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Abstract. We characterize the analytic integrability of Hamiltonian systems

with Hamiltonian H =
1

2

2∑
i=1

p2i + V (q1, q2), having homogeneous potential

V (q1, q2) of degree −2.

1. Introduction

We consider C4 as a symplectic linear space with canonical variables q = (q1, q2)
and p = (p1, p2). We are interested in Hamiltonian systems defined by the Hamil-
tonian function

(1) H =
1

2

2∑
i=1

p2i + V (q),

where V (q) = V (q1, q2) is a homogeneous function of degree k. To be more precise
we consider the following system of four differential equations

(2) q̇i = pi, ṗi = −∂V
∂qi

, i = 1, 2.

Let A = A(q, p) and B = B(q, p) be two functions. Then their Poisson bracket
{A,B} is given by

{A,B} =

2∑
i=1

(
∂A

∂qi

∂B

∂pi
− ∂A

∂pi

∂B

∂qi

)
.

We say that functions A and B are in involution if {A,B} = 0. We say that a
non–constant function F = F (q, p) is a first integral for the Hamiltonian system
(2) if it commutes with the Hamiltonian function H, i.e. {H,F} = 0. Since the
Poisson bracket is antisymmetric it is clear that H itself is always a first integral.
We say that a 2–degree of freedom Hamiltonian system (2) is completely or Liouville
integrable if it has 2 functionally independent first integrals: H, and an additional
one F , which are in involution. As usual H and F are functionally independent if
their gradients are linearly independent at all points of C4 except perhaps in a zero
Lebesgue set.

First we recall basic properties of system (2). Let PO 2(C) denote the group of
2× 2 complex matrices A such that AAT = αI, where I is the identity matrix and
α ∈ C \ {0}. We say that potentials V1(q) and V2(q) are equivalent if there exists
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Case Potential

V1 q31

V2 q31/3 + cq32/3

V3 aq31/3 + q21q2/2 + q32/6

V4 q21q2/2 + q32

V5 ±i7q31/15 + q21q2/2 + q32/15

V6 q21q2/2 + 8q32/3

V7 ±i17
√

14q31/90 + q21q2/2 + q32/45

V8 ±i
√

3q31/18 + q21q2/2 + q32

V9 ±i3
√

3q31/10 + q21q2/2 + q32/45

V10 ±i11
√

3q31/45 + q21q2/2 + q32/10

Table 1. All nonequivalent integrable homogeneous potentials of
degree 3.

a matrix A ∈ PO 2(C) such that V1(q) = V2(Aq). So we divide all potentials into
equivalent classes. Here a potential means a class of equivalent potentials in the
above sense. This definition of equivalent potentials is motivated by the following
simple lemma. For a proof see [8].

Lemma 1. Let V1 and V2 be two equivalent potentials. If Hamiltonian system (2)
is integrable with potential V1 then it is also integrable with V2.

In the beginning of 80’s all integrable Hamiltonian systems (1) with homogeneous
polynomial potential of degree at most 5 and having a second polynomial first
integral up to degree 4 in the variables p1 and p2 were found, see [14, 5, 3, 6, 2]
and also [7] for the list of corresponding additional first integrals. We remark that
all these first integrals are polynomials in the variables p1, p2, q1 and q2. The main
tools used there in order to identify these integrable systems were Painlevé test [4]
and direct methods [8].

An elegant result related with the integrability of Hamiltonian systems with a
homogeneous polynomial potential was given by Morales and Ramis (see [13, p.
100] and references therein), which gives the necessary condition for the complete
meromorphic integrability of such systems. Using the result of Morales–Ramis,
Maciejewski and Przybylska [10] gave a necessary and sufficient condition for the
complete meromorphic integrability of Hamiltonian systems with the homogeneous
polynomial potential of degree 3. The list of nonequivalent integrable homogeneous
potentials of degree 3 is given in Table 1. Later on in [11] the same authors studied,
among other things, the meromorphic integrability of the class of Hamiltonian
systems with a homogeneous polynomial potential of degree 4. They proved that
except for the family of potentials

(3) V =
1

2
aq21(q1 + iq2)2 +

1

4
(q21 + q22)2,
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Case Potential

Vi α(q2 − iq1)i(q2 + iq1)4−i for i = 0, 1, 2, 3, 4.

V5 αq42

V6 αq41/4 + q42

V7 4q41 + 3q21q
2
2 + q42/4

V8 2q41 + 3q21q
2
2/2 + q42/4

V9 (q21 + q22)2/4

V10 −q21(q1 + iq2)2 + (q21 + q22)2/4

Table 2. Nonequivalent integrable homogeneous potentials of de-
gree 4.

only these systems with potentials Vi for i = 0, 1, . . . , 8 given in Table 2 are the
nonequivalent integrable homogeneous potentials of degree 4. In [9] we proved that
for the family (3) only the potentials V9 and V10 of Table 2 are integrable.

In this paper we classify the analytic integrability of the Hamiltonian systems (2)
with homogeneous potentials of degrees k = 2, k = 1, k = 0, k = −1 and k = −2.
So at this moment the analytic integrability of the Hamiltonian systems (2) with
homogeneous potentials of degrees k = −2,−1, 0, 1, 2, 3, 4 has been characterized.

2. Homogeneous potentials of degrees 2, 1, 0 and −1

For the sake of completeness we summarize here the trivial results related to the
integrability of the Hamiltonian systems with the homogeneous potential of degree
2, 1, 0 and −1 being either a polynomial or an inverse of the polynomial. It turns
out that all those systems are completely integrable, with a polynomial additional
first integral.

Theorem 2. Hamiltonian systems (2) with the homogeneous potential V and one
corresponding additional polynomial first integral I:

V = aq21 + bq1q2 + cq22 , I = b2q21+4bcq2q1+(b2+4c2−4ac)q22−2(a−c)p22+2bp1p2,

V = aq1 + bq2, I = ap2 − bp1,
V = a, I = p1,

V = 1/(aq1 + bq2), I = ap2 − bp1,

where a, b, c ∈ C and V 6≡ 0.

Proof. The theorem follows by a straightforward computation. �

3. Homogeneous potential of degree −2

In this section we consider Hamiltonian systems (2) with a homogeneous poten-
tial of the form

(4) V = V (q) =
1

aq21 + bq1q2 + cq22
with a, b, or c nonzero.
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As we shall see only few of these potentials of degree −2 will be analytically
integrable, however all of them are rationally integrable with the additional well–
known first integral

I =
1

2
(q1p2 − q2p1)2 + (q21 + q22)V (q),

see for more details [1] and [12].

Our main results are the following two theorems (Theorems 3 and 4).

Theorem 3. The following statements hold.

(a) The polynomial integrability of the Hamiltonian system (2) with homoge-
neous potential (4) is equivalent to study the polynomial integrability of
Hamiltonian system (2) with homogeneous potential V = 1/(aq21 + cq22).

(b) The Hamiltonian system (2) with homogeneous potential V = 1/(aq21 +cq22)
is completely integrable with an additional polynomial first integral if and
only if either c = 0, or c 6= 0 and a ∈ {0, c}. Moreover this additional first
integral is p2 if c = 0; p1 if a = 0 and q1p2 − q2p1 if a = c.

We consider polynomial differential systems of the form

(5)
dx

dt
= ẋ = P (x), x = (x1, x2, x3, x4) ∈ C4,

with P (x) = (P1(x), P2(x), P3(x), P4(x)) and Pi ∈ C[x1, x2, x3, x4] for i = 1, 2, 3, 4.
We say that system (5) is weight-homogeneous if there exist s = (s1, s2, s3, s4) ∈ Z4

and d ∈ Z such that

Pi(α
s1x1, α

s2x2, α
s3x3, α

s4x4) = αsi−1+dPi(x1, x2, x3, x4), i = 1, 2, 3, 4,

for arbitrary α ∈ R+ = {α ∈ R, α > 0}. We call s = (s1, s2, s3, s4) the weight
exponent of system (5) and d the weight degree with respect to the weight exponent
s. We say that a polynomial F (x1, x2, x3, x4) is a weight-homogeneous polynomial
with weight exponent s and weight degree n if

F (αs1x1, α
s2x2, α

s3x3, α
s4x4) = αnF (x1, x2, x3, x4).

We note that Hamiltonian system (2) with homogeneous potential (6) is a weight-
homogeneous polynomial differential system with weight exponent (s1, s2, s3, s4) =
(−1,−1, 1, 1) and weight degree d = 3. Indeed with those values of d and si,
i = 1, 2, 3, 4 we can easily show

αs1−1+d = αs3 , αs2−1+d = αs4 , αs3−1+d = α−3s1 , αs4−1+d = α−3s2 ,

for an arbitrary α ∈ R+. It is well-known (see for instance Proposition 1 of [9])
that the study of the existence of analytic first integrals of a weight–homogeneous
polynomial differential system reduces to the study of the existence of a weight–
homogeneous polynomial first integrals. This fact together with Theorem 3 states
the following main theorem.

Theorem 4. The Hamiltonian system (2) with homogeneous potential (6) is com-
pletely integrable with an additional analytic first integral if and only if either c = 0,
or c 6= 0 and a ∈ {0, c}.

The following lemma proves statement (a) of Theorem 3.
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Lemma 5. Let F (q) = aq21 + bq1q2 + cq22. Then there exists a change of variables
q = Aq̄, where A ∈ PO 2(C) such that

F (Aq̄) = αq̄21 + βq̄22 .

Proof. We can assume that b 6= 0, otherwise there is nothing to prove. Let(
q1
q2

)
=

(
a1 a2
−a2 a1

)(
q̄1
q̄2

)
.

Then

F (Aq̄) = ᾱq̄21 + β̄q̄1q̄2 + γ̄q̄22 ,

with

ᾱ = (aa21 − a1a2b+ a22c),

β̄ = 2aa1a2 + a21b− a22b− 2a1a2c,

γ̄ = (aa22 + a1a2b+ a21c).

Taking

a1 =
a2(c− a) +

√
a22(b2 + (a− c)2)

b
,

we get β̄ = 0. �

The above lemma implies that we can work with a homogeneous potential of the
form

(6) V =
1

aq21 + cq22
, with a or c nonzero.

First we consider the case ac(c−a) 6= 0. We recall that we have the Hamiltonian
system

(7) q̇1 = p1, q̇2 = p2, ṗ1 =
2aq1

(aq21 + cq22)2
, ṗ2 =

2cq2
(aq21 + cq22)2

,

where the dot in (7) denotes the derivative with respect to t. Now we take the new
independent variable τ defined by dt = (aq21 + cq22)2dτ . Then system (7) becomes

(8) q̇1 = p1(aq21 + cq22)2, q̇2 = p2(aq21 + cq22)2, ṗ1 = 2aq1, ṗ2 = 2cq2,

where now the dot denotes the derivative with respect to τ . Changing the variables
(q1, q2, p1, p2)→ (q1, q2, p1, T ), where T = q2p1 − q1p2, system (8) writes

(9)

q̇1 = p1(aq21 + cq22)2,

q̇2 =
q2p1 − T

q1
(aq21 + cq22)2,

ṗ1 = 2aq1,

Ṫ = 2(a− c)q1q2.

With this change of variables we put in evidence the first integral when a = c.

If we denote by F (q1, q2, p1, p2) ∈ C[q1, q2, p1, p2] a polynomial first integral of
(8), then in the variables (q1, q2, p1, T ) it writes

(10) F (q1, q2, p1, T ) =

n∑
j=−n

fj(q2, p1, T )qj1,



6 JAUME LLIBRE1, ADAM MAHDI2 AND CLAUDIA VALLS3

where fj(q2, p1, T ) ∈ C[q2, p1, T ]. By definition F is a first integral of (9) if and
only if F is non-constant and

(11) (aq21 + cq22)2
(
∂F

∂q1
p1 +

∂F

∂q2

q2p1 − T
q1

)
+ 2q1

(
a
∂F

∂p1
+
∂F

∂T
(a− c)q2

)
= 0.

We define the following differential operators that act on fj = fj(q2, p1, T ) ∈
R[q2, p1, T ]:

A[fj ] : = jp1fj + (q2p1 − T )
∂fj
∂q2

,

B[fj ] : = cq22a(q2p1 − T )
∂fj
∂q2

+ a
∂fj
∂p1

+ (a− c)q2
∂fj
∂T

+ jacq22p1fj .

Computing the different coefficients of qj1 in (11) for j = −n− 1, . . . , n + 3 we get
that F is a first integral of (9) if and only if

(12)

c2q42 A[fi] = 0, for i = −n,−n+ 1,

2B[fi] + c2q42 A[fi+2] = 0, for i = −n,−n+ 1,

c2q42 A[fi] + 2B[fi−2] + a2A[fi−4] = 0, for i = −n+ 4, . . . , n,

2B[fi] + a2A[fi−2] = 0, for i = n− 1, n,

a2A[fi] = 0, for i = n− 1, n.

We shall prove that if ac(a− c) 6= 0, then F = const and consequently it is not
a first integral. The proof will follow from the following two lemmas.

Lemma 6. Let F be as in (10) and ac(a− c) 6= 0. If F is first integral of (9), then
fj(q2, p1, T ) = 0 for j = 1, . . . , n.

Proof. From (12) we consider a2A[fn] = 0. Using that a 6= 0, the solution is
fn = α/(T − q2p1)n, where α = α(p1, T ). Since fn ∈ C[q2, p1, T ] we conclude that
fn = 0. Similarly, from a2A[fn−1] we show that fn−1 = 0. Now using that B[0] = 0,
and fn = fn−1 = 0 the conditions

2B[fi] + a2A[fi−2] = 0 for i = n− 1, n,

implies that A[fn−2] = A[fn−3] = 0. Thus using the arguments for solving
a2A[fn] = 0 we obtain that as long as n − 3 ≥ 1 we get fn−2 = fn−3 = 0.
If n = 4 we are done. If n ≥ 5, then we proceed by induction. Assume that
fn = fn−1 = . . . = fj+1 = 0, where j ≥ 1. We shall show that fj = 0. Now we
consider condition (12) for i = j + 4, that is,

(13) c2q42 A[fj+4] + 2B[fj+2] + a2A[fj ] = 0.

Since fj+4 = fj+2 = 0, we have A[fj+4] = B[fj+2] = 0. Thus condition (13) reduces
to A[fj ] = 0. Since j ≥ 1, the only polynomial solution of this differential equation
is fj = 0. �

Lemma 7. Let F be as in (10) and ac(a− c) 6= 0. If F is first integral of (9), then
fj(q2, p1, T ) = 0 for j = −n,−n+ 1 . . . ,−1 and f0(q2, p1, T ) = constant.

Proof. Consider (12) for i = −n,−n+1, that is, c2q42 A[f−n] = 0 and c2q42 A[f−n+1] =
0. Since c 6= 0 this implies that A[f−n] = A[f−n+1] = 0 and solving it we get

(14) f−n = (q2p1 − T )nα−n, and f−n+1 = (q2p1 − T )n−1α−n+1,
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where α−n = α−n(p1, T ) and α−n+1 = α−n+1(p1, T ) are polynomials. Now we
consider the condition 2B[fi] + c2q42 A[fi+2] = 0, for i = −n,−n + 1 and we shall
use (14). Thus for i = −n we get

f−n+2 = (q2p1 − T )n−2[α−n+2 + β−n+2],

where α−n+2 = α−n+2(p1, T ) is an integral constant and

β−n+2 =
1

3c2q32

(
3ncq2α−n − 3(a− c)q2(T − 2q2p1)

∂α−n

∂T
+ a(3q2p1 − 2T )

∂α−n

∂p1

)
.

Since f−n+2 is a polynomial, β−n+2 also is a polynomial. In the expression of β−n+2

there are terms (a− c)p1q−1
2

∂α−n

∂T and − 2
3aTq

−3
2

∂α−n

∂p1
. Since fn−2 is a polynomial

we obtain that
∂α−n

∂T
=
∂α−n

∂p1
= 0.

So α−n = constant. Moreover in β−n+2 we also have the term nc−1q−2
2 α−n. Again

since f−n+2 is a polynomial α−n = 0, thus f−n = 0. Working with f−n+1 similarly
as with f−n we obtain

f−n+3 = (q2p1 − T )n−3[α−n+3 + β−n+3],

where α−n+3 = α−n+3(p1, T ) and

β−n+3 =
1

3c2q32

(
3(n−1)cq2α−n+1−3(a−c)q2(T−2q2p1)

∂α−n+1
∂T

+a(3q2p1 − 2T )
∂α−n+1

∂p1

)
.

Similarly as in the previous case we conclude that α−n+1 = 0. In summary we have
proved that f−n = f−n+1 = 0. Now we shall proceed by induction. Assume that
f−n = . . . = f−j−1 = 0 and for −j ≤ −3. We shall prove that f−j = 0. Consider
(12) for i = −j, that is,

(15) c2q42 A[f−j ] + 2B[f−j−2] + a2A[f−j−4] = 0.

Since by induction hypothesis f−j−4 = f−j−2 = 0, we have A[f−j−4] = B[f−j−2] =
0. Thus, condition (15) reduces to A[f−j ] = 0. This implies that f−j = (q2p1 −
T )jα−j , where again α−j = α−j(p1, T ). Now considering (12) for i = −j + 2 we
get

(16) c2q42 A[f−j+2] + 2B[f−j ] + a2A[f−j−2] = 0.

Taking into account that that A[f−j−2] = 0 as well as f−j = (q2p1 − T )jα−j the
solution of (16) writes

f−j+2 = (q2p1 − T )j−2[α−j+2 + β−j+2],

where

β−j+2 =
1

3c2q32

(
3jcq2α−j − 3(a− c)q2(T − 2q2p1)

∂α−j

∂T
+ a(3q2p1 − 2T )

∂α−j

∂p1

)
.

Again, since β−j+2 has to be a polynomial the same argument as before allows to
deduce that α−j = 0, therefore f−j = 0.

Following the induction steps we have proved that f−n = . . . = f−3 = 0, f−2 =
(T − q2p1)2α−2 and f−1 = (T − q2p1)α−1, where α−1 = α−1(p1, T ) and α−2 =
α−2(p1, T ). Consider again (12) for i = 1, that is,

(17) c2q42 A[f1] + 2B[f−1] + a2A[f−3] = 0.
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By Lemma 6 f1 = 0 so this implies A[f1] = 0. Since by the induction process
f−3 = 0, and f−1 = (T − q2p1)α−1 the solution of (17) is given by

α−1 = γ

(
T +

c− a
a

q2p1

)
/(a(T − q2p1)), where γ ∈ C.

Again since α−1 = α−1(p1, T ) is a polynomial and (c− a)/a 6= 0 we conclude that
γ = 0, thus α−1 = 0 which implies that f−1 = 0. To show that f−2 = 0 and that
f0 = f0(p1, T ), that is, f0 does not depend on q2 consider (12) for i = 0, that is,

(18) c2q42 A[f0] + 2B[f−2] + a2A[f−4] = 0.

Since A[f−4] = 0, f−2 = (T − q2p1)2α−2 and α−2 = α−2(p1, T ) solving (18) we get

f0 = α0 + β0,

where α0 = α0(p1, T ) and

β0 =
1

3cq32

(
6cq2α−2 − 3(a− c)q2(T − 2q2p1)

∂α−2

∂T
+ a(3q2p1 − 2T )

∂α−2

∂p1

)
.

Since β0 has to be a polynomial, using the same arguments for proving that β−n+2 =
0 we conclude that α−2 = 0, and consequently β0 = 0. Thus f−2 = 0, and therefore
f0 = α0(p1, T ).

Finally we consider (12) for i = 2. Since by Lemma 6 we have that f2 = 0, as
well as f0 = f0(p1, T ) we get

a
∂f0
∂p1

+ (a− c)q2
∂f0
∂T

= 0.

Its solution is of the form

f0(p1, T ) = F

(
T +

c− a
a

q2p1

)
.

Since a(a− c) 6= 0 and f0 does not depend on q2 we get that f0 = constant which
ends the proof. �

Proof of Theorem 3. If c = 0 then p2 is an additional polynomial first integral
and the corresponding Hamiltonian system (2) with potential (6) is completely
integrable. So we can assume that c 6= 0.

There are at least two values of a for which system (7) is completely integrable.
These cases are a = 0 with additional first integral p1 and a = c with additional
first integral q1p2 − q2p1. We note that in both cases the additional first integral is
a polynomial. The rest of the proof follows directly from Lemmas 6 and 7. �

Acknowledgements

The first author is supported by the grants MCYT/FEDER MTM 2008–03437
and Generalitat de Catalunya 2009SGR410 and by ICREA Academia. The third
author is partially supported by FCT through CAMGDS, Lisbon.



ON THE INTEGRABILITY OF HAMILTONIAN SYSTEMS 9

References

[1] A.V. Borisov, A.A. Kilin, and I.S. Mamaev, Multiparticle Systems. The Algebra of Integrals
and Integrable Cases, Regular and Chaotic Dynamics, 14 (2009), 18–41.

[2] T. Bountis, H. Segur, and F. Vivaldi, Integrable Hamiltonian systems and the Painlevé prop-
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integrable and nonintegrable regimes, J. Math. Phys. 23 (1982), no. 4, 531–538.

[4] A. Goriely, Integrability and nonintegrability of dynamical systems, Advanced Series in Non-
linear Dynamics, vol. 19, World Scientific Publishing Co. Inc., River Edge, NJ, 2001.

[5] B. Grammaticos, B. Dorizzi, and R. Padjen, Painlevé property and integrals of motion for
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[14] A. Ramani, B. Dorizzi, and B. Grammaticos, Painlevé conjecture revisited, Phys. Rev. Lett.
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