ∈ X. Then set S is an optimal stopping set in OS model M ′ = (X,P, c, g′) and

both models have the same value function.
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Proof. The value function v(x) satisfies Bellman equation v(x) = max(g(x), c+Pv(x)). Let

us show that v(x) satisfies also Bellman equation for model M ′.

v(x) = max(g′(x), c+ Pv(x)). (4.12)

Since obviously v(x) ≤ v′(x), where v′(x) is the value function in model M ′, this will show

that v(x) is the minimal solution for Bellman equation (4.12) and therefore v(x) = v′(x). If

x ∈ S = {x : g(x) = v(x)} then (4.11) implies that g(x) = g′(x) = v(x) and v(x) = g(x) ≥

c(x) + Pv(x) and hence g′(x) = v(x) ≥ c(x) + Pv(x), i.e. for such x function v(x) satisfies

(4.12). If x /∈ S then v(x) = c(x) + Pv(x) ≥ g(x), v(x) ≥ g′(x) and again function v(x)

satisfies (4.12). Lemma 4.4 is proved. Q.E.D.

It is possible that in the model M ′, there are other new optimal stopping sets S′ larger

than S. The reason for this is, in general, S = {x : g (x) = v (x)} ⊂ S′ = {x : g′ (x) = v′ (x)}.

Simply put, v = v′.

Now using lemmas 4.3 and 4.4, we can prove Theorem 4.2.

Proof. It sufficient to prove that function gD(x) satisfies the inequalities

g(x) ≤ gD(x) ≤ v(x)). (4.13)

Then by Lemma 4.4 we will obtain that vD(x) = v(x) and therefore an optimal stopping

set S in the initial model is also an optimal stopping set in model M3,D. By definition of

set D, we have g(x) < Pg(x) and therefore by Lemma 4.3 applied to a situation when set

S we may consider as an absorbing set, we have g(x) < gD(x) for all x ∈ D. On the other

hand, gD(x) = Exg(Zτ ), where τ = τS is the moment of the first visit to set S = X�D and

therefore gD(x) ≤ v(x) = supτ Exg(Zτ ). Thus gD(x) satisfies (4.13) and Theorem is proved.

Q.E.D.

Theorem 4.2 provides a new computational algorithm to solve Optimal Stopping Prob-

lem for finite Markov Chains. As in the State Elimination Algorithm at each state,

when a new terminal reward function g′ is calculated, there are two possibilities. Ei-
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ther g′ (x) − Pg′ (x) ≥ 0 for all x ∈ X, and then g′ (x) = v (x) for all x ∈ X. The

optimal stopping set in this model is the whole space X, and the optimal stopping set

S∗ in the initial model is the set of all points where the terminal reward function, g (x)

was not change at all, i.e. S∗ = {x : g (x) = v (x)} . The other possibility is when set

D′ = {x : g′ (x)− Pg′ (x) < 0} 6= ∅. For this reason, function g′ is lifted to g′D. According

to equation 4.7, set D′ must have as least one point not in set D. Having this requirement

satisfied will ensure each time the terminal function changes, it changes at least one point.

In the case of the State Elimination Algorithm, the lifts will stop in no more than m steps,

where m = |X|.

4.3 Examples

Figure 4.2: Loop Example

Example 4.1. Full Size Matrix The begin of this example will mimic example 3.2. From

figure 1, the state space is X1 = {11, 12, 13, 21, 22, 23, 31, 32, 33}, where the first (larger)

number represents the loop number and the second (smaller) number represents the state.

The transition probability matrix is
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P0 =

.15 .3 0 0 .3 0 0 .25 0 0

.45 0 .55 0 0 0 0 0 0 0

0 .15 0 .85 0 0 0 0 0 0

.4 0 .6 0 0 0 0 0 0 0

1
3 0 0 0 1

3
1
3 0 0 0 0

0 0 0 0 .5 .25 .25 0 0 0

.4 0 0 0 0 .1 .5 0 0 0

.3 0 0 0 0 0 0 .4 .3 0

0 0 0 0 0 0 0 .4 .4 .2

.2 0 0 0 0 0 0 0 .2 .6

Assume that the cost vector c(x) is zero, i.e. c ≡ 0 and the terminate reward vector

g (x) is: g = 1 2 3.1 −.5 3 1 2 −1 2 3.5 .

Just as in the previous example, when considering a discount factor an absorbing state,

e, must be introduce into the model. With the terminal reward value for the absorbing state

being zero, that is, g(e) = 0 and the new transition matrix becomes

P0 =

.13 .27 0 0 .27 0 0 .23 0 0 .1

.405 0 .495 0 0 0 0 0 0 0 .1

0 .135 0 .765 0 0 0 0 0 0 .1

.36 0 .54 0 0 0 0 0 0 0 .1

.3 0 0 0 .3 .3 0 0 0 0 .1

0 0 0 0 .45 .22 .23 0 0 0 .1

.36 0 0 0 0 .09 .45 0 0 0 .1

.27 0 0 0 0 0 0 .36 .27 0 .1

0 0 0 0 0 0 0 .36 .36 .18 .1

.18 0 0 0 0 0 0 0 .18 .54 .1

0 0 0 0 0 0 0 0 0 0 1

.

Again, our goal is to find the state or set of states that satisfy the following condition:

g(x) − Pg(x) < 0. After implementing the excel program to calculate g(x) − Pg(x), we
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notice that several states must be eliminated. These states are {0, 11, 13, 22, 31}. This will

leave us with the following result (the columns that are highlighted represent the states

there were eliminated):

0 11 12 13 21 22 23 31 32 33 e g g −Pg

0 0 0 0 0 0 0 0 0 0 0 0 0 0

1,1 0 0 0 0 0 0 0 0 0 0 0 0 0

1,2 0 0 .54 0 .13 0 0 0 .05 0 .27 3.1 .91

1,3 0 0 0 0 0 0 0 0 0 0 0 0 0

2,1 0 0 .06 0 .60 0 .09 0 .04 0 .21 3 .76

2,2 0 0 0 0 0 0 0 0 0 0 0 0 0

2,3 0 0 .07 0 .20 0 .48 0 .05 0 .20 2 .12

3,1 0 0 0 0 0 0 0 0 0 0 0 0 0

3,2 0 0 .03 0 .06 0 0 0 .53 .18 .19 2 .02

3,3 0 0 .03 0 .07 0 0 0 .21 .54 .14 3.5 .86

e 0 0 0 0 0 0 0 0 0 0 1 0 0

As you can see, the optimal stopping set is {12, 21, 23, 32, 33}.

The result for the Bellman’s Equation, v(x) is
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0 11 12 13 21 22 23 31 32 33 e

2.14 2.40 3.1 2.44 3 2.32 2 1.74 2 3.5 0

Example 4.2. Lift Algorithm Again, let’s re-equate ourselves with figure 3.2 to illus-

trate this algorithm. We will follow the same procedure outlined in either of the previous

algorithms for eliminating states until the origin (center point) becomes a candidate for

elimination. Instead of eliminating the origin, I propose to ”Lift” the terminal reward value

g(x). This will ensure that the origin is kept and more importantly, we can avoid our sys-

tem generating many different connections. Please refer to figures 4.3, 4.4, 4.5 for pictorial

explanation.
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Figure 4.3: Initial Model

Figure 4.4: Origin Eliminated

Figure 4.5: New Connections

The next question should be ”How much can g(x) be raised?”. Answer: The value

of g(x) can’t exceed of Pg + c. By allowing g = Pg + c, we will preserve the origin and

maintain a ”manageable” system. Please notice when g(0)− (Pg(0) + c(0)), the result will
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be 0.

If we look back at example 4.1, one would notice that the origin is the first state

eliminated. Instead, let’s lift the value, g(0), and avoid the decomposition of our model.

g(0) will be ”Lifted” from -.26 to .73 and g − Pg must be recalculated.

0 11 12 13 21 22 23 31 32 33 e g g −Pg

0 .13 .27 0 0 .27 0 0 .23 0 0 .1 1 .73

1,1 .405 0 .495 0 0 0 0 0 0 0 .1 2 −2.40

1,2 0 .135 0 .765 0 0 0 0 0 0 .1 3.1 .113

1,3 .36 0 .54 0 0 0 0 0 0 0 .1 −.5 −2.44

2,1 .3 0 0 0 .3 .3 0 0 0 0 .1 3 1.16

2,2 0 0 0 0 .45 .22 .23 0 0 0 .1 1 −1.03

2,3 .36 0 0 0 0 .09 .45 0 0 0 .1 2 .24

3,1 .27 0 0 0 0 0 0 .36 .27 0 .1 −1 −1.76

3,2 0 0 0 0 0 0 0 .36 .36 .18 .1 2 1.01

3,3 .18 0 0 0 0 0 0 0 .18 .54 .1 3.5 .86

e 0 0 0 0 0 0 0 0 0 0 1 0 0

After the ”Lift” algorithm is implemented, the origin is no longer a candidate for

elimination. We will execute the ”Full Size Matrix” method to get the final result.

Comment: The Lift method can be used more than once, but no more than the number

of states minus one.
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0 11 12 13 21 22 23 31 32 33 e

0 .34 0 .13 0 .27 0 0 0 .10 0 .16

1,1 .405 0 .495 0 0 0 0 0 0 0 .1

1,2 .33 0 .48 0 0 0 0 0 0 0 .19

1,3 .36 0 .54 0 0 0 0 0 0 0 .1

2,1 .3 0 0 0 .47 0 .09 0 0 0 .14

2,2 0 0 0 0 .58 0 .29 0 0 0 .13

2,3 .36 0 0 0 .05 0 .48 0 0 0 .11

3,1 .42 0 0 0 0 0 0 0 .42 0 .16

3,2 .15 0 0 0 0 0 0 0 .51 .18 .16

3,3 .18 0 0 0 0 0 0 0 .18 .54 .1

e 0 0 0 0 0 0 0 0 0 0 1

The results for the Bellman’s Equation, v(x) is

0 11 12 13 21 22 23 31 32 33 e

2.14 2.40 3.1 2.44 3 2.32 2 1.74 2 3.5 0
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Remark: I would like to emphases the major differences between the Elimination and

Full Size Matrix Algorithm. The first algorithm eliminates states one at a time. Each

time a state is removed, it also reduces that state space. However, the latter algorithm can

eliminate a state or set of states. In this case, the state space is preserved.

Comment: Keep in mind, if the parameters values change, we may need to wait until

Markov Chain enters the absorbing state. This implies it is not optimal to stop.

Beside the Bellman and the Poisson Equations, the Elimination Algorithm become

the basis for the recursive procedure. Along with a probabilistic interpretation, this is the

driving force for the calculation the Gittins index γ (x).

γ (x) = sup
τ>0

Ex
τ−1∑
n=0

βnc (Zn)

Ex
τ−1∑
n=0

βn

where β is a discount factor, 0 < β < 1, and τ is the stopping time.



CHAPTER 5: SPECTRAL ANALYSIS OF THE COVARIANCE OPERATOR OF
”LOOP” MARKOV CHAINS

I will start this chapter with calculating the invariant distribution for the ”Loop”

Markov Chain Model. Let’s assume that π = π(y) is a stationary (or invariant) distribution,

i.e. an unique probabilistic solution of the equation πP = π.

Lemma 5.1. : Invariant distribution for the LMC is given by

π(0) =
1

k∑
i=1

pini

;π(i, j) =
pi

k∑
i=1

pini

=
pi
m0

(5.1)

where i = 1, 2, . . . , k and j = 1, 2, . . . , ni − 1. Here m0 =
∑
pinj = E0τ0 and τ0 is the time

of the first return from 0→ 0.

Proof. Let p1, p2, . . . , pk be the probability of entering a certain loop. The GCF (n1, . . . , nk) =

1 therefore chain is aperiodic.

∑
i,x

πi(x) = 1 ⇒ π(0) +

k∑
i=1

π(0)pi(ni − 1) = 1

Finally

π(0) =
1

1 +
k∑
i=1

pi(ni − 1)

=
1

1 +
k∑
i=1

(pini − pi)
=

1

1 +
k∑
i=1

pini − 1

=
1

k∑
i=1

pini

⇒ π(0) =
1

k∑
i=1

pini

and πi(x) =
pi

k∑
i=1

pini

Q.E.D.
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The spectral analysis of the covariance operator B is a natural and interesting problem

with the potential for statistical applications. If instead of observation of the chain x(t) we

can observe only the additive functional Sn =
n−1∑
s=0

f(xs) then (for fixed L2- norm ‖f‖π = 1)

the biggest amount of the information about chain will provide the top eigenfunction Ψ0 of

B : λ0Ψ0 = BΨ0, λ0 = max λi(B) (it is the leading factor in the statistical analysis). From

another side, function Ψ ∈ ker B = {Ψ : BΨ = 0} are also interesting for such functions as

Sn which are bounded in probability if n→∞. The following theorem gives the complete

characterization of ker B.

Theorem 5.2. In the situation in section 2, ker B = Span(f : f = g−Pg) and g = P ∗Pg,

i.e. g ∈ ker(I − P ∗P ).

Let’s stress that I − P ∗P is symmetric, bounded, and nonnegative on L2(x, π) due to

the fact that P ∗P is symmetric and stochastic (with top eigenvalue of 1).

Proof. Assume that σ2(f) = 0 =⇒ f = g−Pg and (g ·g)π−(Pg, Pg)π = 0, i.e. (g, g)π = (g,

P ∗Pg) =⇒ (g, (I − P ∗P )g) = 0. But (I − P ∗P ) is symmetric and nonnegative and the

spectral theorem for (I − P ∗P ) gives immediately that g ∈ ker (I − P ∗P ). Q.E.D.

Let’s apply this general result to the LMC.

In the future f(x), g(x) will be the generic function from L2 (X,π), f0, fij , g0, gij will

be the particular functions from L2 (X,π) . F will be the functions constant on the loops

and G are functions linear on the loops.

Theorem 5.3. ker B = span(f0; fij , i = 1, 2, .., k; j = 1, 2, ..., ni − 2), dim ker (B) =
k∑
i=1

ni−

2k + 1
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Here

f0 = g0 − Pg0,

g0(y) = δ0(y) =

 1 if y = 0

0 if y 6= 0
f0(y) =


1 if x = 0

−pi if x = (i, ni − 1)

0 otherwise

For 1 ≤ j ≤ ni − 2, i = 1, 2, ..., k

gij(y) = δ(i,j)(y), fij =


−1 if x = 0

1 if x = (i, j)

0 otherwise

Proof. Let’s calculate the stochastic matrix Q = P ∗P which corresponds to the following

Markov Chain. Assume that the initial chain x(t) starts from x ∈ X. Let’s make one

step with transition probabilities p∗(y, z) (negative direction at that time) and after one

step with probabilities p(x, y) (positive direction at that time). These two steps give the

single transition of x
−
+from x to z (with probability q(x, y) =

∑
z∈X

p∗(x, z)p(z, y). Direct

calculations using formula (4) gives

p∗((i, l), (i, l − 1)) = 1 l = 2, ..., ni − 1, i = 1, 2, ..., k;

p∗((i, 1), 0) = 1 i = 1, 2, ..., k;

p∗(0, (i, ni − 1)) = pi i = 1, 2, ..., k.

Now from the formula q(x, y) =
∑
z∈X

p∗(x, z)p(z, y) we get

q((i, l), (i, l)) = 1 l = 2, ..., ni − 1, i = 1, 2, ..., k;

q((i, 1), (j, 1)) = pj i, j = 1, , ..., k;

q(0, 0) = 1

It means that for the chain x
−
+(t) with transition matrix Q the state 0; (i, l), i = 1, 2, ..., k;
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l = 1, 2, ...ni − 2 are absorbing ones and the remaining states set Γ = {(i, ni − 1), i =

1, 2, ..., k} are the transient ones. Q.E.D.

It is well-known (but in our particular can obvious) that all Q-harmonic function, i.e.

the solutions of the equation g = Qg, or (I −P ∗P )g = 0 are constant on the ergodic classes

of the chain and dim{g : g = Qg} is equal to the number of such classes; i.e.

ker(I − P ∗P ) = span(g = δ0(y), g(y) = δ(i,j)(i, y), i = 1, 2, ..., k; j = 2, 3, ...ni − 1).

As a result

dim ker(I − P ∗P ) = 1 +
k∑
i=1

(ni − 2) =

k∑
i=1

ni − 2k + 1

For each function g0, g(i,j) one can calculate the corresponding f , such that σ2(f) = 0.

Namely

f0(y) = (g0 − Pg0(y)) =

 1 if y = 0

−1 if y = (i, ni − 1), i = 1, ..., k

f(i,j)(y) =

 1 if y = (i, j)

−1 if y = (i, j − 1), j = 2, ..., ni − 1, i = i, ..., k

Our goal now is the description of function ImB = (kerB)⊥ in L2(X,π), containing the

functions f : σ(f) = (Bf, f)π > 0.

Theorem 5.4. dim(ker)⊥ = k − 1. It consists of the functions Γ, const on the loops

F (x) =

 ϕi if x = (i, l), l = 1, 2, ..., ni − 1

F (0) if x = 0

and restricted by the linear conditions F (0) =
k∑
i=1

piϕi,
k∑
i=1

piniϕi = 0.

Proof. Condition of orthogonality (F ·f(i,l))π = 0 gives F (i, l−1) = F (i, l); l = 2, ...ni−1. The

additional condition of orthogonality (F ·f0)π = 0 provides the first relation F (0) =
k∑
i=1

piϕi.
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Finally due to definition of L2(X,π),
∑
F (x)π(x) = 0, i.e. F (0) +

n∑
i=1

(ni − 1) piϕi = 0.

Taking into account the previous relation we’ll get
k∑
i=1

nipiϕi = 0. Q.E.D.

For each function F ∈ (kerB)⊥ we can solve in L2(X,π) the homological equation

F = G− PG and calculate σ2(F ) = (BF,F )π = (G,G)π − (PG,PG)π. Let

Gi = G(i, 1)

then

G− PG = F

gives

G(i, 1)−G(i, 2) = ϕi, G(i, 2)−G(i, 3) = ϕi, ...⇒ G(i, l) = Gi− (l− 1)ϕi, i = 1, 2, ..., ni− 1.

Since

G(i, ni − 1)−G(0) = ϕi

we have

G(0) = Gi − (ni − 1)ϕi

i.e.

Gi = G(0) + (ni − 1)ϕi.

It is easy to see

G(0)−(PG)(0) = G(0)−
k∑
i=1

pi (G0 + (ni − 1)ϕi) = G(0)−G(0)−
k∑
i=1

piniϕ+

k∑
i=1

piϕ = F (0).

The following diagram presents all three functions F, G, PG.

Diagram 1:F (x)
k∑
i=1

ϕipi = F (0),
k∑
i=1

ϕipini = 0

F is constant on each horizontal edge.
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�����������������������������������������0

ϕi ϕi

(i,1) (i,ni−1)

�����������������

ϕj ϕj

(j,1) (j,nj−1)

Diagram 2:G(x)

G(.) is linear on each horizontal edge.

�����������������������������������������0

G(0)+(ni−1)ϕi G(0)+ϕi

(i,1) (i,ni−1)

�����������������

G(0)+(nj−1)ϕj G(0)+ϕj
(j,1) (j,nj−1)

Since G(x) ∈ L2(x, π) for G(0) we have the equation

G(0) +
k∑
i=1

pi

ni−1∑
j=1

(G(0) + jϕi) = 0, i.e

G(0) +
k∑
i=1

piG(0)(ni − 1) +
k∑
i=1

ϕipi
ni(ni − 1)

2
= 0,

G(0)m(0) +
k∑
i=1

ϕipi
ni(ni − 1)

2
,

G(0) = − 1

m(0)

k∑
i=1

ϕipin
2
i

2

(in the last row, we used the relation
k∑
i=1

ϕipini = 0). Also
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PG(0) =
k∑
i=1

pi(G(0) + (ni − 1)ϕi) = G(0)−
k∑
i=1

ϕipi = G(0)− F (0)

For σ2(F ) we have

σ2(F ) = (G,G)π − (PG,PG)π

=
G2(0)− (G(0)− F (0))2

m(0)
+

1

m(0)

k∑
i=1

pi

ni−1∑
l=1

(G(0) + lϕi)
2 − (G(0) + (l − 1)ϕi)

2

=
2G(0)F (0)− F 2(0)

m(0)
+

1

m(0)

k∑
i=1

pi

k∑
i=1

ϕi (2G(0) + (2l − 1)ϕi)

=
2G(0)F (0)− F 2(0)

m(0)
+

1

m(0)

k∑
i=1

ϕipi (2G(0)(ni − 1) + ϕi(ni − 1)2)

=
2G(0)F (0)− F 2(0)

m(0)
− 2G(0)F (0)

m(0)
+

1

m(0)

k∑
i=1

ϕ2
i pi (ni − 1)2

=
1

m(0)

−( k∑
i=1

ϕipi

)2

+

k∑
i=1

ϕ2
i pi (ni − 1)2


It is better to present the final answer in the different form (using the relation

k∑
i=1

ϕipini = 0):

σ2(F ) =
1

m(0)

 k∑
i=1

ϕ2
i pi (ni − 1)2 −

(
k∑
i=1

ϕipi (ni − 1)

)2


=
1

m(0)

k∑
i=1

pi [li (ni − 1)− l]2 where l =
k∑
i=1

ϕipi (ni − 1) = −F (0)

One can see now that σ2(F ) = 0 if and only if ϕi = F (0)
ni−1 , i = 1, 2, ..., k. Vector −→ϕ 0 =[

−1, 1
ni−1 , ...,

1
nk−1

]
is an eigenvector for the covariance matrix B with eigenvalue λ0 = 0.

The orthogonal complement to this vector if given by

(F,ϕ0)π = 0⇒ −F (0) +

k∑
i=1

pi
ϕi(ni − 1)

ni − 1
⇒ F (0) =

k∑
i=1

piϕi

In other terms under conditions F (0) =
k∑
i=1

piϕi the σ2(F ) > 0 and rank B = (k − 1).
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Appendix A

Figure 1: Loop Example

Example .1. Lift Algorithm

This is the original information in tableau form.

0 1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3 g

0 .15 .3 0 0 .3 0 0 .25 0 0 1

1,1 .45 0 .55 0 0 0 0 0 0 0 2

1,2 0 .15 0 .85 0 0 0 0 0 0 3.1

1,3 .4 0 .6 0 0 0 0 0 0 0 −.5

2,1 1/3 0 0 0 1/3 1/3 0 0 0 0 3

2,2 0 0 0 0 .5 .25 .25 0 0 0 1

2,3 .4 0 0 0 0 .1 .5 0 0 0 2

3,1 .3 0 0 0 0 0 0 .4 .3 0 −1

3,2 0 0 0 0 0 0 0 .4 .4 .2 2

3,3 .2 0 0 0 0 0 0 0 .2 .6 3.5

We will consider c = 0 and β = .9. Remember an extra state is added to handle the
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discount factor. The states’ row which are shaded in the tableau or blacked out in figure 2

are the ones which should be eliminated.

0 1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3 e g g −Pg

0 .13 .27 0 0 .27 0 0 .23 0 0 .1 1 −.26

1,1 .405 0 .495 0 0 0 0 0 0 0 .1 2 −1.9

1,2 0 .135 0 .765 0 0 0 0 0 0 .1 3.1 .113

1,3 .36 0 .54 0 0 0 0 0 0 0 .1 −.5 −2.03

2,1 .3 0 0 0 .3 .3 0 0 0 0 .1 3 1.5

2,2 0 0 0 0 .45 .22 .23 0 0 0 .1 1 −1.03

2,3 .36 0 0 0 0 .09 .45 0 0 0 .1 2 .65

3,1 .27 0 0 0 0 0 0 .36 .27 0 .1 −1 −1.45

3,2 0 0 0 0 0 0 0 .36 .36 .18 .1 2 1.01

3,3 .18 0 0 0 0 0 0 0 .18 .54 .1 3.5 1.07

e 0 0 0 0 0 0 0 0 0 0 1 0 0

Figure 2: States that Need to be Eliminated

From the above tableau, the origin needs to be eliminated. In order to keep this state, we

will ”Lift” g(0) from -.26 to .73 and recalculate g − Pg
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0 1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3 e g g −Pg

0 .13 .27 0 0 .27 0 0 .23 0 0 .1 1 .73

1,1 .405 0 .495 0 0 0 0 0 0 0 .1 2 −2.40

1,2 0 .135 0 .765 0 0 0 0 0 0 .1 3.1 .113

1,3 .36 0 .54 0 0 0 0 0 0 0 .1 −.5 −2.44

2,1 .3 0 0 0 .3 .3 0 0 0 0 .1 3 1.16

2,2 0 0 0 0 .45 .22 .23 0 0 0 .1 1 −1.03

2,3 .36 0 0 0 0 .09 .45 0 0 0 .1 2 .24

3,1 .27 0 0 0 0 0 0 .36 .27 0 .1 −1 −1.76

3,2 0 0 0 0 0 0 0 .36 .36 .18 .1 2 1.01

3,3 .18 0 0 0 0 0 0 0 .18 .54 .1 3.5 .86

e 0 0 0 0 0 0 0 0 0 0 1 0 0

After the ”lift” algorithm is implemented, the origin is no longer a candidate for

elimination. We will execute the ”full size matrix” algorithm to get the final result.

0 1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3 e

0 .34 0 .13 0 .27 0 0 0 .10 0 .16

1,1 .405 0 .495 0 0 0 0 0 0 0 .1

1,2 .33 0 .48 0 0 0 0 0 0 0 .19

1,3 .36 0 .54 0 0 0 0 0 0 0 .1

2,1 .3 0 0 0 .47 0 .09 0 0 0 .14

2,2 0 0 0 0 .58 0 .29 0 0 0 .13

2,3 .36 0 0 0 .05 0 .48 0 0 0 .11

3,1 .42 0 0 0 0 0 0 0 .42 0 .16

3,2 .15 0 0 0 0 0 0 0 .51 .18 .16

3,3 .18 0 0 0 0 0 0 0 .18 .54 .1

e 0 0 0 0 0 0 0 0 0 0 1

The results for the Bellman’s equation, v(x) are
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Figure 3: Final Solution

0 1, 1 1, 2 1, 3 2, 1 2, 2 2, 3 3, 1 3, 2 3, 3 e

2.14 2.40 3.1 2.44 3 2.32 2 1.74 2 3.5 0

Example .2. Full Size Matrix Algorithm

This is the original information in tableau form.

0 1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3 g

0 .15 .3 0 0 .3 0 0 .25 0 0 1

1,1 .45 0 .55 0 0 0 0 0 0 0 2

1,2 0 .15 0 .85 0 0 0 0 0 0 3.1

1,3 .4 0 .6 0 0 0 0 0 0 0 −.5

2,1 1/3 0 0 0 1/3 1/3 0 0 0 0 3

2,2 0 0 0 0 .5 .25 .25 0 0 0 1

2,3 .4 0 0 0 0 .1 .5 0 0 0 2

3,1 .3 0 0 0 0 0 0 .4 .3 0 −1

3,2 0 0 0 0 0 0 0 .4 .4 .2 2

3,3 .2 0 0 0 0 0 0 0 .2 .6 3.5

We will consider c = 0 and β = .9. Remember an extra state is added to handle the
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discount factor. The states in red are the ones which need to be eliminated.

0 1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3 e g g −Pg

0 .13 .27 0 0 .27 0 0 .23 0 0 .1 1 −.26

1,1 .405 0 .495 0 0 0 0 0 0 0 .1 2 −1.9

1,2 0 .135 0 .765 0 0 0 0 0 0 .1 3.1 .113

1,3 .36 0 .54 0 0 0 0 0 0 0 .1 −.5 −2.03

2,1 .3 0 0 0 .3 .3 0 0 0 0 .1 3 1.5

2,2 0 0 0 0 .45 .22 .23 0 0 0 .1 1 −1.03

2,3 .36 0 0 0 0 .09 .45 0 0 0 .1 2 .65

3,1 .27 0 0 0 0 0 0 .36 .27 0 .1 −1 −1.45

3,2 0 0 0 0 0 0 0 .36 .36 .18 .1 2 1.01

3,3 .18 0 0 0 0 0 0 0 .18 .54 .1 3.5 1.07

e 0 0 0 0 0 0 0 0 0 0 1 0 0

We will execute the ”full size matrix” algorithm and get the final result.

0 1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3 e

0 0 0 .20 0 .41 0 0 0 .14 0 .25

1,1 0 0 .58 0 .17 0 0 0 .05 0 .2

1,2 0 0 .55 0 .13 0 0 0 .05 0 .27

1,3 0 0 .61 0 .15 0 0 0 .05 0 .19

2,1 0 0 .06 0 .60 0 .09 0 .04 0 .21

2,2 0 0 0 0 .58 0 .29 0 0 0 .13

2,3 0 0 .07 0 .20 0 .48 0 .05 0 .20

3,1 0 0 .09 0 .17 0 0 0 .48 0 .26

3,2 0 0 .03 0 .07 0 0 0 .53 .18 .19

3,3 0 0 .04 0 .07 0 0 0 .21 .54 .14

e 0 0 0 0 0 0 0 0 0 0 1

The results for the Bellman’s equation, v(x) are
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0 1, 1 1, 2 1, 3 2, 1 2, 2 2, 3 3, 1 3, 2 3, 3 e

2.14 2.40 3.1 2.44 3 2.32 2 1.74 2 3.5 0
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