
GEVREY REGULARITY FOR A CLASS OF DISSIPATIVE EQUATIONS

ANIMIKH BISWAS

Abstract. In this paper, we establish Gevrey class regularity of solutions to a class
of dissipative equations with a general quadratic nonlinearity for initial data in certain
Besov type spaces. We then apply our result to the Navier-Stokes equations, the surface
quasi-geostrophic equations, the Kuramoto-Sivashinsky equation and the barotropic quasi-
geostrophic equation. In particular, we provide an alternate proof, as well as Lq extensions,
of the results of Oliver and Titi ([38]) concerning temporal decay of solutions to the Navier-
Stokes equations in higher Sobolev norms. We also obtain a new class of initial data where
such decay holds for the 2D Navier-Stokes equations. Similar decay result is also proven for
the 2D surface quasi-geostrophic equation.

1. Introduction

Regular solutions of many dissipative equations, such as the Navier-Stokes equations(NSE),
the Kuramoto-Sivashinsky equation, the surface quasi-geostrophic equation and the Smolu-
chowski equation are in fact analytic, in both space and time variables ([37], [17], [4], [14],
[46]). It is well-known that in case of the NSE, the space analyticity radius is an important
physical object: at this length scale the viscous effects and the (nonlinear) inertial effects
are roughly comparable. Below this length scale the Fourier spectrum decays exponentially
([16], [24], [25], [13]). Other applications occur in the study of long term dynamics of so-
lutions ([38]), establishing geometric regularity criteria for the NSE and in measuring the
spatial complexity of the flow (see [31], [34], [22]).

An effective approach for estimating the analyticity radius for the NSE via Gevrey norms
was introduced by Foias and Temam ([18]). In this approach, one avoids cumbersome re-
cursive estimation of higher order derivatives. Since its introduction, Gevrey class technique
has become a standard tool for studying analytic properties of solutions for a wide class of
dissipative equations (see [8], [15], [3], [32]). This was extended to establish analyticity of
solutions to the NSE in Lp spaces ([32]), and subsequently to initial data in certain distribu-
tional spaces ([5]). In [38], it was shown how Gevrey norm estimates can be used to derive
sharp upper and lower bounds for the (time) decay of higher order derivatives of solutions
to the NSE.

We consider a nonlinear evolution equation of the form

ǔt + Ďǔ = B̌(ǔ, ǔ) + F̌ , ǔ0 ∈ L,
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2 GEVREY REGULARITY FOR DISSIPATIVE EQUATIONS

where ǔ : Rn → Rm is the solution we seek, F̌ is a given external “force” and L is an
appropriate Banach space to which the initial data is assumed to belong. The operator Ď is
a densely defined “dissipative” operator while B̌(ǔ, v̌) is a densely defined bilinear operator.
Our assumption on the bilinear operator will include those having the form

B̌(ǔ, v̌) = R(Sǔ⊗ T v̌), (1)

where R, S, T are operator matrices whose entries are Fourier multipliers with symbols
mi(ξ), i ∈ {R, S, T} satisfying |mi(ξ)| ≤ C|ξ|αi , αi ∈ R, C > 0. The type of the dissipa-
tive operators we consider will also be given by a Fourier multipliers of appropriate type.
They will include the Laplacian, the fractional Laplacian and certain linear combination of
them (for instance as in the Kuramoto-Sivashinsky equation).

It will be convenient for us to consider the mild formulation of the above mentioned
dissipative equation, namely,

ǔ = e−tĎǔ0 +

∫ t

0

e−(t−s)ĎB̌(ǔ, ǔ) ds+

∫ t

0

e−(t−s)ĎF̌ (s) ds, (2)

where {e−tD}t≥0 denotes the solution semi-group for the corresponding linear equation. The
initial data will be assumed to belong to certain “homogeneous” Besov and potential spaces,
which will include distributional spaces with negative regularity index. We will obtain solu-
tions to (2) belonging to appropriate Gevrey classes. These solutions will be global (in time)
for small initial data in the “critical space”.

Our applications include the Navier-Stokes equations, the 2D surface quasi-geostrophic
equations, the Kuramoto-Sivashinsky equation and the barotropic geostrophic equations.
As a consequence of our result, we provide an alternate proof, as well as an Lp versions, of
the results in [38], [40], [42] concerning large time decay of solutions to the 3D Navier-Stokes
equations in higher (homogeneous) Sobolev norms. However, unlike [38], [40], [42], we do not
assume any L2 decay. In case of the 2D NSE, in addition to the class L2(R2) ∩ L1(R2), we

obtain a new class (namely, Ḣ−1(R2)∩L2(R2)) where such a decay holds. See the Application
section and the discussion there for details. We also obtain similar decay results for the sub-
critical 2D surface quasi-geostrophic equations. These applications hinge on the fact that
we obtain Gevrey class solutions for initial data belonging to critical (homogeneous) Besov
and potential spaces with negative regularity index.

2. Notation and Setting

Denote by V ′ = {v : Rn → Cn} the topological vector space of all functions endowed
with the topology of point wise convergence and let V be a closed subspace of V ′. Let
D : VD → V and B : VB × VB → V respectively denote a linear and a bilinear operator
defined on dense subspaces VD ⊂ V and VB ⊂ V.

We will respectively denote by F and F−1 the Fourier transform and the inverse Fourier
transform given by the formulas

(Ff)(ξ) =

∫
Rn
f(x)e−ıξ·x dx and (F−1f)(x) =

∫
Rn
f(ξ)eıξ·x dξ, (f ∈ L1(Rn)).
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We briefly recall a few facts concerning the Fourier transform (see [27]). The Fourier inversion
formula, namely F−1F(f) = 1

(2π)n
f , holds (directly) for all f such that both f and Ff belong

to L1(Rn). The Fourier transform can be extended as a bounded linear operator from Lp(Rn)
to Lp

′
(Rn) for 1 ≤ p ≤ 2, where henceforth, for any 1 ≤ r ≤ ∞, we will denote its Hölder

conjugate r′ by

r′ :=
r

r − 1
, 1 ≤ r ≤ ∞.

For 1 ≤ p ≤ 2 and f ∈ Lp(Rn), the Hausdorff-Young inequality (see [27]) asserts

‖F(f)‖Lp′ ≤ ‖f‖Lp .

For f ∈ Lp(Rn), 2 < p ≤ ∞, one may define its distributional Fourier transform, which is
in fact defined for any tempered distribution. With this extended definition, FLp(Rn) is a
Banach space with the norm ‖Ff‖FLp = ‖f‖Lp , 2 < p ≤ ∞. The space FL∞ is known as
the space of pseudomeasures (see [27]).

Letting u = F(u), we can reformulate (2) formally as

u(t) = e−tDu0 +

∫ t

0

e−(t−s)DB[u,u] ds+

∫ t

0

e−(t−s)DF (s) ds (u0 ∈ V), (3)

where, in this case, B[u,u] = F(B̌[ǔ, ǔ]) and F = F(ǔ). The operator D is assumed to be
a densely defined “multiplication” operator on V of the form

(Dfv)(ξ) = (Dv)(ξ) = f(ξ)v(ξ) (4)

where f : Rn →Mn(C) is a given n×n matrix valued function. Although in our applications
considered here, f(ξ) is scalar valued (i.e., f(ξ) = f(ξ)In×n) it may potentially be matrix-
valued if for instance one considers the effect of rotation.

We will make certain structural assumptions on both the linear operator D and the bilinear
operator B. Concerning the linear operator, we assume that there exists a function g : Rn →
R satisfying the following properties:

P1. There exist σ,K > 0 such that

‖e−tf(ξ)x‖ ≤ Ce−g(
√
t
σ
ξ)‖x‖ for all 0 ≤ t ≤ K, ξ ∈ Rn, x ∈ Cn.

P2. For all m ≥ 0 we have sup
ξ∈Rn
|ξ|me−g(ξ) <∞.

P3. There exists 0 < γ ≤ 1 and λ0 > 0 such that sup
ξ∈Rn

(λ0|ξ|γ − g(ξ)) <∞.

For example, in our applications to the Navier-Stokes and the quasi-geostrophic equations,
f(ξ) = g(ξ) = |ξ|κ, κ ∈ [1, 2], while for the Kuramoto-Sivashinsky equation, f(ξ) = g(ξ) =
|ξ|4 − |ξ|2.

Remark 1. The properties P1 and P2 are necessary for existence theory while P3 is neces-
sary for establishing Gevrey regularity. The property P1 is satisfied for instance if the matrix
f(ξ) is normal and its eigenvalues, denoted by fi(ξ), 1 ≤ i ≤ n satisfy tfi(ξ) ≥ g(

√
t
σ
ξ) for

all 1 ≤ i ≤ n.
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For any β ∈ R, define the linear operator

(Λβv)(ξ) = |ξ|βv(ξ), v ∈ V, ξ ∈ G.

Clearly, the operators Λβ commute with e−tD. This fact will be used throughout. We assume
that for some α, β1, β2 ∈ R, the bilinear operator satisfies the estimate

|B[u,v](ξ)| ≤ C|ξ|α(|Λβ1u| ∗ |Λβ2v|)(ξ) for all ξ ∈ G. (5)

Here, and henceforth, we will denote by C any generic constant which may depend only
on the fixed parameters, like 1 ≤ p ≤ ∞ or the ones occurring in P1–P3 or (5). Also, for
v ∈ V, here (and henceforth) we denote by |v| the R+-valued function on Rn defined by
|v|(ξ) = |v(ξ)|. Recall that F and F−1 will denote the Fourier transform and its inverse. If
B̌ is as in (1), then (5) holds for B(u,v) = F

(
B̌(ǔ, v̌)

)
, where ǔ = F−1(u) and v̌ = F−1(v).

Let θ ∈ R and 1 ≤ p ≤ ∞. We will denote

Vθ,p = {v ∈ V : ‖v‖θ,p :=

{∫
Rn
|ξ|θp|v(ξ)|p dξ

}1/p

<∞}.

When θ = 0, we will simply write the corresponding space and norm as Vp and ‖ · ‖p
respectively.

For σ ∈ R, 1 ≤ q ≤ ∞, the homogeneous potential spaces Ḣσ
q are defined as

Ḣσ
q = {f : ‖f‖Ḣσ

q
:= ‖(−∆)σ/2f‖Lq <∞}.

For q = 2, we will write Ḣσ
q = Ḣσ. Using the Fourier transform, it is easy to see that Ḣσ =

Vσ,2. Thus, for 1 ≤ q ≤ 2, F(Ḣθ
q ) ⊂ Vθ,q′ , while for 1 ≤ p ≤ 2, we have F−1(Vθ,p) ⊂ Ḣθ

p′ .
For 1 ≤ p ≤ ∞ , γ, σ as in P1–P3 and a fixed λ ≥ 0, we define the Gevrey norm

‖v‖Gθ(τ) :=

{∫
Rn
eλp(

√
τ
σ |ξ|)γ |ξ|θp|v(ξ)|p dξ

}1/p

, τ ≥ 0,v ∈ V. (6)

Note that, in addition to θ and τ , this norm also depends on σ, γ, λ and p. However, in each
of our applications, these values will be fixed and for notational simplicity, we omit them
from the notation. In case θ = 0 in a certain consideration, we will simply write ‖v‖G(τ)

instead of ‖v‖Gθ(τ). Since λ and p will be fixed subject to certain conditions, we will suppress
the dependence of the Gevrey norm on these parameters.

Remark 2. Let γ = 1 in (6) and θ ∈ R be such that θp′ < n. If ‖v‖Gθ(τ) <∞, then for any
λα with 0 < λα < λ

√
τ
σ
, there exists a corresponding positive constant C, independent of

v, such that ∫
eλα|ξ||v(ξ)| dξ ≤ C‖v‖Gθ(τ).

This is due to Hölders inequality and the fact that
∫

Rn |x|
θp′e−η|x|dx <∞ for any η > 0 and

θp′ < n. The Paley-Wiener theorem (see e.g. [27]) implies that v̌ = F−1(v) is the restriction
to Rn of a holomorphic function on the domain {z = x+ ıy ∈ Cn : |y| < λα}.

In case 0 < γ < 1, v̌ belongs to the non-analytic Gevrey classes and is consequently
smooth.
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Definition 3. A mild solution of the dissipative equation we consider is a function u :
[0, T ] → V satisfying (3). The equation (3) is assumed to hold a.e. 0 ≤ t ≤ T . We
also require that u(·) and F be such that the two integrals in (3) converge absolutely for
a.e. ξ ∈ Rn.

Remark 4. u(·) is a solution of (3) on the interval [0, T ] such that∫ t

0

‖e−(t−s)DB[u,u]‖V1 ds <∞ and u ∈ V1 a.e. t ∈ (0, T ),

then ǔ = F−1u exists a.e. t and satisfies (2). This is an easy consequence of Fubini’s theorem
on interchanging the order of integration.

Let S ′ denote the space of tempered distributions. We recall that homogeneous Lq-based
Besov spaces with negative regularity index can be defined via the heat kernel (see [35]) as

Ḃ−δ,∞q = {f ∈ S ′ : sup
t>0

√
t
δ‖et∆f‖Lq <∞}.

Motivated by this, we will now define Besov type spaces with negative index in our setting.

Definition 5. For 1 ≤ p ≤ ∞, δ ≥ 0, the (homogeneous) Besov type space with negative
index is defined to be

B−δ,∞p =

{
v ∈ V : ‖v‖B−δ,∞p

:= sup
0<t<T

√
t
δ‖e−tDv‖Lp <∞

}
. (7)

In case Ď = −∆, the Hausdorff-Young inequality shows that for 1 ≤ p ≤ 2, we have
F−1(B−δ,∞p ) ⊂ Ḃ−δ,∞q where q = p′ denotes the Hölder conjugate of p. On the other hand,

F(Ḃ−δ,∞q ) ⊂ B−δ,∞p for 1 ≤ q ≤ 2 and p = q′ (in which case 2 ≤ p ≤ ∞). The following

proposition elucidates the relation between the spaces Vθ,r and B−δ,∞p .

Proposition 2.1. Let r > p and δ = n(1
p
− 1

r
)−θ > 0, where n denotes the space dimension.

Then we have

Vθ,r ⊂ B−δ,∞p and ‖u‖B−δ,∞p
≤ C‖u‖Vθ,r .

Proof. Set q = r
p
, θ1 = θp and q′ = r/(r − p), the Hölder conjugate of q. By P1, Hölder’s

inequality and a change of variable, we have

‖e−tDu‖pp ≤
∫
e−pg(

√
t
σ
ξ)|u(ξ)|p dξ

≤
(∫
|ξ|−θ1q′e−q′pg(

√
t
σ
ξ) dξ

)1/q′ (∫
|ξ|θ1q|u(ξ)|r dξ

)1/q

≤ C
√
t
δp

(∫
|ξ|θ1q|u(ξ)|r dξ

)1/q

.

The very last inequality is obtained by making a change of variable and noting that, due to
P3, the integral ∫

|η|−θ1q′e−q′pg(η) dη = C <∞ provided θ1q
′ < n.

This condition on θ1 translates to δ > 0.
�
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3. Main Results

Following the notation and setting of the previous section, we will state our main results.

Theorem 3.1. Let u0 ∈ B−δ,∞p and F : [0, T ′]→ V. Let moreover

M := ‖u0‖B−δ,∞p
+ sup0≤s≤T ′ ‖

√
s

1−δ
F (s)‖G(s) <∞ and

µ = 2− δ − σ(α + β1 + β2 + n
p′

).

}
(8)

Assume that the following conditions for the parameters hold:

i) 0 ≤ δ < min{1, 1− σ(β1+β2)
2

, 1− σ(β1+β2)
2

− nσ
2

( 1
p′
− 1

p
)}, δ ≤ 2− σ(α + β1 + β2 + n

p′
)

(ii) max{α + β1, α + β2} < 2
σ

(iii) min{β1, β2} > − n
p′

(iv) n
max{p′,2} −

|β1−β2|
2

> 0

(v) α + β1 + β2 + n
p′
≥ 0 (vi) α + n

p′
≥ 0 (vii) α + n

p
> 0 (viii) α + β1 + β2 + n

p′
< 4

σ
.

With these assumptions, we have the following results.

(a) If µ > 0, there exists T > 0 and a solution u of (3) in Cc((0, T ); Vp) which moreover
satisfies

sup
0<t<T

√
t
δ‖u‖G(t) ≤ 2M.

In fact, we may take T < min{T ′,
(

1
4CM

)2/µ}.
(b) If µ = 0 and T ′ = ∞, there exists a constant ε > 0, independent of u0 and F , such

that if M < ε then T =∞.
(c) Let ǔ = F−1(u), where u is as in parts (a) or (b). Then ǔ satisfies (2).

We will now state our result for initial data in Vθ0,p spaces, where θ0 ∈ R. For simplicity,
here we will take F = 0 in (3).

Theorem 3.2. Let u0 ∈ Vθ0,p, θ0 ∈ R. Assume that the following conditions hold:

(i) θ0 > max{β1+β2

2
− 1

σ
, β1+β2

2
+ n

2
( 1
p′
− 1

p
)− 1

σ
}, θ0 ≥ α + β1 + β2 + n

p′
− 2

σ

(ii) θ0 ≤ α + β1 + β2 + n
p′
, θ0 < min{β1 + n

p′
, β2 + n

p′
}

(iii) max{α + β1, α + β2} < 2
σ

(iv) n
max{p′,2} −

|β1−β2|
2

> 0

(v) α + n
p′

+ ϑ0 ≥ 0 (vi) α + n
p

+ ϑ0 > 0 (vii) α + β1 + β2 + n
p′
− ϑ0 <

4
σ

.

M := ‖u0‖Vθ0,p and µ := 2− σ(α + β1 + β2 +
n

p′
− θ0).

Then, there exists T > 0 and a solution u of (3) in C([0, T ]; Vθ0,p) which also satisfies

sup
0<t<T

‖u‖Gθ0 (t) ≤ 2M.

In case µ > 0, we may take T <
(

1
4CM

)2/µ
. If µ = 0 and M < ε, where ε > 0 is a

suitable constant independent of u0, then we may take T = ∞. Moreover if θ0p
′ < n, then

ǔ = F−1(u) satisfies (3).

Remark 6. In Theorems 3.1 and 3.2, the spaces corresponding to µ = 0 will be referred to as
the critical spaces. Note that these are precisely the spaces where we obtain global existence
for small initial data (provided K =∞ in P1). In our applications to the Navier-Stokes and
surface quasi-geostrophic equations, the critical spaces correspond to the “scale invariant
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spaces”. See [35] for a discussion on scale invariant spaces pertaining to the Navier-Stokes
equations.

We will now consider the borderline case p = 1. Here we will only consider two particular
cases: the 3D Navier-Stokes equations and the critical quasi-geostrophic equation.

Theorem 3.3. Let u0 ∈ V−1,1. Then there exists solution u to (3) for the 3D Navier-Stokes
equations for adequate T > 0 such that the solution u(·) satisfies supt∈[0,T ] ‖u(t)‖G−1(t) <∞.
If ‖u0‖−1,1 is suitably small, then the existence time T can be taken to be infinity.

We have the following result for the critical 2D surface quasi-geostrophic equation.

Theorem 3.4. Let u0 ∈ V1. Then there exists solution u to (3) for the critical quasi-
geostrophic equations for adequate T > 0 such that the solution u(·) satisfies ‖u‖Σ <∞. If
‖u0‖1 is suitably small, then the existence time T can be taken to be infinity.

Remark 7. The same results hold for sequences f = (fk)k∈Zn where the norm ‖f‖θ,p ={∑
k(1 + |k|)θp|fk|p

}1/p
.

4. Applications

In this section, we give applications of our results to various dissipative equations. In all
these cases, for simplicity, we will take the force F to be zero.

4.1. Navier-Stokes equations. The incompressible Navier-Stokes equations (henceforth
NSE) in fluid dynamics are given by

ǔt −∆ǔ +∇p+∇ · (ǔ⊗ ǔ) = 0, ∇ · ǔ = 0, ǔ(0) = ǔ0,

where ǔ : Rd × R+ → Rd is the velocity vector field, p is the pressure and ǔ0 is the
initial velocity. The pressure can be regarded as a Lagrangian multiplier which imposes
the divergence free condition. Due to the presence of pressure, these equations are nonlocal.
It is customary to apply the Leray projection operator on the Navier-Stokes equations to
eliminate pressure. If one does that, then the mild formulation can be rewritten as

ǔ = et∆ǔ0 +

∫ t

0

e(t−s)∆P∇ · (ǔ⊗ ǔ) ds, (9)

where P is the Leray projection operator on divergence free vector fields. Here we have used
the fact that in the absence of boundary, the Leray projection and the Laplacian commute.
It is in fact a Fourier multiplier with the symbol given by

P(ξ) = I − ξ ⊗ ξ
|ξ|2

.

There is a vast body of literature on local and global existence of weak, mild and strong
solutions to the Navier-Stokes equations; we refer the reader to [44], [11], [35] and the
references there in. The largest space in which the 3D NSE is thus far known to be locally
well-posed is the space BMO−1 ([30]). Roughly speaking, the space BMO−1 comprises of
all functions that can be written as sums of BMO functions and their derivatives.
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Applying the Fourier transform and letting u = F(ǔ), (9) can be (formally) reformulated
in the form (3), where

(Du)(ξ) = |ξ|2u(ξ) and B(u,v)(ξ) = −ıP(ξ)

∫
ξ · (u(ξ − η)⊗ v(η)) dη.

A mild solution of the NSE in our setting will be a solution to (3) with B and D as defined
above.

Theorem 4.1. Consider the Navier-Stokes equations on Rn, n = 2, 3. In this case, assump-
tions P1–P3 are satisfied with σ = 1, γ = 1, K =∞ and any λ0 > 0 and (5) is satisfied with
α = 1 and β1 = β2 = 0. With these values of the parameters, we have the following results.

(i) Let 1 < p ≤ n′ and 0 ≤ δ ≤ 1 − n
p′

and with u0 ∈ B−δ,∞p . Let µ = (1 − n
p′

) − δ.

In case δ < 1 − n
p′

(i.e., µ > 0), then there exists a unique mild solution u of

the NSE belonging to C((0, T ); Vp) where T = C

‖u0‖2/µ
B−δ,∞p

. Moreover, we also have

sup0<t<T

√
t
δ‖u(t)‖Gv(t) < ∞ and ǔ = F−1(u) satisfies (9). In case δ = 1 − n

p′
and

‖u0‖B−δ,∞p
< ε for an adequate constant ε > 0, the same result holds with T =∞.

(ii) Let 1 < p ≤ ∞, θ0 ≥ n
p′
− 1 and µ = θ0 − ( n

p′
− 1). If u0 ∈ Vθ0,p, then there exists a

T > 0 and an unique mild solution u of the NSE with u ∈ C([0, T ]; Vθ0,p) satisfying
sup0<t<T ‖u(t)‖Gvθ0 (t) < ∞. If θ0 >

n
p′
− 1, then T can be taken to be T = C

‖u0‖2/µθ0,p

.

On the other hand, in case θ0 = n
p′
−1, there exists an ε > 0 such that if ‖u0‖θ0,p < ε,

then T =∞. In all these cases, ǔ = F−1(u) solves (9).
(iii) Let n = 3, ǔ0 ∈ L2(R3) and ǔ be a Leray-Hopf weak solution of the NSE satisfying

the energy inequality

‖ǔ(t)‖2
L2 +

∫ t

0

‖(∆)1/2ǔ(s)‖2
L2 ds ≤ ‖ǔ0‖2

L2 . (10)

Let ε > 0 is as in part (ii). There exists t0 > 0 such that ǔ is a classical solution of
the NSE for all t ≥ t0 which, for all ζ > 1

2
, satisfies the estimate

‖(−∆)ζ/2ǔ(t)‖2
L2 ≤

(2ζ − 1)2ζ−1

(2e)2ζ−1

ε

(t− t0)ζ−
1
2

. (11)

Moreover, for 3 < q <∞ and ζ > 0 we also have the estimate

‖(−∆)ζ/2ǔ(t)‖Lq ≤
ε√

(t− t0)
ζ+δ

ζζ

eζ
where δ = 1− 3

q
. (12)

(iv) For n = 2, let ǔ0 ∈ L1(R2) ∩ L2(R2) or ǔ0 ∈ Ḣ− 1
2 (R2) ∩ L2(R2) and ε > 0 be as in

part (ii). Let ǔ be the global classical solution of the NSE with initial data ǔ0. There
exists t0 > 0 such that for all t > t0 and ζ > 0, satisfies the estimate

‖(−∆)ζ/2ǔ(t)‖2
L2 ≤

(2ζ − 1)2ζ−1

(2e)2ζ−1

ε

(t− t0)ζ
. (13)
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Moreover, for 2 < q <∞ and ζ > 0, we also have the estimate

‖(−∆)ζ/2ǔ(t)‖Lq ≤
ε√

(t− t0)
ζ+δ

ζζ

eζ
where δ = 1− 2

q
. (14)

Existence of solutions to the NSE in Gevrey classes was first proven for the periodic
boundary condition by Foias and Temam ([18]) (for initial data in H1) and subsequently
by Oliver and Titi on the whole space, with initial data in Hs, s > n/2, n = 2, 3 (see also

[35] for initial data in Ḣ1/2 for 3D NSE). By following a slightly different approach, Grujic
and Kukavica proved analyticity of solutions to the 3D NSE for initial data in Lq, q > 3.
On the other hand, existence (local in time for arbitrary data and global for small data
in suitable critical spaces) of mild (and in fact, classical) solution to the NSE for initial
data in Lp and Morrey spaces goes back to the work in [19], [26], [47], [20], [21] and more
recently, on homogeneous Besov spaces Ḃ−δ,∞q , δ = 3

q
− 1, 3 < q < ∞ ([7]) for the 3D NSE.

Part (i) of the above theorem establishes Gevrey regularity for solutions with initial data in
the related spaces B−δ,∞p , p = q′ while part (ii) was obtained previously in [5]. Concerning
Theorem 3.3, the spaces V−1,1 are (by taking inverse Fourier transform) contained in the

homogeneous potential spaces Ḣ−1
∞ and consequently, in BMO−1. Analyticity of the Koch-

Tataru solutions constructed for small initial data in BMO−1 has been proven in [23] by
first establishing analyticity for L∞ initial data and then invoking an uniqueness result ([33]).
Thus for small data, Theorem 3.3 is implied by [23]. However, our approach is more direct
and applies more generally, although we chose to present it ony for the NSE.

The decay in L2-based (homogeneous) Sobolev norms ‖u‖Ḣζ for the NSE as in (11) and
(13) were, to the best of our knowledge, first given in [40] and [42]. However, the constants
Cζ were not explicitly identified. The sharp (and optimal, in the sense of providing lower
bounds as well) decay results were provided by Oliver and Titi ([38]) following the Gevrey
class approach. The constants Cζ identified there is of the same order as provided here.
In the above mentioned results however, there is an assumption of the decay of the L2

norm of the solution. This is circumvented for the 3D NSE here due to our working in the
“critical” space Ḣ1/2. In the 2D setting, we provide a new space of initial data (namely,

Ḣ−1/2(R2) ∩ L2(R2)) where such decay result holds. In fact, as a corollary to (13) and (47),

by interpolation, it follows that for initial data in this class, the L2 norm decays like t−
1
4 .

It can be easily seen (via Fourier transform) that the class Ḣ−1/2(R2) ∩ L2(R2) is different
from the class L1(R2) ∩ L2(R2) where such a decay result was previously known ([41]). The
Lq based decay results presented here ((12) and (14)) are new to the best of our knowledge
and is obtained from our result in part (i).

4.2. Surface quasi-geostrophic equation. In R2, we consider the sub-critical surface
quasi-geostrophic equation given by

ηt +∇ · ((Rη)η) + (−∆)κ/2η = 0, 1 < κ ≤ 2, (15)

where R = (−R2,R1) denote the Riesz transform. The critical and super-critical case
correspond to κ = 1 and 0 < κ < 1 respectively. This equation is an important model in
geophysical fluid dynamics and has received considerable attention recently; see for instance
[12] or [14] and the references there in. The critical quasi-geostrophic equation, corresponding
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to α = 1
2

is the correct dimensional analogue of the 3D Navier-Stokes equations. The global
well-posedness of this equation has been proven only recently ([6], [29]).

Long time behavior of sub-critical quasi-geostrophic equations was studied in [12], [10].
Analyticity, as well as time decay rate of ‖(−∆)ζ/2η‖Lq , q > 2

κ−1
of solutions, was obtained

in [14]. The initial data in [14] was assumed to be in L
2

κ−1 . The decay result provided here
on L2-based homogeneous Sobolev spaces do not follow from the result there and appears to
be new. The analyticity result provided here in Besov (type) spaces with negative regularity
index, also appears to be new. For local (and global) existence results in corresponding
Besov spaces, see [2].

Global well-posedness for the critical quasi-geostrophic equation (i.e., κ = 1) in the border-
line homogeneous Besov space Ḃ0,1

∞ was proven in [1]. However, higher regularity of solution
is not established there. Note that this space is contained in Ḃ0,∞

∞ . The well-posedness of the
critical quasi-geostrophic equation in this class is open. Our class in Theorem 3.4, namely
V1, where we established global well-posedness (for small data) in the Gevrey class (and
thus in fact the solutions are analytic) is contained in Ḃ0,∞

∞ , but is distinct from the class
Ḃ0,1
∞ considered in [1].

Theorem 4.2. Consider the sub-critical 2D quasi-geostrophic equation (i.e., 1 < κ ≤ 2). In
this case, assumptions P1–P3 and condition (5) are satisfied with σ = 2

κ
, γ = 1, K =∞, α =

1, β1 = β2 = 0 and any λ0 > 0. With these values of the parameters, we have the following
results.

(i) Let 1 < p < ∞ and δ ≤ 2 − 2
κ
(1 + 2

p′
) and denote µ = 2 − 2

κ
(1 + 2

p′
) − δ. In

case δ < 2 − 2
κ
(1 + 2

p′
), setting T = C

‖η0‖2/µ
B−δ,∞p

, there exists a mild solution η to (15)

which belongs to C((0, T ); Vp) which moreover satisfies sup0<t<T

√
t
δ‖η(t)‖G(t) <∞.

Moreover, if δ = 2 − 2
κ
(1 + 2

p′
), then T = ∞ provided ‖η0‖B−δ,∞p

< ε for adequate

ε > 0.
(ii) Let 1 < p <∞, θ0 ≥ 1+ 2

p′
−κ and denote µ = 2(1− 1

κ
(1+ 2

p′
−θ0)). If η0 ∈ Vθ0,p, then

there exists a T > 0 and an unique mild solution η of (15) with η ∈ C([0, T ]; Vθ0,p)
which moreover satisfies sup0<t<T ‖u(t)‖Gvθ0 (t) < ∞. If θ0 > 1 + 2

p′
− κ, then T can

be taken to be T = C

‖η0‖2/µθ0,p

. On the other hand, in case θ0 = 1 + 2
p′
− κ, there exists

an ε > 0 such that if ‖η0‖θ0,p < ε, then T =∞.

(iii) Let 4
3
≤ κ ≤ 2. If η̌0 ∈ Ḣ2−κ(R2) ∩ L2(R2), then there exists t0 > 0 such that for

ζ > 2− κ, the following decay holds:

‖(−∆)ζ/2η(t)‖2
L2 ≤

(
ζ + κ− 2

λe

)2(ζ+κ−2)
ε

(t− t0)
2(ζ+κ−2)

κ

.

In [12], it was shown that for initial data in the class Hs(s > 2− κ), ‖η‖Hs is bounded on
any interval [0, T ] (although the spatial domain there was the torus, a similar argument can
be carried out in the whole space). Part (ii) of our result then immediately establishes space
analyticity of solutions on [0, T ]. However, since a uniform global bound on [0,∞) is not
in general available, the lower bound on the analyticity radius from our method will shrink.
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However, appealing to our result for the critical case Ḣ2−κ, we can prove that the analyticity
radius in fact increases (at the rate t1/κ) for large times provided κ ≥ 4/3.

4.3. Kuramoto-Sivashinsky equation. The Kuramoto-Sivashinsky equation (KSE) is

ǔt + ∆2ǔ + ∆ǔ +
1

2
|∇ǔ|2 = 0, ǔ(x, 0) = ǔ0(x) (16)

where ǔ(x, t) : Rn × [0, T ] → R, and the initial data is ǔ0. The KSE models pattern
formations on unstable flame fronts and thin hydrodynamic films. There is a large literature
surrounding the one-dimensional KSE subject to the space periodic boundary condition; see
[45] and the references therein. For more recent results, see [9], [43], [39] and the references
therein. As before, by taking Fourier transform, the mild formulation can be written in the
form (3) where

(Dv)(ξ) = |ξ|4 − |ξ|2 and B(u,v)(ξ) =
1

2

∫
η · (ξ − η)u(ξ − η)v(η) dη.

Theorem 4.3. Consider the (16) in dimension n ≥ 2. The assumptions P1 and P2 are
satisfied with f(ξ) = g(ξ) = |ξ|4− |ξ|2, σ = 1

2
and K = 1 while P3 is satisfied with γ = 1 and

any λ0 > 0. The condition in (5) is satisfied with β1 = β2 = 1 and α = 0. Consequently, we
have the following results.

(i) Let u0 ∈ Vθ0,p with max{−1, n
p′
−2} < θ0 <

n
p′

+1 and 1 < p <∞. There exists T > 0

and a solution u ∈ C([0, T ]; Vθ0,p) of the (16) such that supt∈(0,T ] ‖u‖Gθ0 (t) <∞.

(ii) Let 0 ≤ δ < min{1
2
, 1 − n

2p′
}, 1 < p < ∞ and u0 ∈ B−δ,∞p . There exists T > 0 and a

solution u ∈ C((0, T ); Vp) of the (16) such that supt∈(0,T ]

√
t
δ‖u‖G(t) <∞.

Part (i) of the result was previously obtained in [3].

4.4. Barotropic quasi-geostrophic equation. We will now provide an application to
the barotropic quasi-geostrophic equation with Newtonian (eddy) viscosity (see [36]). For
simplicity, we will assume both the beta plane effect and the bottom topography to be zero.
It is possible to include nonzero values of these in our approach at the expense of complicating
the statement of the following result. This equation is given by

ǔt +∇ ·
(
(∇⊥∆−1ǔ)ǔ

)
= ∆ǔ, (17)

where ǔ : R2×[0, T ]→ R denotes potential vorticity. As before, by taking Fourier transform,
we can reformulate the mild version as (3) where

(Du)(ξ) = |ξ|2u(ξ) and B(u,v)(ξ) =

∫
R2

(
ξ · η⊥

|η|2
u(η)v(ξ − η)

)
dη,

where for η = (η1, η2) we denote η⊥ = (−η2, η1).

Theorem 4.4. Consider the barotropic quasi-geostrophic equation (17) with Newtonian eddy
viscosity on R2. In this case, assumptions P1-P3 are satisfied with σ = 1, γ = 1, K = ∞
and any λ0 > 0. Furthermore, (5) is satisfied with α = 1, β1 = −1 and β2 = 0. We have the
following results.
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(i) Let 0 ≤ δ < 2
p
, p > 2 and u0 ∈ B−δ,∞p . Then there exists a T > 0 and a solution u

of (17) on C((0, T ); Vp) such that supt∈(0,T ) ‖u‖Gθ0 (t) < ∞. Moreover, if δ = 2
p

and

‖u0‖B−δ,∞p
is sufficiently small, we can take T =∞.

(ii) Let u0 ∈ Vθ0,p, θ0 ≥ −2
p
, 4/3 < p < ∞. Then there exists a solution u of (17) on

[0, T ] satisfying supt∈(0,T ) ‖u‖Gθ0 (t) <∞. In case ‖u0‖− 2
p
,p is sufficiently small, then

T =∞.

The author is not aware of a similar analyticity result for this equation on the whole space,
particularly for initial data in such a low regularity space.

5. Proof of Main Results and Applications

5.1. Proof of Main Results. We will need the following convolution inequality due to
Kerman (Theorem 3.1, [28]).

Let 1 < p <∞ and recall that p′ = p/(p− 1) denotes the Hölder conjugate of p. Assume

max(θ1, θ2) < n/p′, θ1 + θ2 ≥ 0, θ1 + θ2 > n(
1

p′
− 1

p
).

Then, we have

‖f ∗ g‖θ1+θ2− n
p′
≤ C‖f‖θ1,p‖g‖θ2,p. (18)

In case p = ∞, (18) holds provided n
2
< θ1, θ2 < n ([5]). We will also need the following

crucial lemma throughout.

Lemma 5.1. Let γ, λ0 and σ be as in assumptions P1–P3. For any

c > 0, 0 ≤ λ ≤ λ0√
c
σγ , 0 ≤ s ≤ t, 0 ≤ γ ≤ 1 and σγ ≤ 2,

and ξ, η ∈ Cd, we have the following estimates

|ξ|γ ≤ |ξ − η|γ + |η|γ and eλ(
√
t
σ |ξ|)γe−g(

√
(t−s)/c

σ
ξ) ≤ Ceλ(

√
s
σ |ξ|)γ . (19)

Proof. For x, y ≥ 0 and γ ∈ [0, 1], recall first the elementary inequality (x + y)γ ≤ xγ + yγ.
This follows easily from the fact that the function f(ζ) = 1 + ζγ − (1 + ζ)γ, ζ > 0 is
non-negative. Thus, by triangle inequality,

|ξ|γ ≤ (|ξ − η|+ |η|)γ ≤ |ξ − η|γ + |η|γ,

and the first inequality in (19) follows.
For the second, note that we have

eλ(
√
t
σ |ξ|)γe−g(

√
(t−s)/c

σ
ξ) = eλ((

√
t
σ |ξ|)γ−(

√
s
σ |ξ|)γ)e−g(

√
(t−s)/c

σ
ξ)eλ(

√
s
σ |ξ|)γ

≤ eλ(
√
t−sσ |ξ|)γ−g(

√
(t−s)/c

σ
ξ)eλ(

√
s
σ |ξ|)γ = eλ

√
c
σγ

(
√

(t−s)/c
σ
|ξ|)γ−g(

√
(t−s)/c

σ
ξ)eλ(

√
s
σ |ξ|)γ

≤ eλ0(
√

(t−s)/c
σ
|ξ|)γ−g(

√
(t−s)/c

σ
ξ)eλ(

√
s
σ |ξ|)γ ≤ Ceλ(

√
s
σ |ξ|)γ ,



GEVREY REGULARITY FOR DISSIPATIVE EQUATIONS 13

where, to obtain the first inequality in the second line above chain of inequalities, we used√
t
σγ −

√
s
σγ ≤

√
t− sσγ (which, in turn, follows from the first inequality in (19)), while the

inequalities in the last line follow from the assumption on the range of λ as well as P3.
�

The following proposition is useful for establishing Gevrey regularity.

Proposition 5.2. Let 0 ≤ λ ≤ λ0√
2
σγ and σγ ≤ 2, where λ0, σ, γ are as in assumptions

P1–P3. For 0 ≤ s ≤ t, we have

‖e−(t−s)Du‖G(t) ≤ C‖e−
t−s
2

Du‖G(s). (20)

Proof. We have the following estimates

‖e−(t−s)Du‖pG(t) =

∫
eλp(

√
t
σ |ξ|)γ |e−

t−s
2
f(ξ)e−

t−s
2
f(ξ)u(ξ)|p dξ

≤ C

∫
eλp(

√
t
σ |ξ|)γe−pg(

√
(t−s)/2

σ
ξ)|e−

t−s
2
f(ξ)u(ξ)|p dξ

≤ C

∫
eλp(

√
s
σ |ξ|)γ |e−

t−s
2
f(ξ)u(ξ)|p dξ = C‖e−

t−s
2

Du‖pG(s),

where the first inequality follows from P1 and P2 and the second from the two inequalities
in (19). �

Proposition 5.3. Let ϑ ≥ 0, δ ≥ 0 and 0 ≤ λ ≤ 2−σγλ0 be fixed. If u0 ∈ B−δ,∞p , then

sup
0<t<T

√
t
δ+σϑ‖Λϑe−tDu0‖G(t) ≤ C‖u0‖B−δ,∞p

.

Moreover, if δ < 1 and F : [0, T ]→ V be such that

sup
0≤s≤T

‖
√
s

1−δ
F (s)‖G(s) <∞,

then we have

sup
0≤t≤T

√
t
δ+σϑ‖Λϑ

∫ t

0

e−(t−s)DF (s) ds‖G(t) ≤ C sup
0≤s≤T

‖
√
s

1−δ
F (s)‖G(s).

Proof. The proof essentially follows from the definition of the Besov norm and using prop-
erties P1-P3.

‖Λϑe−tDu0‖pG(t) =

∫
eλp(

√
t
σ |ξ|)γ |e−tDΛϑu0|p dξ =

∫
eλp(

√
t
σ |ξ|)γ |e−

t
4
De−

t
4
DΛϑe−

t
2
Du0|p dξ

≤ C

∫
eλp(

√
t
σ |ξ|)γe−pg(

√
t/4

σ
ξ)e−pg(

√
t/4

σ
ξ)|Λϑe−

t
2
Du0|p dξ

≤ C

∫
eλp(

√
t
σ |ξ|)γe−pg(

√
t/4

σ
ξ)e−pg(

√
t/4

σ
ξ)|ξ|pϑ|e−

t
2
Du0|p dξ

≤ C
√
t
−pσϑ

∫
|e−

t
2
Du0|p dξ ≤ C

√
t
−p(σϑ+δ)‖u0‖pB−δ,∞p

,
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provided 0 ≤ λ ≤ 2−σγλ0. The first inequality in the last line above follows using property
P2 and subsequently proceeding as in Proposition 5.2.

The second part of the proposition concerning F can be proven in a similar manner.
�

Proof of Theorem 3.1
The strategy of the proof is similar to [47]. Let T ≤ K be fixed for now, where K is as in

P1. Let Vp = Lp ∩ V and Cc((0, T ); Vp) denote the space of all functions from (0, T ) to Vp

that are continous (in Lp norm) when restricted to any compact subspace of (0, T ). Consider
the path space endowed with the path space norm

Σ := {u ∈ Cc((0, T ); Vp) :

‖u‖Σ := sup
0<t<T

max{
√
t
δ‖u‖G(t),

√
t
δ+σϑ‖Λϑu‖G(t)} <∞

}
, (21)

for adequate ϑ ≥ 0. Here G(·) denotes the Gevrey norm as defined in (6) and the number
ϑ ≥ 0 will be specified later. Clearly, Σ is a Banach space.

Let [T1, T2] ⊂ (0, T ). For any t ∈ [T1, T2], we may write e−tf(ξ)u0 = e−sf(ξ)e−T1f(ξ)u0, where
s ∈ (0, T2− T1]. By the definition of the space B−δp , we have e−T1f(ξ)u0 ∈ Vp. Since the map

t→ e−tf(ξ) is continuous for each fixed ξ, by the Dominated Convergence Theorem, e−tDu0

belongs to Cc((0, T ); Vp). By a similar argument,
∫ t

0
e−(t−s)DF (s) ds belongs to Cc((0, T ); Vp)

as well. Now applying Proposition 5.3, it follows that both e−tDu0 and
∫ t

0
e−(t−s)DF (s) ds

belong to Σ (which, in particular, shows that Σ 6= {0}) and moreover, with M as defined in
Theorem 3.1,

‖e−tDu0‖Σ +

∥∥∥∥∫ t

0

e−(t−s)DF (s) ds

∥∥∥∥
Σ

≤M <∞. (22)

For u,v ∈ Σ, define

b(u,v) =

∫ t

0

e−(t−s)DB[u(s),v(s)] ds. (23)

Let

E = {u ∈ Σ : ‖u− e−tDu0 −
∫ t

0

e−(t−s)DF (s) ds‖Σ ≤M}.

We define the map

Su = e−tDu0 + b(u,u) +

∫ t

0

e−(t−s)DF (s) ds, u ∈ E , (24)

and show that it is a contractive self map of E . This then implies by contraction mapping
principle that there is a unique fixed point which solves (3). In order to do this, it will be
enough to obtain an estimate of the form

‖b(u,v)‖Σ ≤ C
√
T
µ
‖u‖Σ‖v‖Σfor all u,v ∈ E , (25)
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where µ is as in (8). If µ > 0, then we may choose T <
(

1
4CM

)2/µ
, in which case S will turn

out to be a contractive self map of E . On the other hand, if µ = 0, then we are in the critical
space where we can obtain a solution with T =∞ if M is sufficiently small.

We now proceed to obtain (25). We have the estimate

√
t
δ+σϑ‖Λϑb(u,v)‖G(t)

=
√
t
δ+σϑ

{∫
eλp(

√
t
σ |ξ|)γ |ξ|pϑ

∣∣∣∣∫ t

0

e−(t−s)DB[u(s),v(s)] ds

∣∣∣∣p dξ}1/p

≤
√
t
δ+σϑ

∫ t

0

{∫
eλp(

√
t
σ |ξ|)γ |ξ|pϑ|(e−(t−s)DB[u(s),v(s)])(ξ)|p dξ

}1/p

ds

=
√
t
δ+σϑ

∫ t

0

‖e−(t−s)DΛϑB[u(s),v(s)]‖G(t) ds

≤ C
√
t
δ+σϑ

∫ t

0

‖e−
t−s
2

DΛϑB[u(s),v(s)]‖G(s) ds, (26)

where the inequality in the third line above is obtained using Minkowski’s inequality while
for the last inequality above, we used (20). We will now estimate the term

‖e−
t−s
2

DΛϑB[u(s),v(s)]‖G(s)

in (26). To that end,

‖e−
t−s
2

DΛϑB[u(s),v(s)]‖pG(s) =

∫
eλp(

√
s
σ |ξ|)γ |ξ|pϑ|e−

t−s
2

DB[u(s),v(s)]|p dξ

≤ C

∫
eλp(

√
s
σ |ξ|)γe−pg(

√
t−s
2

σ
ξ)|ξ|pϑ|B[u(s),v(s)]|p

≤ C

∫
eλp(

√
s
σ |ξ|)γe−pg(

√
t−s
2

σ
ξ)|ξ|p(ϑ+α)

(
|Λβ1u| ∗ |Λβ2v|

)p
dξ

= C

∫
eλp(

√
s
σ |ξ|)γe−pg(

√
t−s
2

σ
ξ)|ξ|p(ϑ+α)

∣∣∣∣∫ |ξ − η|β1|u(ξ − η)||η|β2|v(η)| dη
∣∣∣∣p dξ

≤ C

∫
e−pg(
√

t−s
2

σ
ξ)|ξ|p(ϑ+α)∣∣∣∣∫ eλ(
√
s
σ |ξ−η|)γ |ξ − η|β1|u(ξ − η)|eλ(

√
s
σ |η|)γ |η|β2|v(η)| dη

∣∣∣∣p dξ
= C

∫
e−pg(
√

t−s
2

σ
ξ)|ξ|p(ϑ+α)(fu ∗ fv)p(ξ) dξ, (27)

where fu(ξ) = eλ(
√
s
σ |ξ|)γ |ξ|β1|u(ξ, s)| and fv(ξ) = eλ(

√
s
σ |ξ|)γ |ξ|β2|v(ξ, s)|. In the above chain

of inequalities, in order to obtain the first inequality we used property P1, to obtain the
second we used (5) and finally, to get the third, we used the fact that |ξ|γ ≤ |ξ − η|γ + |η|γ
for all ξ, η ∈ Rn and γ ∈ [0, 1]. Note now that from the definition of the path space norm
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‖ · ‖Σ, we have

‖fu(·, s)‖ϑ−β1,p ≤ C
‖u‖Σ
√
s
δ+σϑ

, ‖fv(·, s)‖ϑ−β2,p ≤ C
‖u‖Σ
√
s
δ+σϑ

.

Moreover, provided α + β1 + β2 + n
p′
− ϑ ≥ 0, from P2 we also have

|ξ|α+β1+β2+ n
p′−ϑe−g(

√
t−s
2

σ
ξ) ≤ C

√
t− sσ(α+β1+β2+ n

p′−ϑ)
.

Using these facts and applying (18) with θ1 = ϑ− β1, θ2 = ϑ− β2, from (27) we have

‖e−
t−s
2

DΛϑB[u(s),v(s)]‖G(s) ≤ C
‖u‖Σ‖v‖Σ

√
s

2(ϑσ+δ)√
t− sσ(α+β1+β2+ n

p′−ϑ)
. (28)

The conditions on the parameters from applying P2 and (18) thus far are

α + β1 + β2 +
n

p′
− ϑ ≥ 0,max(ϑ− β1, ϑ− β2) <

n

p′
,

2ϑ− (β1 + β2) ≥ 0, 2ϑ− (β1 + β2) > n(
1

p′
− 1

p
).

Now inserting the estimate obtained in (28) in (26), we obtain

√
t
δ+σϑ‖Λϑb(u,v)‖G(t) ≤ C‖u‖Σ‖v‖Σ

√
t
δ+σϑ

∫ t

0

1
√
s

2(ϑσ+δ)√
t− sσ(α+β1+β2+ n

p′−ϑ)
ds

≤ C‖u‖Σ‖v‖Σ

√
t
2−δ−σ(α+β1+β2+ n

p′ ),

provided

ϑσ + δ < 1, σ(α + β1 + β2 +
n

p′
− ϑ) < 2.

We can estimate
√
t
δ‖b(u,v)‖G(t) by proceeding exactly as above. Since the integrand in

(27) contains the term |ξ|pα (instead of |ξ|p(ϑ+α)) we need to apply the estimate

|ξ|α+β1+β2+ n
p′−2ϑ

e−g(
√

t−s
2

σ
ξ) ≤ C

√
t− sσ(α+β1+β2+ n

p′−2ϑ)
,

for which we need the condition α + β1 + β2 + n
p′
− 2ϑ ≥ 0. Since ϑ ≥ 0, this requirement

is stronger than the previously obtained condition α+ β1 + β2 + n
p′
− ϑ ≥ 0. The remaining

conditions either remain unaltered or become weaker. These two estimates together yield

‖b(u,v)‖Σ ≤ C‖u‖Σ‖v‖Σ

√
T
µ
,

where µ is as in (8). This is the desired estimate (25).
Recall that we now need to choose ϑ ≥ 0 and µ ≥ 0 subject to the previously prescribed

constraints. In the resulting inequalities, all terms that occur except ϑ involve the given
parameters in the problem. We rewrite these constraints as upper and lower bounds (in
some cases, strict) for ϑ to obtain:
(i) 0 ≤ ϑ < 1−δ

σ
(ii) 0 ≤ 2ϑ ≤ α + β1 + β2 + n

p′
(iii) ϑ ≤ min{ n

p′
+ β1,

n
p′

+ β2} (iv) ϑ ≥ β1+β2

2
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(v) ϑ > β1+β2

2
+ n

2

(
1
p′
− 1

p

)
(vi) ϑ > α + β1 + β2 + n

p′
− 2

σ
.

In order to be able to make a choice of ϑ satisfying these constraints, we now require that all
upper bounds exceed all lower bounds, with strict inequalities if the corresponding inequal-
ities for ϑ are strict. This in turn leads to the conditions on the parameters specified in the
theorem.

We will now prove part (c). From proofs of parts (a) and (b), for each t, we have∫ t

0

‖eλ(
√
t
σ |ξ|)γe−(t−s)DB(u,u)(ξ)‖p ds <∞. (29)

We now note that
(∫

eλp
′(
√
t
σ |ξ|)γ dξ

)1/p′

≤ C
√
t
σn/p′ . Using H older’s inequality in (29) and

this estimate, it follows that∫ t

0

|(e−(t−s)DB(u,u))(ξ)| dξ ds <∞

By Fubini’s theorem, this in turn implies that

F−1(

∫ t

0

e−(t−s)DB(u,u) ds) =

∫ t

0

F−1(e−(t−s)DB(u,u)) ds.

This finishes the proof.
Proof of Theorem 3.2

We define the path space

Σ :=

{
u ∈ Cc((0, T ); Vθ0,p) : ‖u‖Σ := sup

0<t<T
max{‖u‖Gθ0 (t),

√
t
σϑ‖u‖Gθ0+ϑ(t)} <∞

}
for adequate ϑ ≥ 0. The proof of the contraction mapping argument is similar to Theorem
3.1 and is thus omitted. Concerning the proof of the fact that ǔ = F−1(u) is a solution of
(2), we proceed as in the part (c) of Theorem 3.1. Using the definition of the Gevrey class
norm on the path space Σ and the fact that(∫

|ξ|−θ0p′eλp′(
√
t
σ |ξ|)γ dξ

)1/p′

≤ C
√
t
σn
p′ −θ0

(provided θ0p
′ < n),

we conclude that
∫ t

0
|(e−(t−s)DB(u,u))(ξ)| dξ ds <∞.

5.2. Borderline Case p = 1. We will now provide the proofs for the 3D Navier-Stokes
equations and the critical quasi-geostrophic equation.

5.2.1. 3D Navier-Stokes equations. Here, f(ξ) = g(ξ) = |ξ|2 in Assumption P1, σ = 1 in
Assumption P2 and Assumption P3 holds for any λ0 > 0 with γ = 1.

For u : [0, T ]→ V, we define

‖u‖Σ′ :=

∫ (∫ T

0

|eλ
√
t|ξ|u(ξ, t)|2 dt

)1/2

dξ.
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We will need the following path space with the corresponding path space norm

Σ :=

{
u ∈ Cc((0, T ); V−1,1) : ‖u‖Σ := max{ sup

0<t<T
‖u‖G−1(t), ‖u‖Σ′} <∞

}
. (30)

Proposition 5.4. For u0 ∈ V−1,1 we have

‖e−tDu0‖Σ ≤ e−λ
2‖u0‖−1,1 and lim

T→0+
‖e−tDu0‖Σ = 0. (31)

Proof. First note that with f(ξ) = |ξ|2, we have∫ T

0

e−tf(ξ) dt =
1

|ξ|2
(

1− e−T |ξ|2
)
≤ 1

|ξ|2
. (32)

Now as in the proof of Proposition 5.3, we have∫ T

0

|eλ
√
t|ξ|u(ξ, t)|2 dt =

∫ T

0

e2λ
√
t|ξ|−t|ξ|2|e−

t
2
|ξ|2u0(ξ)|2 dt

≤ eλ
2|u0|2

∫ T

0

e−t|ξ|
2

dt ≤ |u0(ξ)|2 e
λ2

|ξ|2
,

where to derive the first inequality of the second line above, we have used the fact that

2λ
√
t|ξ| − t|ξ|2 = 2λ|

√
tξ| − |

√
tξ|2 ≤ λ2 for all ξ ∈ R3.

Using this estimate, it immediately follows that∫ (∫ T

0

|eλ(
√
t
σ |ξ|)γu(ξ, t)|2 dt

)1/2

dξ ≤ eλ
2‖u0‖−1,1.

The term sup0<t<T ‖u‖G−1(t) can be estimated in a similar manner. this proves the first
relation in (31).

For the second, let ε > 0 be given. Define v0(ξ) = 1|ξ|≤Nu0(ξ) and w0 = u0−v0 and note

that u0 = v0 + w0. Here N is chosen large enough such that ‖w0‖ <
ε

2eλ2 . Thus, from the

first part of (31),

‖e−tDu0‖Σ ≤ ‖e−tDv0‖Σ + ‖e−tDw0‖Σ ≤ ‖e−tDv0‖Σ +
ε

2
.

It will now be enough to show that limT→0+ ‖e−tDw0‖Σ = 0. To that end, proceeding exactly
as in the proof of the first part of (31) and recalling the definition of v0, we obtain

‖e−tDv0‖Σ ≤
∫
|ξ|≤N

|u0(ξ)|e
λ2

2

|ξ|

√
(1− e−T |ξ|2)dξ

≤
√

(1− e−TN2) e
λ2

2

∫
|u0(ξ)|
|ξ|

=
√

(1− e−TN2) e
λ2

2 ‖u0‖−1,1.

Letting T → 0+ in the right hand side of the above inequality concludes the proof. �
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Proof of Theorem 3.3
As before, it will be enough to obtain an estimate of the form

‖b(u,v)‖Σ ≤ CT‖u‖Σ′‖v‖Σ′ , (33)

where ‖ · ‖Σ is as in (30). Using P1–P3 and the second inequality in (19), we have

eλ
√
t|ξ|e−(t−s)|ξ|2|B[u,v](ξ)|

≤ Ceλ
√
s|ξ||ξ|α(|u| ∗ |v|)(ξ) ≤ Ce−

(t−s)
2
|ξ|2|ξ|α(ũ ∗ ṽ)(ξ), (34)

where ũ(ξ, s) = eλ
√
s|ξ||u(ξ, s)| and ṽ(ξ, s) = eλ

√
s|ξ||v(ξ, s)|. In order to obtain the last

inequality in (34), we used the first inequality in (19) with γ = 1. Using (34) we obtain

‖b(u,v)‖G−1(t) ≤
∫
|ξ|−1

∫ t

0

eλ
√
t|ξ|e−(t−s)|ξ|2|B[u,v](ξ)| ds dξ

≤ C

∫ ∫ t

0

(ũ ∗ ṽ)(ξ) ds dξ

≤ C

∫ (∫ T

0

ũ2(·, s) ds
)1/2

∗
(∫ T

0

ṽ2(·, s) ds
)1/2

≤ C‖u‖Σ′‖v‖Σ′ ,

where the inequalities in the last line follow from Cauchy-Schwartz and the fact that L1 is a
Banach algebra under convolution.

We will now estimate the second term in (30). To that end, using (34) and Minkowski’s
inequality, we have∫ (∫ T

0

(∫ t

0

eλ
√
t|ξ|e−(t−s)|ξ|2 |B[u,v] ds

)2

dt

)1/2

dξ

=

∫ (∫ T

0

(∫ T

0

1{s≤t}e
λ
√
t|ξ|e−(t−s)|ξ|2|B[u,v]| ds

)2

dt

)1/2

dξ

≤ C

∫ (∫ T

0

(∫ T

0

1{s≤t}|ξ|e−
t−s
2
|ξ|2(ũ ∗ ṽ)(ξ, s) ds

)2

dt

)1/2

dξ

≤ C

∫ ∫ T

0

|ξ|(ũ ∗ ṽ)(ξ, s)

(∫ T

0

1{s≤t}e
−(t−s)|ξ|2 dt

)1/2

ds dξ (35)

≤ C

∫ (∫ T

0

(ũ ∗ ṽ)(ξ, s) ds

)
dξ (36)

≤ C

∫ (∫ T

0

|ũ(·, s)|2 ds
)1/2

∗
(∫ T

0

|ṽ(·, s)|2 ds
)1/2

dξ ≤ CT‖u‖Σ′‖v‖Σ′ ,

where to obtain (35) we used Minkowski while to obtain (36) we used (32). The last inequality
follows from the fact that L1 is a Banach algebra under convolution and the definition of the
‖ · ‖Σ′ norm. We have thus established (33) which, in view of Proposition (5.4), is enough
to prove the global result for small initial data.
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5.2.2. Critical Quasi-geostrophic equation. In this case, in Assumptions P1–P3, f(ξ) =
g(ξ) = |ξ|, γ = 1, σ = 2 with λ0 = 1

2
. For u : [0, T ]→ V and λ ≤ 1

2
, we define

‖u‖Σ :=

∫ (
sup

0<t≤T
|eλt|ξ|u(ξ, t)|

)
dξ.

Note that sup0<t<T ‖u‖G(t) ≤ ‖u‖Σ, where recall that ‖u‖G(t) =
∫
|eλt|ξ|u(ξ, t)| dξ. We

consider the path space

Σ := {u ∈ Cc((0, T ); V1) : ‖u‖Σ <∞} . (37)

We will need the following proposition.

Proposition 5.5. For u0 ∈ V1 we have

‖e−tDu0‖Σ ≤ ‖u0‖−1,1. (38)

Proof. The proof of this proposition simply follows by noting that since λ ≤ 1
2
, we have

sup
0<t<T

(
eλt|ξ|e−t|ξ||u0(ξ)|

)
≤ sup

0<t<T

(
e−

1
2
t|ξ||u0(ξ)|

)
≤ |u0(ξ)|. (39)

�

Proof of Theorem 3.4
For any w ∈ C([0, T ]; V1), denote

w̃(ξ, s) = eλ
√
s|ξ||v(ξ, s)| and W̃ (ξ) = sup

0<s≤T
eλ
√
s|ξ||w(ξ, s)| = sup

0<s≤T
w̃(ξ, s). (40)

Since λ ≤ 1
2
, we have

|eλt|ξ|e−(t−s)|ξ|B[u,v](ξ, s)| = e−( 1
2
−λ)(t−s)|ξ|e−

t−s
2
|ξ|eλs|ξ||B[u,v](ξ, s)|

≤ e−
t−s
2
|ξ|eλs|ξ||ξ|(|u| ∗ |v|)(ξ, s) ≤ e−

t−s
2
|ξ||ξ|(ũ ∗ ṽ)(ξ, s), (41)

where to obtain the last inequality, we used the first inequality in (19). It is easy to see that
for each ξ and s,

(ũ ∗ ṽ)(ξ, s) ≤ (Ũ ∗ Ṽ )(ξ) where Ũ(ξ) = sup
0<s<T

ũ(ξ, s), Ṽ (ξ) = sup
0<s<T

ṽ(ξ, s).

Using this fact and (41), we obtain

sup
0<t<T

∫ t

0

|eλ
√
t|ξ|e−(t−s)|ξ|2B[u,v](ξ)| ds

≤ sup
0<t<T

∫ t

0

e−
t−s
2
|ξ||ξ|(ũ ∗ ṽ)(ξ) ds

≤ (Ũ ∗ Ṽ )(ξ) sup
0<t<T

∫ t

0

e−
t−s
2
|ξ||ξ| ≤ 2(Ũ ∗ Ṽ )(ξ)

(
1− e−

T
2
|ξ|
)
. (42)

From (42) we obtain

‖b(u,v)‖Σ ≤ 2

∫
(Ũ ∗ Ṽ )(ξ)dξ ≤ 2‖Ũ‖1‖Ṽ ‖1 = 2‖u‖Σ‖v‖Σ,
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where the last equality follows from the definition of Ũ , Ṽ and ‖ · ‖Σ. As before, this is
enough to establish global well-posedness for small data.

5.3. Proof of Applications. Proofs of Theorems 4.3 and 4.4 follow directly from Theorem
3.1 and 3.2. We focus on the proofs of Theorems 4.1 and 4.2.
Proof of Theorem 4.1: In this case, we define V = {v ∈ V ′ : ξ · v(ξ) = 0}. The first
two parts follow directly from Theorems 3.1 and 3.2. For part (iii), we first remark that due
the results in [19] (see, for instance, Theorem 15.2 in [35]), there exists ε > 0 such that if
‖ǔ(t0)‖Ḣ1/2 < ε for some t0 > 0, then there exists an unique weak (and mild) solution of the

3D NSE on (t0,∞) × R3, belonging to C([t0,∞); Ḣ1/2(R3)) ∩ L2
loc((t0,∞); H3/2(R3)). This

solution is also smooth on (t0,∞) × R3. By Plancheral theorem, denoting u0 = F(ǔ0), it
follows that ‖u0‖ 1

2
,2 < ε. We can now apply part (ii) of our theorem with p = 2, θ0 = 1

2
, to

obtain a solution u(t), t ≥ t0 satisfying∫
e2λ
√
t−t0|ξ||ξ||u(t))(ξ)|2 dξ ≤ 2‖ǔ(t0)‖2

Ḣ1/2 < 2ε for all t ≥ t0.

By Remark 4, the unique mild solution to the 3D NSE is given by ǔ(t) = F−1(u(t)). The
desired L2 decay estimate (11) now follows from Lemma 5.6.

The fact that ‖ǔ(t0)‖Ḣ1/2 < ε for adequately large t0 can be proven as follows. From the
energy inequality, we have

1

T
‖ǔ(T )‖2

L2 +
1

T

∫ T

0

‖(∆)1/2ǔ(s)‖2
L2 ds ≤

1

T
‖ǔ0‖2

L2 . (43)

Let T =
2‖ǔ0‖2

L2

δ
. It follows that there exists t0 ∈ [0, T ] such that ‖(−∆)1/2u(t0)‖2 < δ. By

interpolation inequality, we have

‖ǔ(t0)‖
Ḣ

1
2
≤ ‖ǔ(t0)‖1/2

L2 ‖(−∆)1/2u(t0)‖1/2 ≤ ‖ǔ0‖1/2

L2 δ
1/4.

If δ is chosen suitably small, the claim follows.
We will now prove (13) in part (iv). For n = 2, the critical borderline space is L2 (i.e.,

θ0 = 0, p = 2). The proof is similar to part (iii). Let ǔ(t) be the classical solution of
the NSE on R2 × (0,∞) with initial data ǔ0. For the requisite L2 decay estimates on the
higher 9homogeneous) Sobolev norms, it will be enough to show that there exists t0 > with
‖u(t0)‖L2 < ε, where u(t) = F(ǔ(t)). In case ǔ0 ∈ L1(R2) ∩ L2(R2), it follows from the
Schonbek’s result that ‖ǔ(t)‖2

L2 = O(1
t
) and the requisite estimate follows.

We will now show that the L2 norm of the solution is small for large time if ǔ0 ∈ Ḣ− 1
2 (R2)∩

L2(R2). Note that by interpolation ‖u(t0)‖L2 ≤ ‖u(t0)‖2/3

Ḣ−
1
2
‖u(t0)‖1/3

Ḣ1 . As before, for any

δ > 0, we can choose t0 large enough so that ‖u(t0)‖Ḣ1 < δ. It will thus be enough to prove

that sup
[0,∞)

‖ǔ(t)‖
Ḣ−

1
2
<∞ provided ǔ0 ∈ Ḣ− 1

2 .

For two functions f and g defined on Rn, we will now need the following inequality for the
homogeneous Sobolev norm of their product, namely,

‖fg‖Ḣθ1+θ2−
n
2
≤ C‖f‖Ḣθ1‖g‖Ḣθ2 , θ1 + θ2 > 0, θ1, θ2 <

n

2
, θ1, θ2 ∈ R. (44)



22 GEVREY REGULARITY FOR DISSIPATIVE EQUATIONS

This is a direct consequence of the weighted convolution inequality (18) with p = 2, once
one expresses the homogeneous Sobolev norm in the Fourier space and thereby converting
the product to a convolution. Let A = (−∆). We will need the following estimate on the
nonlinear term. Let 0 < ε < 1

2
be fixed. We have

|(B(ǔ, ǔ), A−
1
2 ǔ)| = |(A−

3
4
− ε

2B(ǔ, ǔ), A
1
4

+ ε
2 ǔ)|

≤ C|A−
1
4 ǔ||A

1
2
− ε

2 ǔ||A
1
4

+ ε
2 ǔ| ≤ C|A−

1
4 ǔ||A

1
2 ǔ||A

1
4 ǔ|, (45)

where to obtain the first inequality in (45), we first note that B(ǔ, ǔ) = ∇ · (ǔ⊗ ǔ) satisfies
(5) with α = 1. We then use (44) with n = 2 and θ1 = −1

2
, θ2 = 1− ε to obtain the requisite

inequality. The last inequality in the second line is obtained using interpolation.
Multiplying the NSE by A−

1
2 ǔ, integrating and using (45), we obtain

1

2

d

dt
|A−

1
4 ǔ|2 + |A

1
4 ǔ|2 ≤ |(B(ǔ, ǔ), A−

1
2 ǔ)|

≤ |A−
1
4 ǔ||A

1
4 ǔ||A

1
2 ǔ| ≤ 1

2
|A

1
4 ǔ|2 +

C

2
|A−

1
4 ǔ|2|A

1
2 ǔ|2, (46)

where, the first inequality in (46) follows from (44) and the second from Young’s inequality.
From (46), it follows that

d

dt
|A−

1
4 ǔ|2 − C|A−

1
4 ǔ|2|A

1
2 ǔ|2 ≤ 0.

Applying Gronwall’s inequality and recalling that |A− 1
4 ǔ|2 = ‖ǔ‖2

Ḣ−
1
2
, we immediately obtain

‖ǔ(t)‖2

Ḣ−
1
2
≤ eC

∫ t
0 |A

1/2ǔ(s)|2 ds‖ǔ0‖2

Ḣ−
1
2
≤ eC|ǔ0|2‖ǔ0‖2

Ḣ−
1
2
, (47)

where the last inequality follows from (10). Thus,

sup
t∈[0,∞)

‖ǔ(t)‖2

Ḣ−
1
2
≤ e|ǔ0|2‖ǔ0‖2

Ḣ−
1
2
<∞.

Finally, we will prove the requisite decay estimates (12) and (14) for ‖ǔ‖Lq . Note that
by Proposition 2.1, ‖u‖

B
1− n

p′ ,∞
p

≤ C‖u‖Vn
2−1,2

= C‖ǔ‖Ḣn
2−1 , provided p < n

n−1
= n′. Since

‖ǔ‖Ḣn
2−1 can be made arbitrarily small by choosing t0 large enough, the same is true for

‖u‖
B

1− n
p′ ,∞

p

. We can thus apply part (i) of the Theorem for critical spaces in conjunction

with Lemma 5.6 to conclude

‖u(t)‖Vp ≤
ε√

(t− t0)
ζ+δ

ζζ

eζ
where δ = 1− n

p′
.

By the Hausdorff-Young inequality, provided p < 2, we have ‖ǔ(t)‖Lq ≤ ‖u(t)‖Vp where
q = p′. Since the condition p < n′ implies q = p′ > n as well as p < 2 for both n = 2, 3, the
claim follows.

Proof of Theorem 4.2: The proof is very similar to the previous case. We only need to
note that the “energy inequality” here yields smallness of ‖ǔ‖Ḣ

κ
2

for large time. The critical
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space for the global result is Ḣ2−κ. By interpolation, we have ‖ǔ‖Ḣ2−κ ≤ ‖ǔ‖θL2‖ǔ‖1−θ
Ḣ
κ
2

for

adequate 0 ≤ θ ≤ 1 provided κ
2
≥ 2− κ or equivalently, κ ≥ 4/3.

Lemma 5.6. For λ, p, σ, γ and θ0 ≥ 0 fixed, let ‖v‖Gθ0 (τ) <∞. We then have the estimate

‖v‖θ,p ≤
1

(eλ)
θ−θ0
γ

1

τ
σ(θ−θ0)

2

(
θ − θ0

γ

) θ−θ0
γ

‖v‖Gθ0 (τ) for all θ > θ0.

Proof. This follows by writing

‖v‖pθ,p =

∫
Rn
|ξ|θp|v(ξ)|p dξ

=

∫
Rn
|ξ|(θ−θ0)pe−λp(

√
τ
σ |ξ|)γeλp(

√
τ
σ |ξ|)γ |ξ|θ0p|v(ξ)|p dξ

and then by recalling the definition of the Gevrey norm in (6) and noting that

sup
ξ∈Rn
|ξ|(θ−θ0)e−λ(

√
τ
σ |ξ|)γ ≤ 1

(eλ)
θ−θ0
γ

1

τ
σ(θ−θ0)

2

(
θ − θ0

γ

) θ−θ0
γ

.

�
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