
CONTINUE, QUIT, RESTART PROBABILITY MODEL AND RELATED PROBLEMS

by

Constantine Steinberg

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Applied Mathematics in

Mathematics and Statistics

Charlotte, North Carolina

2011

Approved by:

Dr. Isaac Sonin

Dr. Stanislav Molchanov

Dr. Joseph Quinn

Dr. Yu Wang

ii

c© 2011
Constantine Steinberg

ALL RIGHTS RESERVED

iii

ABSTRACT

CONSTANTINE STEINBERG. Continue, Quit, Restart Probability Model and Related Problems.
(Under the direction of DR. ISAAC SONIN)

We discuss a new class of applied probability models. There is a system whose evolution is

described by a Markov chain with known transition matrix in a discrete state space. At each

moment of a discrete time a decision maker can apply one of three possible actions: to continue, to

quit, or to restart Markov chain to the “restarting point.” Where restarting point is a fixed state of

the Markov chain. The decision maker is earning a reward (fee), which is the function of the state

and chosen action. The goal for the decision maker is to maximize expected total discounted reward

on an infinite time horizon.

Such model is a generalization of a model of Katehakis and Veinott, Katehakis and Veinott [1987],

where restart to a unique point is allowed without any fee, and quit action is absent. Both models

are related to Gittins index and another index defined in a Whittle family of stopping retirement

problems. We propose a transparent recursive finite algorithm to find an optimal strategy in O(n3)

operations.

iv
Contents

CHAPTER 1: INTRODUCTION 1

1.1 Markov Decision Processes 3

CHAPTER 2: OPTIMAL STOPPINGOFMCS AND STATE REDUCTION ALGORITHM 6

2.1 Classical and Generalized Gittins, Kathehakis-Veinott, and w Indices 6

2.2 The State Reduction (SR) Approach 9

2.2.1 Transformation of the cost function 10

2.2.2 Relation between G1 and G2 11

2.2.3 The State Elimination Algorithm for optimal stopping of Markov chain 12

2.3 State Elimination Algorithm with Full Size Matrices 13

2.4 State Elimination and Insertion 16

2.5 Three Abstract Optimization Problems 18

CHAPTER 3: ALGORITHM FOR CQRMODEL 21

3.1 Value function for CQR model 21

3.2 Definition of modified indices 22

3.3 Main Theorem for the Whittle Family of Optimal Stopping Models 27

3.3.1 Whittle family with no quit action 28

3.3.2 Whittle model 29

3.4 Algorithm 34

CHAPTER 4: ALGORITHMANALYSIS 37

4.1 Complexity 37

4.2 Linear Programming Formulation 38

BIBLIOGRAPHY 41

APPENDIX A: SAMPLE CALCULATION 43

A.1 Sample calculation for case with no quit action 43

A.2 Sample calculation for general case 43

APPENDIX B: PROGRAM LISTING 50

B.1 StateEliminationInsertion.bas 50

B.2 ModelCqr.cls 55

B.3 SimplexMethodDirect.cls 59

B.4 SolverCqrLPDual.cls 67

B.5 SolverCqrSEA.cls 74

v

B.6 SolverCqrNoQuit.cls 83

B.7 SolverCqrSingleR.cls 95

CHAPTER 1: INTRODUCTION

Our main goal is to study the new applied probability model and develop a recursive algorithm

for its solution. This model is a special case of a general Markov Decision Process (MDP) model,

while it is essentially more general than the Optimal Stopping (OS) model. The main definition

from MDP are given in Chapter 1.1, for further details we direct the reader to, e.g., Feinberg and

Shwartz [2002] or Puterman [2005].

The general finite MDP model is defined by a tuple M = (X,A (x) , P, r (x|a) , β), where X is

a finite state space, A(x) is a finite set of actions available at point x ∈ X, P = {p(x, y|a)} is a

stochastic matrix, describing transitions of a system if an action a ∈ A(x) is selected at state x, and

r(x|a) is a reward obtained at x if a is applied.

The goal of a decision maker (DM) is to maximize the total expected discounted reward on an

infinite time horizon, or to average an expected reward or some other criterium. In the OS model,

the set A(x) consists of two actions: continue and stop (quit).

In our model a decision maker (DM) can apply one of three possible actions—continue, when

system continues its evolution as Markov chain (MC); quit when dynamics is stopped forever and a

terminal reward is obtained; and restart, when a system continues its dynamics from one of finite

number of fixed ”restarting” states. If there are m > 1 restarting states, then the last restart action

consists in fact fromm distinct actions. Each action is accompanied by a corresponding fee (reward),

which can be positive or negative and depends on the state of a system where this action was taken.

We consider the case when the goal of DM is to maximize the total expected reward on an infinite

time horizon. For sake of simplicity we call this model Continue-Quit-Restart (CQR) model. CQR

model is also a generalization of a model in Sonin [2008], which in turn is a natural generalization

of a model of Katehakis and Veinott [1987], where a DM has two options to continue, or to restart

to a unique point with zero fee for a restart. Our model is also related to such important notion as

Gittins index and its generalizations. We will elaborate on this later.

Formally, a general CQR model is specified by a tuple

M = (X,B,P,A (x) , c (x) , q (x) , ri (x) , i = 1, 2, ...,m, β) ,

2

where X is a finite (countable) state space, B = {s1, ..., sm} is a fixed subset of X, and P = {p(x, y)}

is a stochastic matrix. At each state x a set of available actions A(x) = {c, q, rj , j = 1, ..,m} is given.

A reward function r(x|a), with x ∈ X, a ∈ A(x), is specified by particular functions c(x), q(x), and

ri(x), i = 1, 2, ...,m. If an action c, continue, is selected, then r(x|c) = c(x), and transition to a

new state occurs according to transition probabilities p(x, y). If an action q, quit, is selected, then

r(x|q) = q(x), and transition to an absorbing state e occurs with probability one. If an action

ri, restart to state si, is selected, then r(x|ri) = ri(x), and transition to a state si occurs with

probability one. Coefficient β is a discount factor, β ≤ 1. Later we consider a more general case of

a variable discount β(x).

As in Katehakis and Veinott model, it is convenient to assume that after restart a new ”cycle”

starts instantly at the moment of restart. So, at the moment of restart to si from some point x, an

action is also chosen at si, a transition according to this action occurs, and a corresponding extra

reward c(si), q(si), or rj(si) is obtained. Here we consider the the case when m = 1, i.e., there is

only one restart point.

We denote by v(x) the value function in this model, i.e., sup of the total expected discounted

reward on an infinite time horizon with an initial point x over all possible strategies. We assume

that the value functions v(x) < ∞ for all x ∈ X. In this case, a general theory of MDP models

implies that it is sufficient to consider only the nonrandomized stationary strategies. Such strategies

can be defined by a partition of a state space into three disjoint sets, 3-partitions, where each of

these sets specifies a particular action which is applied when MC hits this set. An optimal partition

exists and is uniformly optimal, i.e., optimal for all initial points.

Our main goal is to construct an algorithm to find an optimal strategy (partition) and the value

function for the CQR model.

We will extensively use the results and methods for a particular case of CQR and MDP models,

a well-known Optimal Stopping (OS) model. In this model, an action set at each point consists

of only two actions: A(x) = {c, q}, namely, continue and quit (usually called stop). We also have

a one step reward (cost) function r(x|c) = c (x), and a terminal reward function r(x|q) = q(x);

both functions are defined on X. The value function v(x) for an OS model is defined as v(x) =

supτ≥0Ex[
∑τ−1
i=0 β

ic(Zi) +βτq(Zτ)], where the sup is taken over all stopping times τ, τ ≤ ∞, and β

is a discount factor, β ≤ 1. If τ =∞ with positive probability, we assume that q(Z∞) = 0. It is well

known that function v is a minimal solution of the corresponding Bellman equation, which has a

form v = max(q, c+βPv), where Pf(x) =
∑
p(x, y)f(y). Denote by S the set S = {x : v(x) = q(x)}.

If the state space X is finite, then the random time τ0 = min{n ≥ 0 : Zn ∈ S} is an optimal stopping

3

time. The set S is called the optimal stopping set. We are going to extensively use the so-called

State Elimination (SE) algorithm to solve OS problems, this algorithm was developed by one of the

authors, see Sonin [1999a,b, 2006].

For remainder of the work we employ the notation of a Reward Model to describe the stopping

model without termination reward, i.e. with q(x) = −∞ for all x.

Under the assumption that there is only one point of restart, m = 1, we distinguish three

situations, each of them is a special case of the next one

• CQR model with no quit action, free restart q = −∞, r = 0,

• CQR model with no quit action allowed, q = −∞, r <∞,

• CQR model, q <∞ and r <∞.

The first case with no quit and free restart (it coincides with Katehakis-Veinott model, which is

defined later), is a direct generalization of a classical Gittins index, and is described in Sonin [2008].

The algorithm solving CQRmodel, can also solve other cases, but it is substantially more complicated

than its version to solve CQR model with not quit. Therefore, to make our ideas clear, we prefer to

present the algorithm in two steps: solution for case with no quit action, and, separately, solution

for case with quit action.

1.1 Markov Decision Processes

The goal of this section is to provide main definitions and facts from general theory of the Markov

Decision Processes (MDP), used in this text.

MDP is defined through the following objects

• a state space X;

• an action space A;

• sets A (x) of available actions at states x ∈ A;

• transition probabilities, denoted by p (Y |x, a);

• reward functions r (x, a) denoting the one step reward using action a in state x.

The meaning of these objects as follows. The state space defines possible states of underlying

stochastic system. Given state x ∈ X, the decision maker (DM) can select an action from the set of

available actions A (x). After an action a is selected, the system moves to the next state according

to the probability distribution p (·|x, a) and the decision maker collects one step reward r (x, a).

4

An MDP is called finite if the state and the action sets are finite. An MDP is called discrete if

both state and action sets are finite or countable. From now on we only consider finite and discrete

MDPs.

For a discrete state space X we use letters x, y and also i, j, k to denote states. Transition

probabilities are denoted as p (x, y), pij , p (x, y|a), or p (y|x, a). Unless mentioned otherwise, we

always assume p (X|x, a) = 1.

The time parameter is usually denoted by n, t, or s ∈ N. The trajectory is a sequence x0a0x1a1....

The set of all trajectories is H∞ = (X ×A)
∞. A trajectory of length n is called a history, and

denoted by hn = x0a0...xn−1an−1xn. Let Hn = X × (A×X)n be the space of histories up to epoch

n ∈ N.

A non-randomized policy π is a sequence of mappings πn, n ∈ N , from Hn to A such that

πn (Hn) ∈ A (xn). If for each n this mapping depends only on xn, then the policy π is called

Markov. A Markov policy is called stationary if πn do not depend on n. A stationary policy is

therefore defined by a single mapping π : X → A.

The evolution rule for the stochastic process with policy π is as follows. If at time n the process is

in state x, having followed the history hn, then the action is chosen (perhaps randomly) according to

the policy π. If action a ensued, then at time n+1 the process will be in the state y with probability

p (y|x, a).

We denote by Π, ΠM , and ΠS the sets of all non-randomized, Markov, and stationary policies.

A randomized policy π is a sequence of transition probabilities πn (an|hn) from Hn to A, n ∈ N,

such that πn (A (xn) |hn) = 1. We denote by ΠR, ΠRM , and ΠRS the sets of all randomized,

randomized Markov, and randomized stationary policies respectively.

Given an initial state x and policy π, the evolution rule described above defines all finite-

dimensional distributions x0, a0, . . . , xn, n ∈ N. Kolmogorov’s extension theorem guarantees that

any initial state x and any policy π define a stochastic sequence x0a0x1a1 We denote by Pπx and

Eπx respectively the probabilities and expectations related to this stochastic sequence; Pπx {x0 = x} =

1.

Let f be the terminal reward function and β be the discount factor. We denote by vN (x, π, β, f)

the expected total reward over the first N steps, N ∈ N:

vN (x, π, β, f) = Eπx

[
N−1∑
n=0

βnr (xn, an) + βN

]
,

whenever this expectation is well-defined.

5

The expected total reward over an infinite horizon is

v (x, π) = v (x, π, β) = v∞ (x, π, β, 0) .

If the reward function r is bounded either from above or from below, the expected total rewards

over the infinite horizon are well-defined when β ∈ [0, 1).

If a performance measure g (x, π) is defined for all policies , we denote

G (x) = sup
π∈ΠR

g (x, π) .

In terms of the performance measures defined above, this yields the values

VN (x, β, f) , sup
π∈ΠR

vN (x, π, β, f) ,

V (x) = V (x, β) , sup
π∈ΠR

v (x, π, β) .

The main result we use from general theory of MDP is given in many textbooks, for example, in

Corollary 2.3 of Feinberg and Shwartz [2002]: if for value function, defined as expected total reward

over infinite horizon, there exists nonrandomized stationary optimal policy.

Therefore, from this point, we consider only nonrandomized stationary policies.

CHAPTER 2: OPTIMAL STOPPING OF MCS AND STATE REDUCTION ALGORITHM

Optimal stopping model lacks the restart action as an MDP model, however, as it will be shown

later, it is an essential tool for finding the value function in an MDP model.

2.1 Classical and Generalized Gittins, Kathehakis-Veinott, and w Indices

In this section we discuss the relationship of CQR model, and its versions with no quit, or free

restart, to the classical problems and indices. This material is a brief, revised text from Sonin [2008].

Traditionally, the most well-known and the most studied is the model related to the classical

Gittins index, γ(x). This index plays an important role in the theory of Multi-armed bandit problems

with independent arms. It also naturally appears in many other problems of stochastic optimization.

Let us recall some useful facts related to Gittins index. Given a reward modelM = (X,P, c(x), β),

β = const, 0 < β < 1, and point s ∈ X, γ(x), is defined as the maximum of the expected discounted

total reward on the interval [0, τ) per unit of expected discounted time for the Markov chain starting

from x, i.e.,

γ (x) = sup
τ>0

Ex
∑τ−1
n=0 β

nc (Zn)

Ex
∑τ−1
n=0 β

n
= (1− β) sup

τ>0

Ex
∑τ−1
n=0 β

nc (Zn)

1− Exβτ
, (2.1)

where 0 < β < 1, τ is a stopping time, τ > 0. Here we used trivial equality (1−β)
∑k−1
n=0 β

n = 1−βk.

Without loss of generality we consider only stopping times—the moments of a first visit to a certain

set G ⊂ X,x /∈ G.

An interesting interpretation of the Gittins index, the so-called Restart in State interpretation,

was given in Katehakis and Veinott [1987]. Given a reward modelM = (X,P, c(x), β), let us consider

a family of Markov Decision models indexed by a fixed initial point s ∈ X, where a set of actions

A(x) has two actions—either to continue, or to restart to s and continue from there. In other words,

MC (Zn) starting from a point s can be restarted after a positive stopping time τ > 0, and returned

to the same point s, and so on.

Let h(x|s) denote the supremum over all strategies of the expected total reward on the infinite

time interval in this model with an initial point x, and restart point s. Using the standard results of

Markov Decision Processes theory, Katehakis and Veinott proved that function h(x|s) satisfies the

7

equality

h(x|s) = sup
τ>0

Ex[

τ−1∑
n=0

βnc(Zn) + βτh(s)], (2.2)

and that γ(s) = (1− β)h(s), where h(s) = h(s|s) by definition. We refer to this model as Katehakis

and Veinott model and to an index h(s) as Katehakis and Veinott index.

Another important interpretation of the Gittins index, the so-called Retirement Process formula-

tion, was provided in Whittle [1980]. Given a reward modelM = (X,P, c(x), β), 0 < β < 1, he intro-

duced the parametric family of OS modelsM(k) = (X,P, c(x), k, β), where parameter k is a real num-

ber, and the terminal reward function q(x) = k for all x ∈ X. Denote by v(x, k) the value function for

such model, i.e., v (x, k) = supτ≥0Ex,

[∑τ−1
n=0 β

nc(Zn) + βτk
]
; denote w(x) = inf{k : v(x, k) = k}.

Since β < 1, it is optimal to stop immediately for sufficiently large k and v(x, k) = k. Thus

w(x) < ∞. The results of Whittle imply that v(x, k) = k for k ≥ w(x), v(x, k) > k for k < w(x),

and w(x) = h(x). Since Whittle index is a term used in literature for the other index we will use

the term index w(x). For sake of brevity, instead of a parametric family of OS models we shall say

just Whittle model M(k).

Combined with the results of Katehakis and Veinott, the last equality implies that γ(x) = (1−β)

h(x) = (1− β)w(x). In Theorem 3 we will prove the equality h(x) = w(x) = α(x), where α(x) is an

index generalizing γ(x) in a more general setting.

To describe this more general setting, let us make the following almost trivial, but important

remark. As usual in MDP theory, the optimizations problems with an explicit discount factor β,

such as described above for CQR or OS models, are equivalent to problems where a state space

is complemented by an absorbing point e, and new transition probabilities are defined as follows:

for any state y 6= e the probability of entering an absorbing point e in one step (probability of

termination) is equal to 1 − β, and all other initial transition probabilities are multiplied by β.

In other words, β is the probability of ”survival”. To implement our algorithm it is convenient to

consider more general case with the variable discount factor β(x), x ∈ X. Such assumption is quite

natural in many problems, e.g., in replacement models, where states represent the possible condition

of a machine. But the main reason lies in the fact that to apply the SE algorithm we need possibly

variable discount factor. Therefore, from now on, for every model we assume that the state space

X contains an absorbing point e, with p(e, e) = 1. Function β(x) is the probability of ”survival”

at point x, so 1 − β(x) = p(x, e). Strictly speaking, function β(x) is completely specified by a new

transition matrix P . However, to stress the presence of e and β(x), we sometimes include β(x) in

the tupleM . Correspondingly, the notation Ex, Px, and (Zn) refers to such model, and now survival

8

probabilities β (·) are automatically included under the signs Px and Ex. The Bellman equation now

has a form v = max(q, c+ Pv). We also assume that c(e) = 0, and, without loss of generality, that

r(s) = 0 in CQR model. We remind that restart action is in fact a pair of actions: restart to s, and

make one more step at s.

CQR model with no quit and free restart is nothing else than three models described above

where constant discount factor β is replaced by a variable survival probability (discount) β(x).

In this case, models and results of Katehakis and Veinott and Whittle, almost do not need any

adjustments. Given a reward model with termination M = (X,P, c(x), β(x)), we again consider a

family of Markov Decision models indexed by a fixed initial point x ∈ X. We again define h(x) as

the value function in a restart in x problem with an initial point x, i.e., h(x) = h(x|x).

Similarly, we define index w(x) = inf{k : v(x, k) = k}, where v(x, k) is a value function in the

(generalized) Whittle model M (k) = (X,P, c (x) , β (x) , k). In this model we assume that g(x) = k

for x 6= e; c(e) = q(e) = 0.

However, we can not replace β by β(x) or by β(Zn) in the Gittins index in (2.1). As a result, the,

classical Gittins index γ(x) was replaced by a generalized Gittins Index in Sonin [2008] as follows.

In the presence of an absorbing state e and subset G ⊂ X, for x /∈ G, the numerator in (2.1)

equals to Ex
∑τ−1
n=0 c(Zn), where τ = min(n : Zn ∈ G ∪ e). Such equality holds independently of

whether β(x) is a constant or variable. Let us denote this numerator by Rτ (x). In the presence of

an absorbing state e, and when β = const, the denominator in the last expression in (2.1) equals

to Px(Zτ = e). In the general case, when β(x) can be variable, we denote Px(Zτ = e) by Qτ (x),

which is the probability of termination on [0, τ). We define the generalized Gittins index, α(x), for

the model with termination as

α(x) = sup
τ>0

Rτ (x)

Qτ (x)
, (2.3)

i.e., α(x) is the maximum discounted total reward per chance of termination. In fact, similar form

of an index was used in Tsitsiklis [1994], and earlier by Denardo et al. [2004], and by Mitten [1960].

Note that if β(x) is a constant β, then the denominator in the second equality in (2.1) coincides

with Qτ (x), and, therefore, in this case γ(x) = (1− β)α(x).

Theorem 2.1 (Sonin [2008]). The three indices defined for a reward model with termination M =

(X,P, c(x), β(x)) coincide, i.e., α(x) = h(x) = w(x).

This theorem was proved using the specifics of these three models. Later, Sonin [2011] proved

this theorem as a special case of a general equality, presented in Section 4. As a result of Theorem 1,

any of three problems can be used as a basis to calculate α(x). Because the problem of calculation

9

v(x, k) for a particular k can be reduced to solving stopping problems using the State Elimination

algorithm, we find the Whittle family of OS models M(k) the most convenient. The corresponding

algorithm, described in Sonin [2008], sequentially calculates the index α(x) for all points x ∈ X in

an order that is not known in advance. If, for a finite set X, the goal is to find α(s) for a particular

s, then we know only that α(s) will be obtained at some stage. We also can apply this algorithm to

some cases of countable X.

In our subsequent presentation the starting point is Katehakis and Veinott model, whereas

Whittle OS family is the main tool for its solution.

2.2 The State Reduction (SR) Approach

The State Reduction (SR) Approach is a relatively new method to recursively calculate many

important characteristics of MCs.

Let us assume that a Markov model M1 = (X1, P1) is given, let D ⊂ X1, S = X1 \D. Then the

matrix P1 = {p1(x, y)} can be decomposed as follows

P1 =

 Q T

R P10

 , (2.4)

where the substochastic matrix Q describes the transitions inside of D, P10 describes the transitions

inside of S, and so on. Let us introduce the sequence of Markov times τ0, τ1, ..., τn, ..., the moments

of zero, first, and so on, return of (Zn) to the set S. I.e., τ0 = 0, τn+1 = min {k > τn, Zk ∈ S}. Let us

consider the random sequence Yn = Zτn , n = 0, 1, 2, The strong Markov property and standard

probabilistic reasoning imply the following basic lemma of the SR approach, which probably should

be credited to Kolmogorov and Doeblin.

Lemma 2.2. (a) The random sequence (Yn) is a Markov chain in model M2 = (X2, P2), where

X2 = X1 \D, and

(b) the transition matrix P2 = {p2(x, y), x, y ∈ S} is given by the formula

P2 = P10 +RU = P10 +RNT. (2.5)

In this formula U is a matrix of the distribution of the MC at the moment of first return to S,

and N is the fundamental matrix for the substochastic matrix Q, i.e., N =
∑∞
n=0Q

n = (I −Q)
−1
,

where I is the |D| × |D| identity matrix. This representation is given, for example, in the classical

text of Kemeny et al. [1976]. We call models M1 and M2 adjacent. An important case is when the

10

set D consists of one nonabsorbing point z. In this case formula (2.5) takes the form

p2 (x, ·) = p1 (x, ·) + p1 (x, z)n1 (z) p1 (z, ·) , (2.6)

where n1 (z) = 1/ (1− p1 (z, z)). According to this formula, each row-vector of the new stochastic

matrix P2 is a linear combination of two rows of P1 (with the column z deleted). Formally, this

transformation corresponds to one step of the Gaussian elimination method.

Described above matrix N = {n (x, y) , x, y ∈ D}, a fundamental matrix for the transient MC

with transition matrix Q, has the following well-known probabilistic interpretation: n(x, y) =

Ex
∑τS
n=0 Iy(Zn). Here τS is the moment of the first visit to S, τS = min(n > 0 : Zn ∈ S)

(moment of first exit from D), i.e., the expected number of visits to y starting from x till τS . The

matrix N also satisfies the equality

N = I +QN = I +NQ. (2.7)

If an initial Markov model M1 = (X1, P1) is finite, |X1| = k, and only one point is eliminated

at each time, then a sequence of stochastic matrices (Pn), n = 2, ..., k can be calculated recursively

on the basis of formula (2.6). Generally, a set of points D can be eliminated using formula (2.5). In

both cases such sequence of stochastic matrices provides an opportunity to recursively calculate many

characteristics of the initial Markov modelM1 starting from some reduced modelMs, 1 < s ≤ k. This

approach was initiated by papers Grassmann et al. [1985] and Sheskin [1985], where the so-called

GTH/S algorithm to calculate the invariant distribution for an ergodic Markov chain was obtained.

The recursive calculation of the second fundamental matrix for the ergodic MC was described in

Sonin and Thornton [2001].

2.2.1 Transformation of the cost function

Let us also introduce a transformation of the cost function c1(x) (or any function f(x)) defined

on X1 into the cost function c2(x) defined on X2 = S, under the transition from model M1 to model

M2.

Given the set D,D ⊂ X1, let τ be the moment of the first return to X2, i.e., τ = min(n ≥ 1, Zn ∈

X2). Then, given the function c1(x) defined for x ∈ X1, let us define function c2(x) on x ∈ X2 as

c2(x) = Ex

τ−1∑
n=0

c1(Zn) = c1(x) +
∑
z∈D

p1(x, z)
∑
w∈D

n(z, w)c1(w). (2.8)

11

In other words, the new function c2(x) represents the expected cost (reward) gained by a MC

starting from point x ∈ X2 up to the moment of first return to X2. For a function f(x) defined

on a set X1 and a set B ⊂ X1 denote by fB the column-vector function reduced to a set B. Then

formula (2.8) can be written in a matrix form as

c2 = c1,X2
+RNc1,D. (2.9)

If the set D = {z}, then the function c1(x) is transformed as follows

c2(x) = c1(x) + p1(x, z)n1(z)c1(z), x ∈ X2. (2.10)

Remark 2.3. This formula was used first in Sheskin [1999] in the context of MDP.

2.2.2 Relation between G1 and G2

Now we present some useful formulas explaining how operators P1 and P2, and related operators

act on functions in two adjacent models. We denote Fif(·) = ci + Pif(·), and Gif(·) = f(·)− (ci +

Pif(·)). This lemma was not described in the original version of SE algorithm, and was proved in

Sonin [2006].

Lemma 2.4. Let M1 and M2 be two adjacent models with state spaces X1 and X2 = X1 \D, where

D ⊆ X1, Pi, and Fi, i = 1, 2 be the corresponding averaging and reward operators, where functions

c1 and c2 are related by (2.9), matrices R, T are as in (2.4) and matrix N is a fundamental matrix

for Q. Let f be the function defined on X1. Then

fX2
− P2fX2

= (f − P1f)X2
+RN(f − P1f)D, (2.11)

fD = N [TfX2 + (f − P1f)D]. (2.12)

The formula similar to (2.11) holds if operators Pi are replaced by operators Fi and Gi, i.e.

G2fX2
= (G1f)X2

+RN(G1f)D. (2.13)

If set D = {z}, these formulas take the form (x ∈ X2)

f(x)− P2f(x) = f(x)− P1f(x) + p1(x, z)n1(z)(f(z)− P1f(z)), (2.14)

12

f(z) = n1(z)(
∑
y∈X2

p1(z, y)f(y) + f(z)− P1f(z)), (2.15)

and

G2f(x) = G1f(x) + p1(x, z)n1(z)G1f(z). (2.16)

2.2.3 The State Elimination Algorithm for optimal stopping of Markov chain

We consider here only the finite state space, though the method with some modifications can also

be used in a countable state space. The State Elimination (SE) algorithm for the optimal stopping

problem of an MC is based on three following facts.

Fact 2.5. Though in the optimal stopping problem it may be difficult to find the states where it is

optimal to stop, it is easy to find a state (states) where it is optimal not to stop. In reality, it is

optimal to stop at z if q(z) ≥ c(z) + Pv(z) ≡ Fv(z), but v is unknown until the problem is solved.

On the other side, it is optimal not to stop at z if q(z) < Fq(z), i.e., the expected reward of doing

one more step, then stopping, is larger than the reward from stopping. (Generally, it is optimal not

to stop at any state where the expected reward of doing some, perhaps random number of steps, is

larger than the reward from stopping).

Fact 2.6. After we have found states (state) that are not in the optimal stopping set, we can

eliminate them and recalculate the transition matrix using (2.6), if one state is eliminated, or (2.5),

if a larger subset of the state space is eliminated. Such transformation will keep the distributions

at the moments of visits to any subset of remaining states the same, and the excluded states do not

matter since it is not optimal to stop there. After that, in the reduced model we can repeat the first

step and so on.

Fact 2.7. Finally, though if q(z) ≥ Fq(z) at a particular state z, we cannot make a conclusion

about whether this state belongs to the stopping set or not, but if this inequality is true for all states

in the state space, then we have the following simple statement

Proposition 2.8. Let M = (X,P, q) be an optimal stopping problem, and q(x) ≥ Fq(x) for all

x ∈ X. Then X is the optimal stopping set in the problem M , and v(x) = q(x) for all x ∈ X.

The formal justification of the transition from the initial model M1 to the reduced model M2 is

given by Theorem 2.9 below. This theorem was formulated in Sonin [1995] and its proof was given

in Sonin [1999a] for the case when c(x) = 0 for all x.

13

Algorithm 2.1 State Elimination (SE) Algorithm
Input: optimal stopping model M(X,P, c, q)
Output: optimal stopping set S∗, value function v(x)
Assumption: optimal stopping set S∗ = {x : v(x) = q(x)} does exists
k ← 1
(Xk, Pk, ck, qk)←M(X,P, c, q)
while ∃x : q(x)− Pkq(x) < 0 do
k ← k + 1
Dk ← {x : q(x) < Pk−1q(x)}
Xk ← Xk−1�Dk

(Pk, ck)← apply formulas (2.5), (2.9) to (Pk−1, ck−1) by eliminating Dk

qk ← remove states Dk from qk−1

end while
S∗ ← Xk

v(x)← q(x) for x ∈ S∗
v(x)← apply formula (2.17) for x ∈ X�S∗

Theorem 2.9 (Elimination theorem). Let M1 = (X1, P1, c1, q) be an OS model, D ⊆ C1 = {z ∈

X1 : q(z) < F1q(z)}. Consider an OS model M2 = (X2, P2, c2, q) with X2 = X1 \D, p2(x, y) defined

by (2.5), and c2 is defined by (2.9). Let S be the optimal stopping set in M2. Then

1. S is also the optimal stopping set in M1, and

2. v1(x) = v2(x) ≡ v(x) for all x ∈ X2, and for all z ∈ D

v1(z) = E1,z[

τ−1∑
n=0

c1(Zn) + v(Zτ)] =
∑
w∈D

n1(z, w)c1(w) +
∑
y∈X2

u1(z, y)v(y), (2.17)

where u1(z, ·) is the distribution of an MC at the moment τ of first visit to X2, and N1 =

{n1(z, w), z, w ∈ D} is the fundamental matrix for the substochastic matrix Q1.

The state elimination algorithm is given in Algorithm 2.1. It takes OS model M = (X,P, c, q)

as input, and assumes that optimal stopping set S∗ = {x : v(x) = q(x)} does exists. For the finite

space X this algorithm solves the OS problem in no more than |X| steps, it also allows us to find

the distribution of the MC at the moment of stopping in an optimal stopping set S∗. A similar idea

was applied for a particular OS problem (the Secretary Problem with random number of objects)

in Sonin and Presman [1972], and was proposed for the OS of general stochastic processes in Irle

[1980] without the specification to MC situation.

2.3 State Elimination Algorithm with Full Size Matrices

It could be more convenient for the implementation of state elimination algorithm to have all

stochastic matrices of equal full size. Denote deleted set as D; X \D = S. Introduce two diagonal

14

characteristic matrices ID and IS , e.g., ID is a diagonal matrix with di = 1 if i ∈ D and 0 otherwise.

We remind that multiplication on diagonal matrix on the right is equivalent to multiplication of

columns, and multiplication on the left is equivalent to multiplication of rows. Therefore, the

formulas in the previous sections can be rewritten as follows.

Now we can skip index 1 for the initial model, and skip index 2 in a new model M2, i.e. P1 = P,

P2 = P2(D) = P (D). Note that P , P2(D), N(D) = ND, ID, IS are full size |X| × |X| square

matrices.

Lemma 1 remains true, but now we assume that (Yn) is an MC with the same state space X, i.e.,

we allow the initial points x be in D as well as in S = X \D, though after the first step MC is always

in S. Then, additionally to (2.5) for x ∈ S, y ∈ S, we have term T + QNT = (I + QN)T = NT

for x ∈ D, y ∈ S. The last equality is true by (2.7). Thus, instead of (2.5) we have the following full

size stochastic matrix for an MC (Yn)

P2(D) = PIS + PIDNDPIS = (I + PIDND)PIS = NDPIS =

 0 NT

0 P10 +RNT

 , (2.18)

where P10 in formula (2.5) is replaced by PIS , R is replaced by PID, T is replaced by PIS , and

N = (I −Q)−1 is replaced by ND. Here ND = (I − PID)−1 = I + PIDND,

ND =

 N 0

RN I

 . (2.19)

Also note that for x ∈ D the rows of matrix P2(D) (namely, submatrix NT) give the distribution

of MC (Yn) at the moment of first visit to set S: P2,x(Y1 = y), x ∈ D, y ∈ S. And this moment

coincides with the moment of first return to set S. For the points from set S we are interested in

the moment of a first return, corresponding distribution is given by submatrix P10 +RNT.

The full matrix analog of (2.9) will be

c2= c2(D) = c + PIDNDc = (I + PIDND)c = NDc =

 Nc1,D

RNc1,D + c1,S

 , (2.20)

where c1,D and c1,S are the parts of vector c = c1 with coordinates in D and S respectively. Now c

and c2 are both full vectors defined on the whole X = X1. As in formula (2.8), function c2 can be

15

also described as

c2(x) = E1x

τ−1∑
n=0

c1(Zn), x ∈ X, (2.21)

where E1x = Ex is an initial expectation, τ = τS is the moment of first return to S = X \D if x ∈ S.

The analog of Lemma 2, i.e., analogs of formulas (2.11)–(2.13) in full matrix form are: (P =

P1, c = c1)

P2(D) = P + PIDND(P − I) = P + PIDND(P − I), (2.22)

F2(D)f = Ff + PIDND(F − I)f, (2.23)

F2(D)f − f = (F − I)f + PIDND(F − I)f = (I + PIDND)(F − I)f = ND(F − I)f, (2.24)

where Ff = c + Pf , F2f = c2 + P2(D)f . Later in the text the most important role will play the

formula applied to the case f = g, where g is the terminal reward function. In this case we use the

shorthand notation Gi(·) = Gig(·). This main formula (compare with (2.16)) for the case D = {z}

is

G2(z) = n1(z)G1(z), G2(x) = G1(x) + p1(x, z)n1(z)G1(z) = G1(x) + p1(x, z)G2(z). (2.25)

Note that set D in Lemma 2 is not necessarily a subset of C1 = {z ∈ X1 : G1f(z)}, but if it is,

then formula (2.25) immediately implies

Corollary 2.10. If the elimination set D ⊂ {C1 = {z ∈ X1 : G1q(z) < 0} then G2qX2
< G1qX2

.

This also means that if some points were eliminated at some stage, then they are eliminated forever.

Remark 2.11. Formula (2.25) also helps to organize the recursive steps of the EA in a more efficient

way. If a set D is eliminated and new model MD is obtained, then the new transition probabilities

pD have the following property

pD(x, z) = 0, if x ∈ S = X�D, z ∈ D; pD(z, u) = 0, if z, u ∈ D. (2.26)

We say that an OS modelM = (X,P, c(x), g(x), β(x)) has an escaping set D if transition matrix

P has the same structure as in the formula above. In other words, MC can be in a set D only at

the initial moment. Later we will use the following simple proposition.

16

Proposition 2.12. If OS model M has an escaping set D and q(x) ≥ c(x) +Pq(x) for all x ∈ S =

X�D. Then v(x) = q(x) if x ∈ S.

The proof of Proposition 2.12 is similar to the proof of Proposition 2.8.

Remark 2.13. The usage of the full-size matrices Pi also allows to obtain the value function at the

end of elimination stage. Let Di be a set eliminated on a i-th step, Di = {x : q(x)−(ci+Piq(x) < 0},

i = 1, 2, ..., k, Si = X�Di. Denote the value function on a i-th step by vi = qDi : vi(x) = q(x) if

x ∈ Si, and vi(x) = ci(x) + Pi+1q, if x ∈ Di. We always have Di ⊂ Di+1 and g ≤ ... ≤ vi ≤ vi+1 ≤

... ≤ v. Therefore, if, for some k, we have Dk+1 = Dk, it means that calculation is done, and it also

happened that we have obtained the optimal stopping set S = Sk and value function v(x) = vk(x)

for all x ∈ X.

Using Corollary 1 and formulas for the elimination steps it is easy to show the important feature

of SEA, namely, that the elimination of sets D1 and D2 in two steps is equivalent to elimination

of a set D1 ∪ D2 in one step. This feature implies also that we can eliminate only one point at a

time. Therefore, the implementation of SE algorithm can be pretty straightforward, it only needs

the formulas for one step of elimination. It starts with D = ∅ and it can recursively eliminate states

one by one until Dn = Dn+1.

2.4 State Elimination and Insertion

The equations from the previous sections are useful when there is no need to insert states back

into the model. The full-size matrices complexity to eliminate single state using full-size matrices

is O (|X| |X\D|) because columns, corresponding to states x ∈ D contain zeroes. In this section we

develop an algorithm, allowing insertion of x ∈ D back to the model, the complexity of elimination

or insertion is O
(
|X|2

)
.

Denote by WD the matrix, obtained after elimination of set D. Set W∅ = P . Apply elimination

of single state z exactly as before

wD∪z (·, y) = wD (·, y) + wD (·, z) 1

1− wD (z, z)
wD (z, y) , (2.27)

with one important difference: we apply this equation to all states x ∈ X, even to the states from

x ∈ D.

Remark 2.14. Given D and x, y ∈ X\D, the equation 2.27 is using only elements inside of X\D,

therefore pD (x, y) = wD (x, y). Therefore, the portion of WD, corresponding to the X\D is exactly

17

equal to the values in PD. In general, WD contains non-zero elements at columns, corresponding to

x ∈ D, whereas PD has zeroes at these columns.

Remark 2.15. The equation (2.10) to eliminate state z for cost function c uses only elements PD

from X\D, therefore we can use WD in this equation, namely

cD∪z (y) = cD (y) + wD (y, z)
1

1− wD (z, z)
cD (z) , (2.28)

Corollary 2.16. Elimination can be performed on a matrix WD, transition matrix PD is obtained

from WD by setting columns, corresponding to set D to zero.

Transition matrix PD can be treated as matrix with |X| − |D| columns and |X| rows, matrix

WD has size |X| rows and columns, regardless of the set D. As a result, elimination on WD is

computationally more expensive than on PD. The main advantage of elimination on WD is the

ability to perform inverse operation to elimination, i.e. insertion of any state j ∈ D. Indeed, by

applying simple algebra to equation 2.27 we have

wD (·, y) = wD∪j (·, y)− wD∪j (·, z) 1

1 + wD∪j (j, j)
wD∪j (j, y) , (2.29)

and

cD (y) = cD∪j (y)− wD∪j (y, z)
1

1 + wD∪j (j, j)
cD∪j (z) . (2.30)

Matrix form for WD is

WD =

 QN NT

RN P0 +RNT

 ,
where new elements QN and RN have the following meaning

• for x ∈ S, y ∈ D, the element (RN)xy is expected number of times state y is visited while

chain stays in D given that chain enters to D through x,

• for x ∈ D, y ∈ D, the element (QN)xy = (N − I)xy is expected number of times state y is

visited while chain stays in D given that chain enters to D through x, in other words even

though chain starts in D, the first state is not counted.

Since PD is exactly the same as in previous section, all statements, derived for PD, in particular

relations between F1 and F2, and relations between G1 and G2 are still true.

18

Remark 2.17. Elimination with WD instead of PD provides tradeoff between slightly increased

complexity and new functionality, i.e., ability to insert.

Remark 2.18. Elimination of z and insertion of j has simpler form

wD
⋃
z (·, z) =

wD (·, z)
1− wD (z, z)

, (2.31)

cD
⋃
z (z) =

cD (z)

1− wD (z, z)
, (2.32)

wD (·, j) =
wD

⋃
j (·, j)

1 + wD
⋃
j (j, j)

, (2.33)

cD (j) =
cD

⋃
j (j)

1 + wD
⋃
j (j, j)

. (2.34)

2.5 Three Abstract Optimization Problems

The common part of all three problems described above in Section 2 is a maximization over the

set of all positive stopping times τ , or, equivalently, over all partitions of the state set X into two

sets, continuation and stopping (restart) regions. This is a special case of a very general situation.

Let us consider the following three abstract optimization problems 1, 2, and 3. Suppose there

is an abstract index set U , let A = {au} and B = {bu} be two sets of real numbers indexed by the

elements of U . Suppose that the following assumption holds

−∞ < au ≤ a <∞, 0 < b ≤ bu ≤ 1.

We assume, that DM knows sets U , A, and B in all three problems.

Problem 2.19 (Restart Problem). Find solution(s) of the equation

h = sup
u∈U

[au + (1− bu)h] ≡ H(h). (2.35)

It is easy to see that equation (2.35) is a Bellman (optimality) equation for the ”value of the

game,” i.e., the supremum over all possible strategies in the optimization problem with two equivalent

interpretations. In both cases set U represents a set of available actions, which we call ”buttons.”

A DM can select one of them and push (test). She obtains a reward au, and, according to the first

interpretation, with probability bu, the game is terminated, and, with complimentary probability

19

1 − bu, she is again in an initial situation, i.e., she can select any button and push. Her goal is to

maximize the total (undiscounted) reward.

According to the second interpretation, the game is continued sequentially without possibility of

random termination, but the value 1− bu is now not a probability, but a discount factor applied to

the future rewards after a button u was used at the first step.

Our second optimization problem is

Problem 2.20 (Ratio (cycle) Problem). Find

α = sup
u∈U

au
bu
. (2.36)

The interpretation of this problem is straightforward: a DM can push some button u only once

and her goal is to maximize the ratio in (2.36), the one step reward per ”chance of termination.” Since

the game is terminated after the first push anyway, 1/bu has an interpretation of a ”multiplicator”

applied to a ”direct” reward au.

In the sequel we shall use shorthand notation a∨ b for max(a, b). Let H(k) be a function defined

in the right side of (2.35).

Problem 2.21 (A Parametric Family of Retirement Problems). Find w defined as follows: given

parameter k,−∞ < k <∞, let

v(k) = k ∨H(k), w = inf{k : v(k) = k}. (2.37)

In this problem, given number k, a DM has the following one step choice: to obtain k immediately,

or to push some button u once, then obtain a reward au, after that, additionally with probability

1− bu, to obtain k, and, with complimentary probability, to obtain zero.

Using the fact that functions H(k) and v(k),−∞ < k <∞, are nondecreasing, continuous, and

convex (concave up), the following theorem was proved in Sonin [2011].

Theorem 2.22 (Abstract Optimization Equality). a) Solution h of equation (2.35) is finite and

unique;

b) h = α = w, and

c) the optimal index, or an optimizing sequence for any of the three problems is the optimal index

(an optimizing sequence) for the other two problems.

20

See the brief discussion of one more problem initially analyzed in one page seminal paper Mitten

[1960], and its relation to the classical- and generalized Gittins index in Sonin [2008].

Theorem 2.22 shows the equivalence of three abstract problems, but leaves an open question:

which one of them should be solved. Probably, there is no general answer to this question. It is

possible that in some situations Problem 1 will be the easiest, and in some other—Problem 2. At

the same time Problem 3 provides the most general approach, since its solution breaks up into two

stages: a solution for a particular k, and finding w. This exact situation occurs in Markov reward

model and three related indices. Let us formally show how the three problems, described in sections

1 and 2 can be presented as abstract problems.

Given a reward model with terminationM = (X,P, c(x), β(x)) and an initial point x, let us define

the set U = {u} = { set of all Markov moments τ > 0}, τ = τG = min(n : Zn ∈ G∪e), G ⊂ X,x /∈ G.

We define rewards au as au = Rτ (x) = Ex
∑τ−1
n=0 c(Zn), the total expected reward till moment τ ; the

probabilities bu are defined as Qτ (x) = Px(Zτ = e), the probability of termination on [0, τ). These

are quantities participating in (2.3). Then the function H(k) coincides with supτ>0Exq(Zτ), where

g(x) = k. Respectively, v(x|k) = k ∨H(k) = supτ≥0Exq(Zτ), i.e., v(x|k) is the value function in an

OS for MC in model M(k).

Also note that the equivalence of the three problems does not lend itself to the solution of these

problems. The set of all partitions of X, which gives the size of the set U , grows exponentially with

|X| = n; but the algorithm in Sonin [2008] to calculate generalized Gittins index is polynomial with

complexity of order O
(
n3
)
. A similar algorithm to calculate the classical Gittins index was obtained

in Niño-Mora [2007].

CHAPTER 3: ALGORITHM FOR CQR MODEL

Consider the CQR model (X,P,A, c (x) , q (x) , r (x)) with single restart point s ∈ X, as defined

in Introduction. We follow previous assumption that the discount factor β (x) is already factored

in into the transition probabilities by using transition to the terminal state e. Our final goal is find

optimal strategy π, maximizing the value function h (x).

The algorithm is based on solving an equivalent problem. The equivalence of problems is estab-

lished using three abstract optimization problems, i.e. theorem 2.22.

The derivation consists of several steps. First step is to write value function for CQR problem

in form of abstract optimization problem. Second step is to define indices α, w, and h in modified

form. Modified indices are defined for every state, however, the theorem 2.22 is applicable to the

restart state s only. The last step is define a family of models, corresponding to the modified index

w (s) and to develop algorithm to find this index.

3.1 Value function for CQR model

An action set A(x) at each point x consists of three actions {c, q, r}: continue, quit, and restart

(to a fixed point s). The exception is a restart point s, where action set consists only of two actions,

{c, q}. In addition, the absorbing state, e, has only continue action, A (e) = {c}. In order to simplify

all equations, we consider, that state s still has restart fee, r (s) := 0. Also, the absorbing state has

all fees equal to 0.

Respectively a stationary strategy π is defined as a 3-partition of X = C ∪ Sq ∪ Sr, where C is

a continuation region, Sq is a quit region, Sr is a restart region. Denote the value function in this

model as

h(x) = sup
π
hπ(x).

Since three possible actions are available at each state x, the value function h(x) satisfies opti-

mality equation

h(x) = q(x) ∨ (r(x) + h(s)) ∨ (c(x) + Ph(x)), (3.1)

where v(e) = 0, and, for any function g, defined on states, Pg(x) =
∑
y p(x, y)g(y). Notice that

h (s) has simpler form, v(s) = q(s) ∨ (c(s) + Pv(s)).

22

Define a “stopping set” as set of point outside of continue action, S = X\C = Sq ∪ Sr ∪ {e}.

Given a strategy π = {C, Sq, Sr}, let the stopping timeτ = τ (S) = τ(π) be a moment of a first visit

to S. The moment τ is a moment when a cycle ends, i.e., when a DM stops (quits or restarts).

The following expected rewards and probabilities help with rewriting value function in terms of

moment τ . Define the probability of the termination (of a cycle) on [0, τ] as probability of choosing

quit action or reaching absorbing state at the moment τ

Qπ(x) = Px [Zτ ∈ Sq] + Px [Zτ = e] .

Define Rπ(x), the total expected reward obtained during one cycle as sum of rewards for continue

action, obtained before moment τ , plus reward at moment τ , which can be either reward for quit

action or reward for restart to s action

Rπ(x) = Ex

[
τ−1∑
n=0

c (Zn) + I (Zτ ∈ Sq) q (Zτ) + I (Zτ ∈ Sr) r (Zτ)

]
,

do not forget that all rewards at absorbing state are zero.

Then, using the standard results from the theory of MDP we have value function for strategy π

as

hπ(x) = Rπ(x) + (1−Qπ(x))hπ(s). (3.2)

This equation means that, starting from state x we obtain expected reward during one cycle, Rπ (x),

then, with complimentary probability to the termination probability Qπ (x), we obtain hπ (s).

Taking supremum over all possible strategies in (3.2), using x = s and assumption that r(s) = 0,

we obtain that the optimality equation (3.1) can be written as

h(s) = sup
π

[Rπ(s) + (1−Qπ(s))h(s)] = q(s) ∨ sup
π:A(s)=c

[Rπ(s) + (1−Qπ(s))h(s)]. (3.3)

Therefore we represented value function for a restart point, h (s), as one of the three abstract

problems, namely, restart problem, as in equation 2.35.

3.2 Definition of modified indices

In order to find optimal strategy, we need to move away from the value function in CQR model

and define modified indices.

The idea is to introduce indices α(x), h̃(x), and w(x) for all initial states x in such a way, that,

23

Figure 3.1: Graph of g (x, k) for fixed state x, red dashed lines correspond to q (x) and r (x) + k.

k-r(x)

q(x)

g(x,k)

γ(x)

r(x)+k

on one hand, the theorem 2.1 is preserved for all x, and, on the other hand, the value h̃(x) for x = s

will coincide with value function h(s) as defined in (3.3). Then, we can reduce problem of finding

strategy, maximizing value function h (s) to finding optimal strategy, maximizing modified index

h̃ (x).

The modified indices w (x) and t (x) require introduction of a Whittle family of models M(k)

with the same state space X, transition probability P , action set consisting only from two actions,

A (x) = {continue, stop}, with the same as CQR model c (x) and terminal reward function defined

as

g(x, k) = q(x) ∨ (r(x) + k), x 6= e, (3.4)

the absorbing state has the same properties, i.e. it has only one action, continue; in order to simplify

notation, we set g(e, k) = 0. In short, M (k) = (X,P,A = {continue, stop} , c (x) , g (x, k) , k ∈ R).

The graph of g (x, k) is given in Figure 3.1.

Problem 3.1 (Modified Restart index h̃(x)). We define an index h̃(x) for all x ∈ X as

h̃(x) = sup
π

[Rπ(x)− r(x) + (1−Qπ(x)h̃(x)] (3.5)

= (q(x)− r(x)) ∨ sup
π:A(x)=c

[Rπ(x)− r(x) + (1−Qπ(x)h̃(x)],

where strategy π is a partition (C, Sq, Sr) of X, τ = τS , S = Sq ∪ Sr ∪ {e}; notation π : A (x) = c

means that x ∈ C, so momentτ > 0.

In other words, we define h̃(x) as a value function for CQR problem with an initial point x not

s, where, additionally, we subtract extra ”initiation” fee r(x) from expected reward during one cycle.

24

Condition r(s) = 0 implies that h(s) defined by (3.3) coincides with h̃ (s). In general, h̃(x) 6= h(x)

for x 6= s even if r(x) = 0 because the return points are different, x for the index h̃ (x), and s for

h (x).

The reason for subtracting r(x) will become clear when a modified index w(x) is introduced.

Problem 3.2 (Modified Gittins index α(x)). We define index α(x) as

α(x) = sup
π

Rπ(x)− r(x)

Qπ (x)
= (q(x)− r(x)) ∨ sup

π:A(x)=c

Rπ(x)− r(x)

Qπ (x)
, (3.6)

where π, Rπ(x), and Qπ(x) are defined as before.

We can use any index to find value of all others, for CQR find value of all indices through

generalized index w(x).

Problem 3.3 (Modified index w(x) and index t(x)). These indices are defined on Whittle family of

models, M (k), defined above. The strategy for this model is defined by stopping set S ⊂ X, where

S = {x : A (x) = stop}. Let stopping time τ for M (k) be the moments of a first visit to sets S ⊂ X.

Then, vτ (x, k) the value of a strategy τ at point x, is

vτ (x, k) = Ex[

τ−1∑
n=0

c(Zn) + g(Zτ , k). (3.7)

Let

v(x, k) = sup
τ≥0

vτ (x, k)

be the value function for model M(k). The optimality equation has a standard form:

v(x, k) = g(x, k) ∨ (c(x) + Pv(x, k)) = g(x, k) ∨ sup
τ>0

Exg(Zτ). (3.8)

Now we can define modified indices w(x) and t(x):

w(x) = inf
k
{k : v(x, k) = r(x) + k}, (3.9)

t(x) = sup
k≤w(x)

{k : v(x, k) = q(x)}.

Even though, the indices w (x) and t (x) are defined for family of Whittle models M (k), we can

show that w (s) = h̃ (s) = h (s).

Similarly to the statement in Sonin [2008] we have the following proposition.

25

Figure 3.2: Graph of v (x, k) for fixed state x, red dashed lines correspond to q (x) and r (x) + k.
Case when optimal strategy, as function of k, consists of quit, continue, and restart.

kt(x)

q(x)

v(x,k)

w(x)

quit continue restart

Figure 3.3: Graph of v (x, k) for fixed state x, red dashed lines correspond to q (x) and r (x) + k.
Case when optimal strategy, as function of k, consists of quit and restart.

kt(x)=w(x)=γ(x)

q(x)

v(x,k)

quit restart

Proposition 3.4. The indices t(x) and w(x) satisfy t(x) ≤ w(x) < ∞. Value function v(x, k) is

concave upward and

v (x, k) = r (x) + k, k ≥ w (x)

v(x, k) > g(x, k), k ∈ (t(x), w(x)) ,

v (x, k) = q(x), k ≤ t(x).

It follows from the proposition, that x ∈ S(k) if k ≤ t(x) or k ≥ w(x). The function v (x, k)

for given state x is shown at Figures 3.2-3.4. As the result of this chapter, we prove that function

v (x, k) is continuous, concave upward and can have three shapes. The graphs are given here in

advance in order to help with understanding of the rest of the section.

The set of all strategies on M (k) consist of partition of state space X into two sets, S and X\S.

26

Figure 3.4: Graph of v (x, k) for fixed state x, red dashed lines correspond to q (x) and r (x) + k.
Case when optimal strategy, as function of k, consists of continue and restart.

k

q(x)

v(x,k)

w(x)

continue restart

However, the set of all strategies for CQR problem is richer, consists of partition of X into three

sets: Sq, Sr, and X\ (Sq ∪ Sr). In order to apply Theorem 2.22, the abstract optimization equality,

we need to transform equation (3.8) to an equation with supremum over all 3-partitions.

Lemma 3.5. Value function v(x, k) satisfies an equation

v(x, k) = q(x) ∨ (r(x) + k) ∨ sup
π:A(x)=c

[Rπ(x) + (1−Qπ(x))k]. (3.10)

Proof. Given stopping set S and value k, use the reward function g(x, k) to partition set S into

Sq(k) and Sr(k). Set Sq (k) is subset of S where g (x, k) = q (x), Sq(k) = {x ∈ S : q(x) ≥ r(x) + k},

set Sr (k) is subset of S where g (x, k) = r (x) + k, Sr(k) = S�Sq(k) = {x ∈ S : q(x) < r(x) + k}.

Denote a strategy, resulting from this partition by π0.

For any set S ⊂ X by definition of τ = τS and definition of function g(x, k) we have

Eπ0
x g(Zτ) = Eπ0

x

[
τ−1∑
n=0

c(Zn) + I (Zτ ∈ Sq) q(Zτ) + I (Zτ ∈ Sr) (r(Zτ) + k)

]
.

Since
∑τ−1
n=0 c(Zn) does not depend on how stopping set S is partitioned into Sq and Sr, then, for

all partitions π with the same set S, the expectations of the first sum are equal, Eπx
[∑τ−1

n=0 c(Zn)
]

=

Eπ0
x

[∑τ−1
n=0 c(Zn)

]
.

Also, partition π0 of the set S differs from partition π by the fact, that π0 uses the maximal

reward, q (x) or r (x) + k, therefore

Eπx
[
I
(
Zτ ∈ Sπq

)
q(Zτ) + I (Zτ ∈ Sπr) (r(Zτ) + k)

]
≤

27

≤ Eπ0
x

[
I
(
Zτ ∈ Sπ0

q

)
q(Zτ) + I (Zτ ∈ Sπ0

r) (r(Zτ) + k)
]
.

As a result Rπ(x) + (1−Qπ(x))k ≤ Rπ0(x) + (1−Qπ0(x))k. Finally,

sup
π:A(x)=c

[Rπ(x) + (1−Qπ(x))k] = sup
τ>0

[
Rπ0(τ)(x) + (1−Qπ0(τ)(x))k

]
.

Note that equation (3.10) for the value function can be rewritten as

v(x, k)− r(x) = (q(x)− r(x)) ∨ k ∨ sup
π:A(x)=c

[Rπ(x)− r(x) + (1−Qπ(x))k]. (3.11)

Theorem 3.6. The three modified indices defined for a general CQR model coincide, i.e. α(x) =

h̃(x) = w(x). If π = (C, Sq, Sr) is an optimal strategy in Problem 3.1, then it is also an optimal

strategy in Problem 3.2 and set S = Sq ∪ Sr is an optimal stopping set S(k) in OS Problem M(k)

for k = w(x).

Proof. A similar theorem was proved in Sonin [2008] for the case when q(x) = −∞ and r(x) = 0

for all x ∈ X. Here we prove this theorem differently by using theorem 2.22. Given x ∈ X let

us introduce the set of indices U = {π : A (x) = c} ∪ {π : A (x) 6= c}, where π : A (x) 6= c is an

index such that a0 = q(x)− r(x), b0 = 1. Then, according to formulas (3.5), (3.6), and (3.11), three

Problems 3.1-3.3 are represented as three abstract problems, therefore we can apply theorem 2.22

(Abstract Optimization Equality).

3.3 Main Theorem for the Whittle Family of Optimal Stopping Models

In a previous section we defined Whittle family of modelsM(k) = (X,P, c(x), g(x|k)) and indices

w (x), t (x) for this model. We established, that, according to the theorem 3.6, the value function

at state s for CQR model, h (s), is equal to index w (s). Moreover, the optimal stopping set for

model M (k) when k = w (s) is also an optimal strategy for CQR model. Therefore, instead of

finding optimal strategy for CQR directly, we can find index w (s) and optimal stopping set for

model M (w (s)).

For a given value of k, the model M (k) become a standard optimal stopping problem, therefore

it is straightforward to obtain value functions v (·, k) by applying State Elimination (SE) algorithm.

28

Define function G (x, k) as

G(x, k) = g(x, k)− [c(x) + Pg(x, k)].

For a fixed k, G (x, k) has the same meaning, as G (x) of SE algorithm. Negative value of G (x, k)

means that stopping at state x produces lower expected reward compared to making one step and

stopping after that. Also, the equation (2.25) is valid for G (x, k).

3.3.1 Whittle family with no quit action

First study the case when quit action is not allowed. The goal of this section is to develop

intuition and main facts, applicable to more general case.

The removal of quit action can be achieved by setting q = −∞. Then the terminal reward

function becomes g(x, k) = r(x)+k, function Pg (x, k) can be written in simplified form, Pg(x, k) =∑
y 6=e p(x, y)(r(y) + k). The equation for G (x, k) becomes

G(x, k) = (1− β (x)) k + r (x)− c(x)− Pr(x), −∞ < k <∞,

where β (x) has the meaning of discount factor and defined as β (x) =
∑
y 6=e p (x, y).

For each state x denote by d (x) the value of k which makes G (x, k) = 0. The value of d (x) can

be found as:

d (x) =
c (x)− r (x) + Pr (x)

1− β (x)
. (3.12)

Since for any state x there is positive probability to go to an absorbing state e, the slope β (x)

satisfies inequality 0 < (1− β (x)) ≤ 1. Therefore, function G (x, k) is a linear function with strictly

positive slope.

Remark 3.7. The case when all restart rewards are zero, we obtain the problem, which was studied

in Sonin [2008]: when r (x) := 0 for all x ∈ X, the function G (x, k) = (1− β (x)) k − c (x) and

d (x) = c (x) / (1− β (x)).

Let π∗ (x, k) be the optimal strategy for the modelM (k) and S (k) be the corresponding optimal

stopping set. In other words, S (k) is a mapping from R to set of all subsets of state space X. If

state x belongs to the stopping set S (k), the value function v (x, k) = r (x) + k. If state x belongs

to X\S (k), then v (x, k) ≥ r (x) + k, moreover, this inequality is strict unless it is indifferent for the

value function whether to stop at this state or continue.

Define ks and kc as values of k, such that for all x ∈ X, G (x, ks) > 0 and G (x, kc) < 0. By

29

proposition 2.8 positivity of all G (x, ks) means that the optimal stopping set coincides with state

space, S (ks) = X. From the other hand, all G (x, kc) < 0, which means that it is optimal not to

stop at all states and optimal stopping set is empty, S (kc) = ∅.

Proposition 3.8. For given x ∈ X, the optimal strategy π∗ (x, k) is to continue on [−∞, w (x)] and

to stop on [w (x) ,∞]. The index w (x) is the only value when G (x, k) = 0.

Proof. The proof is done through direct calculation of optimal strategy π∗ (x, k). Let us start from

k = ks. The optimal strategy for any k > ks is to stop at every state S (k) = X.

Functions G (x, k) are linear with positive slope, therefore, if we continually decrease k, we will

reach first G (y, k) = 0 for some y ∈ X. Denote this value of k by d+. The optimal stopping set for

k < d+ does not contain state y because G (y, k) < 0 for any k < d+. Therefore, v (y, k) = r (x) + k

for k > d+ and v (y, k) > r (x) + k for k < d+. In other words we found w (y) and have proven the

proposition for state y.

The rest of state space X\ {y} can be dealt with recursively. Construct a new model, M{y} (k)

by eliminating state y from the state space and by applying state elimination equations (2.6), (2.10)

to transition matrix P and reward function c. Since G (y, d+) = 0, therefore, by the equation

(2.16), the sign of functions G (x, d+) does not change. As a result, by elimination theorem 2.9, the

optimal strategy for reduced model M{y} coincides with optimal strategy for the original model for

k < d+.

The proof gives an algorithm to compute w (x). Notice, that we do not know the order in

which w (x) are calculated, but once we have w (s), we also obtain the solution for CQR problem:

h (s) = w (s) and π∗ (w (s)) is the optimal strategy.

The algorithm is given in algorithm 3.1. The algorithm uses set notation because it is possible to

have several states with G (x, k) = 0 for the same value of k. The elimination can be done one-by-one

or by applying matrix equations. The complexity of single iteration of the algorithm is O
(
n2
)
, the

number of iterations, in general case, is O (n), therefore the total complexity of the algorithm is

O
(
n3
)
.

3.3.2 Whittle model

Let us go back to the general case. Our goal is the same, we need to find value of index w (s).

The stop reward for the state x is piecewise linear function g (x, k) = q (x) ∨ (r (x) + k). The value

q (x) − r (x) is a threshold where g (x, k) changes its value from q (x) to r (x) + k. It is convenient

30

Algorithm 3.1 Finding h (s) and optimal strategy for CQR problem with no quit
Input: CQR model with no quit M(X,P, c, r), return state s ∈ X
Output: optimal strategy π for the model, value function h(s) for state s
C ← ∅, Sr ← X {C is a continue set, Sr is a restart to s set}
while w(s) not found do
d+ ← max(k : G(x, k) = 0, x ∈ Sr) {use 3.12 to solve G(x, k) = 0}
D ← {x : G (x, d+) ≤ 0, x ∈ Sr}
w(x) = d+, for x ∈ D
Sr ← Sr�D, C ← C ∪D
(P, c)← update model: use algorithm 2.1 to eliminate D from (X,P, c)
if w(s) is found then
set optimal strategy π as partition into continue set C ans restart to s set Sr
h(s)← w(s)
return π and h(s)

end if
end while

to define threshold value by γ (x) = q (x) − r (x). Function G (x, k) is linear function of g (x, k),

therefore it should be piecewise linear function too.

Define partial discount factor as a function of k as

β (x, k) =
∑

γ(y)≤k

p (x, y) ,

it plays important role in function G (x, k). In particular:

Lemma 3.9. For any fixed x ∈ X function G(x, k), as a function of k, is continuous, piecewise

linear function. The slope of G (x, k) is changing when k = γ (y), moreover, the slope is

• negative, −β(x, k), which is decreasing in k, if k < γ(x), and

• positive, 1− β(x, i) , which is increasing in k, if k ≥ γ(x).

Proof. First, let us write Pg (x, k),

Pg (x, k) =
∑

γ(y)>k

p (x, y) q (y) +
∑

γ(y)≤k

p (x, y) r (y) + k
∑

γ(y)≤k

p (x, y)

=
∑

γ(y)>k

p (x, y) q (y) +
∑

γ(y)≤k

p (x, y) r (y) + kβ (x, k) .

Since G (x, k) = g (x, k) − [c (x) + Pg (x, k)], the slope G (x, k) is −β (x, k) for k < γ (x) and

1− β(x, i) for k ≥ γ(x). Lastly, since β (x, k) is partial sum, conditional on k, it is only decreasing

when k is decreasing.

Corollary 3.10. Function G (x, k) is minimal when k = γ (x).

31

Figure 3.5: Graph of G (x, k) for fixed state x, states xj and xk are some states from X, xj 6= x,
xk 6= x.

kγ(x)

G(x,k)

γ(xk)γ(xj)

Δ1 Δ2 Δ3 Δ4

Corollary 3.11. For all x ∈ X, function G (x, k) changes slope at points γ (y), y ∈ X. In other

words, for all states x, functions G (x, k) change slope at the same set of values of k.

It is convenient to introduce intervals ∆i, i = 1 . . .M as set of ordered intervals, where all

functions are linear. The first interval has form ∆1 = (−∞,minx γ (x)], last interval has form

∆M = [maxx γ (x) ,∞), all other intervals contain pairs of values γ (x). In general, we can have at

most |X|+ 1 intervals, and less intervals, if not all γ (x) are different.

The graph of G (x, k) as a function of k is given in Figure 3.5. The graphs shows intervals ∆i,

values of γ (y) and illustrates main properties of G(x, k).

It is useful to write down full equations for G(x, k), these equations are used in the algorithm

later, if k < γ (x):

G (x, k) = −β (x, k) k + q (x)− c (x)−
∑

γ(y)>k

p (x, y) q (y)−
∑

γ(y)≤k

p (x, y) r (y) , (3.13)

and, if k > γ (x)

G (x, k) = (1− β (x, k)) k + r (x)− c (x)−
∑

γ(y)>k

p (x, y) q (y)−
∑

γ(y)≤k

p (x, y) r (y) . (3.14)

The proof for the main theorem needs introduction of several more definitions. Let k0 be some

fixed value of k. The model M (k0) is the standard optimal stopping problem, therefore it has

optimal stopping set S (k0) = Sq (k0)∪ Sr (k0). Since we are only considering model at point k0, let

us just write S, Sq, and Sr. Let the set C be the complement of S, C = X\S.

32

If x ∈ S, then

• x ∈ Sq, if v (x, k0) = q (x)⇐⇒ γ (x) ≤ k0, for k = γ (x) we choose Sq.

• x ∈ Sr if v (x, k0) = r (x) + k0 ⇐⇒ γ (x) > k0.

By MS (k) define result of SE algorithm, performed on Whittle model M (k). In other words, for

the model MS (k), the transition matrix PS and continue reward cS are the result of application of

elimination equations (2.18) and (2.20) to P and c with S being set to eliminate.

Define by GS (x, k) function G for model MS (k).

Remark 3.12. The function GS (x, k) ≥ 0 for x ∈ S.

Remark 3.13. It follows from the Theorem 2.9,that the set S is no longer an optimal stopping set

for the model M (k), k < k0, when at least one of GS (x, k) changes sign.

We are interested in the largest value k < k0 such that the function GS(x, k) changes its sign for

some x. The algorithm behavior depends on the way, the sign is changed, in order to accommodate

this difference, we can define values d+ and d− as

d+ = inf{k < k0 : x ∈ Sr, GS(x, k) > 0},

and

d− = sup{k < k0 : x ∈ C,GS(x, k) < 0},

in cases when d+ (d−) does not exist is convenient to assign value of −∞ to d+ (d−).

Theorem 3.14 (General step of iteration). Suppose that in a Whittle model MS(k) at least one of

the following inequalities is true:d+ > −∞, d− > −∞. Then

1. If d+ > d−, then w(x) = d+ for all x such that GS (x, d+) = 0.

2. If d− > d+, then t(x) = d− for all for x such that GS (x, d−) = 0

3. If d− = d+, then w(x) = d+ for all x ∈ Sr such that GS (x, d+) = 0, and t(x) = d− for all for

x ∈ C such that GS (x, d−) = 0.

Proof. First, define the set D as the set where we found first change of sign for GS (x, k), D =

{x : GS (x,max (d+, d−)) = 0}. Now let us prove each statement one by one.

33

Case d+ > d−. Definition of d+, inequality d+ > d− and Proposition 2.12 imply that S = Sq∪Sr

is an optimal stopping set for model M (k) for all k ∈ [d+, k0), and for any small ε > 0

GS(x, d+) = 0, x ∈ D, GS(x, d+ − ε) < 0, x ∈ C ∪D, GS(x, d+ − ε) > 0, x ∈ Sr�D.

These inequalities, definitions of Sq and Sr and Proposition 2.12 immediately imply that w(x) =

d+ for all x ∈ D and there is no other values of w(x) or t(x) on the interval [d+, k0).

In addition, since GS(x, d+ − ε) < 0 for x ∈ C ∪ D, the optimal stopping set S (d+ − ε) =

S (k0) \D. Since it is irrelevant, whether to stop or continue for x ∈ D at k = d+, we can set

S (d+) = S (d+ − ε).

Create a new model MS(d+) by using applying elimination procedure to MS with eliminated set

D. Because GS (x, d+) = 0 for all x ∈ D, then by equation (2.25) the sign of all GS(d+) (x, d+)

coincides with sign of GS (x, d+). By Proposition 2.8 this means that S (d+) is an optimal stopping

set for model M (k) at k = d+ − ε.

Case d− < d+. This part is very similar to the previous one, the difference is that set D will be

added to the stopping set S, and for this case we obtain t (x). Definition of d+, inequality d+ > d−

and Proposition 2.12 imply that S = Sq ∪ Sr is an optimal stopping set for model M (k) for all

k ∈ [d−, k0), and for any small ε > 0

GS(x, d−) = 0, x ∈ D, GS(x, d− − ε) < 0, x ∈ C\D, GS(x, d− − ε) > 0, x ∈ Sq ∪D.

These inequalities, definitions of Sq and Sr and Proposition 2.12 immediately imply that t(x) =

d− for all x ∈ D and there is no other values of w(x) or t(x) on the interval [d−, k0).

The rest is analogous to the previous case, using the same derivation, the set S (d−) = S (k0)∪D

is the optimal stopping set for for model M (k) at k = d+ − ε.

Case d− = d+. This case is a combination of previous two cases, the proof is exactly the same:

define D+ and D− as sets, which lead to d+ and d−, then set w (x) = d+ for x ∈ D+, set t (x) = d−

for x ∈ D−, then define S (d+) = (S (k0) \D+) ∪ D−. Using the same derivation, S (d+) is the

optimal stopping set for for model M (k) at k = d+ − ε.

Corollary 3.15. Similarly to CQR model with no quit, for large enough k0, the optimal strategy

for general case is to stop at all x ∈ X and obtain reward g (x, k0) = r (x) + k, in other words,

S (k0) = X, moreover Sr = X. Using this large k0 as initial point, we can use proof of theorem as

a basis of algorithm to find w (s) together with optimal strategy π∗ (w (s)).

34

Remark 3.16. It could happen that for some x the GS (x, k) is never zero. Then, x ∈ S (k) for

all values of k, in particular, for k = γ (x), the value function is v (x, γ (x)) = r (x) + γ (x), and

v (x, γ (x)− ε) = q (x). Therefore, for such states x, w (x) = γ (x).

Corollary 3.17. From previous remark and Lemma 3.9 and the fact that elimination does not

change sign of GS (x, k), if w (x) is not found when k = γ (x), we immediately have that w (x) =

t (x) = γ (x). The meaning of this special case is that optimal strategy for this state, as a function

of k is always to stop—and obtain q (x) or r (x) + k. The graph of value function v (x, k) for this

case is given in Figure 3.3.

Remark 3.18. Previous corollary means that w (x) exists for each state x. It might happen that

t (x) does not exists, it means that for this state x, v (x, k) > q (x) for all k. The graph of value

function v (x, k) for this case is given in Figure 3.4.

3.4 Algorithm

Theorem 3.14 and Corollary 3.17 serve as foundation of the algorithm. Indeed, for large enough

k, all GS (x, k) are positive, therefore, function GS (x, k) should either be equal to zero for some k

or stay positive. Therefore, Theorem 3.14 and Corollary 3.17 cover all possible cases and allow us

to compute w (x) for all x.

Corollary 3.15 providing starting value k0 and optimal strategy for this k0, i.e., Sr = S (k0) = X.

The results of previous section allow calculation algorithm to directly track sets Sr (k), Sq (k), and

C in the following way

• we begin with Sr = X,

• elimination can only happen to x ∈ Sr, it means that x moves from set Sr to set C,

• insertion can only happen if x ∈ C, it means that x moves from set C to set Sq,

• application of Corollary 3.17 to x also means that x moves from set Sr to Sq.

Remark 3.19. By the Abstract Optimization Theorem, Theorem 2.22, the sets Sr, Sq, and C at

k = w (s) provide optimal strategy for CQR problem. Namely, the optimal strategy is to continue

if x ∈ C, restart to s if x ∈ Sr, and to quit if x ∈ Sq.

Remark 3.20. The values of γ (x) do not change with elimination or insertion, as a result, the

intervals ∆i stay the same with elimination or insertion.

35

Theorem 3.14 provides recursive way to compute w (x) and t (x), moreover, after w (x) or t (x) is

found, we need to recompute all GS (x, k). Therefore it is more convenient to consider k in intervals

∆i one by one, starting from ∆M . Each GS (x, k) is linear on intervals ∆i, which simplifies solution

of equation GS (x, k) = 0.

The algorithm works in two directions. From the one hand it tracks change in the function

GS (x, k) caused by moving k from one interval ∆i to another, from the other hand, evolves model

MS (k), which changes when optimal stopping set is being changed.

The algorithm is given in Algorithm 3.2. The complexity of the algorithm is O
(
n3
)
, where

n = |X|.

36

Algorithm 3.2 Finding h (s), t (s) in CQR problem
Input: CQR model M(X,P, c, q, r), return state s ∈ X
Output: optimal strategy π for the model, value function h(s) for state s
Sq ← ∅, C ← ∅, Sr ← X
k0 ←∞
γ(x)← q(x)− r(x), x ∈ X
∆i ← intervals based on ordered set of −∞, {γ(x)},∞
M ← |∆|
for i = M to 1 do

repeat
d+ ← max(k : GS(x, k) = 0, x ∈ Sr, k < k0, k ∈ ∆i;−∞) {set d+ to −∞ if it does not exists}
d− ← max(k : GS(x, k) = 0, x ∈ C, k < k0, k ∈ ∆i;−∞) {set d− to −∞ if it does not exists}
if d+ > −∞ or d− > −∞ then
D+ ← ∅
D− ← ∅
if d+ > d− or d+ = d− then
D+ ← {x : GS (x, d+) = 0, x ∈ Sr}
w(x)← d+, x ∈ D+

end if
if d− > d+ or d+ = d− then
D− ← {x : GS (x, d−) = 0, x ∈ C}
t(x)← d−, x ∈ D−

end if
(P, c)← use equations (2.27)-(2.30) to eliminate set D+ and insert set D−
Sr ← Sr\D+, Sq ← Sq ∪D−, C ← (C ∪D+)\D−
k0 ← max(d+, d−)
if w(s) is found then
set optimal strategy π based on partition into sets Sq, C, and Sr
h(s)← w(s)
return π and h(s)

end if
end if

until there was elimination or insertion on interval ∆i

k0 ← min(∆i) {k0 is equal to the leftmost point of interval ∆i}
{check condition of Corollary 3.17: find non-eliminated states for which GS(x, k) is minimal}
if γ(x) = k0 for some x ∈ Sr then
D ← {x : γ(x) = k0, x ∈ Sr} {apply Corollary 3.17}
w(x)← k0, t(x)← k0, x ∈ D
Sr ← Sr\D, Sq ← Sq ∪D
if w(s) is found then
set optimal strategy π based on partition into sets Sq, C, and Sr
h(s)← w(s)
return π and h(s)

end if
end if

end for

CHAPTER 4: ALGORITHM ANALYSIS

4.1 Complexity

This section is devoted to estimation Let us find the The algorithm consists of two main parts:

find d+, d− and elimination/insertion.

The elimination and insertion, done by equations (2.27)-(2.30). The elimination/insertion on

WD have exactly the same complexity. Let us compute complexity to eliminate single state z, it

involves

• one addition and two multiplications to compute new value of w (x, y), except for w (x, z),

• one multiplication to compute new value for column w (·, z),

• one addition and one multiplication to compute new value of c (y), except for c (z),

• one multiplication to compute new value of c (z).

In total, elimination/insertion step requires n (n− 1)+n−1 = n2−1 additions, let us round number

of additions to n2, and 2n (n− 1) + n+ n = 2n2 multiplications.

Corollary 4.1. Complexity to eliminate or insert one state is 2n2 multiplications and n2 additions.

Another time consuming step of the algorithm is to find solution for linear equation GS (x, k) = 0

for the given interval ∆i. The equations for this step are equations (3.13)-(3.14). For given x, only

one of these equations is used, the complexity for these equations is the same

• finding slope of GS (x, k) requires partial summation of p (x, y), consider the worst case, then

we have n additions for this step,

• finding intercept is done by summation of p (x, y) f (y), where is f (y) can be q (y) or r (y),

depending on the test γ (y) > k, therefore, intercept requires n multiplications and n additions.

Therefore, finding d+ or d− for each state x, requires 2n multiplications and n additions. If x ∈ Sq,

then it is impossible for GS (x, k) to become zero again, therefore we do not have to solve for

GS (x, k) = 0. However, we do not know in advance how big Sq will be, and, it is possible for Sq to

be empty at the end of algorithm, therefore, assume worst case scenario, and consider the complexity

of this step to be 2n2 multiplications and n2 additions. It also involves n divisions, which we ignore.

38

Corollary 4.2. Complexity to find d+ and d− is 2n2 multiplications and n2 additions.

Remark 4.3. It is possible to avoid recomputing equations (3.13)-(3.14) completely, when current

interval changes from ∆i to ∆i−1: the change of current interval changes result of only one com-

parison γ (y) > k, therefore, we can only apply this change to recompute slope and intercept of

GS (x, k).

In general, we do not know when algorithm finds w (s), in addition, it is hard to assume what

would be the distribution of optimal strategies for given problem. Therefore, it makes sense to

consider worst case scenario, when we have to perform the most amount of work possible.

Worst case scenario means that w (s) is found at the last interval after eliminating and insert-

ing all other states. Therefore, we have n − 1 insertions and n − 1 eliminations, which amounts

to 4n3multiplications and 2n3 additions. Moreover, for each elimination or insertion, we have to

recompute d+ and d−, this gives another 4n3multiplications and 2n3 additions.

Recomputation of d+and d− when current interval changes from ∆i to ∆i−1 has complexity of

2n (n+ 1) additions and n (n+ 1) divisions, which we ignore.

Remark 4.4. The constant before n2 term for number of multiplications and additions is less than

4, it is implementation dependent and can be ignored.

Corollary 4.5. The worst case complexity for the CQR algorithm is 8n3 multiplications and 4n3

additions.

4.2 Linear Programming Formulation

Let us develop some alternate way to calculate optimal strategy for CQR model. The generic,

yet, still efficient alternate way is to find optimal strategy for models, maximizing total discounted

expected reward for infinite time horizon, is to use linear programming approach, for more details

see Puterman [2005].

Consider model with multiple restart points,

M = (X,B,P,A (x) , c (x) , q (x) , rj (x) , j = 1, 2, ...,m, β (x) , |X| = n) .

We assume that this problem is well-defined and has finite solution. For example, the problem

in this formulation could have infinite solution in case when restart loops with positive reward exist.

Since we can easily obtain the value function given strategy π, the simplest possible approach

could be the total enumeration of all strategies. Unfortunately, the complexity of this approach is

39

exponential. At each state the number of possible actions is m + 1 for states to which restart is

possible and m + 2 for states, not used as restart destinations. Therefore, the number of possible

strategies is (m+ 2)
n−m

(m+ 1)
m. The complexity to compute value function is O

(
n3
)
, which

might be possible to decrease to O
(
n2
)
if we consider only changes in strategies, for estimation of

the complexity, we can safely assume that it is O
(
n2
)
. Since this approach is inefficient for number

of states greater than 20, we need to look into more efficient methods.

The solution of CQR problem is the minimal solution of corresponding Bellman equation, there-

fore it can be written as

min
∑
vi,

subject to

(continue) (I − P) v ≥ c, (4.1)

(quit) Iv ≥ q,

(restart) vi − vj ≥ rj (i) , i 6= j,

where i = 1..n, j = 1..m. Each constraint corresponds to the appropriate action

• continue constraint means that value vi should be greater or equal than continue reward plus

value, obtained from (Pv)i, i.e. vi ≥ ci + (Pv)i, which can be written in a matrix form as

(I − P) v ≥ c,

• quit constraint means that each value vi should be greater or equal than the quit reward ci,

• restart constraint means for every restart state j, j = 1...m, and every state i, i 6= j, vi is

greater than restart reward and value, obtained at restart point, i.e. vi ≥ rj (i) + vj .

There are n continue constraints, n quit constraints. Each restart constraint does not include

restart point which gives total of m (n− 1) restart constraints. Total number of constraints is equal

to 2n+ (n− 1)m, for single restart point, the number of constraints is 3n− 1.

Change the inequality sign, and, in order to simplify further notation, let us write the linear

programming problem in the matrix form, which also serves as definition of vector b and matrix A

min
∑
vi,

subject to

40

−Av ≤ −b, (4.2)

here

• bk corresponds for continue, quit, and restart costs,

• A = (akl) is a matrix corresponding to left side of constraints,

• l = 1...n, k = 1..2n+ (n− 1)m.

The dual problem can be written as

max
∑
ykbk,

subject to ∑
k ykakl = 1, (4.3)

yk ≥ 0.

The dual problem is written in the standard form and can be used as an input to the simplex

algorithm without any further modifications.

The quit constraint in primal problem is Iv ≥ q. The columns in dual problem, corresponding

to the quit constraint are very convenient choice for initial basis for the simplex algorithm.

Since the dual problem has n constraints, its optimal solution y∗ contains exactly n non-zero

values. By the theorem on complementary slackness, knowing, which optimal values are non-zero,

or form the basis of the simplex algorithm, gives us the optimal strategy for the primal problem.

The complexity to solve the problem in linear programming formulation is not less, than our

algorithm, simply because solution of linear programming problem, at least implicitly, involves

matrix inversion of the size n× n, which is already O
(
n3
)
. Moreover, our algorithm can be started

at arbitrary value of k0 and has transparent probabilistic meaning.

41

BIBLIOGRAPHY

Eric V. Denardo, Uriel G. Rothblum, and Ludo Van der Heyden. Index policies for stochastic
search in a forest with an application to r&d project management. Math. Oper. Res., 29:162–181,
February 2004. ISSN 0364-765X. doi: http://dx.doi.org/10.1287/moor.1030.0072.

E. A. Feinberg and A. Shwartz. Handbook of Markov decision processes. International Series in
Operations Research & Management Science, 40. Kluwer Academic Publishers, Boston, MA, 2002.
ISBN 0-7923-7459-2. Methods and applications.

W. K. Grassmann, M. I. Taksar, and D. P. Heyman. Regenerative analysis and steady state distri-
butions for markov chains. Operations Research, 33:1107–1116, 1985. doi: 10.1287/opre.33.5.1107.

A. Irle. On the best choice problem with random population size. Mathematical Methods of Opera-
tions Research, 24:177–190, 1980. doi: 10.1007/BF01919245.

M. N. Katehakis and A. F. Veinott. The multi-armed bandit problem: Decomposition and compu-
tation. Mathematics of Operations Research, 12:262–268, 1987. doi: 10.1287/moor.12.2.262.

J. G. Kemeny, J. L. Snell, and A. W. Knapp. Finite Markov Chains. Springer, Princeton, NJ, 1976.

L. G. Mitten. An analytic solution to the least cost testing sequence problem. J. Ind. Eng., 11:17,
1960.

José Niño-Mora. A (2/3)n3 Fast-Pivoting Algorithm for the Gittins Index and Optimal Stopping of
a Markov Chain. Informs Journal on Computing, 19:596–606, 2007. doi: 10.1287/ijoc.1060.0206.

M. Puterman. Markov decision processes: discrete stochastic dynamic programming. John Wiley &
Sons, Inc., New York, 2005.

T. J. Sheskin. Technical note–a markov chain partitioning algorithm for computing steady state
probabilities. Operations Research, 33:228–235, 1985. doi: 10.1287/opre.33.1.228.

T. J. Sheskin. State reduction in a markov decision process. Internat. J. Math. Ed. Sci. Tech., 30
(2):167–185, 1999.

I. Sonin. Two simple theorems in the problems of optimal stopping. In Proc. INFORMS Appl. Prob.
Conf., Atlanta, Georgia, 1995.

I. Sonin. The elimination algorithm for the problem of optimal stopping. Mathematical methods of
operations research, 49(1):111–123, 1999a. doi: 10.1007/s001860050016.

I. Sonin. The state reduction and related algorithms and their applications to the study of markov
chains, graph theory, and the optimal stopping problem. Advances in Mathematics, 145:159–188,
1999b. doi: 10.1006/aima.1998.1813.

I. Sonin. The optimal stopping of a markov chain and recursive solution of poisson and bellman equa-
tions. In Yuri Kabanov, Robert Liptser, and Jordan Stoyanov, editors, From Stochastic Calculus
to Mathematical Finance. The Shiryaev Festschrift, pages 609–621. Springer Berlin Heidelberg,
2006. ISBN 978-3-540-30788-4.

I. Sonin. A generalized gittins index for a markov chain and its recursive calculation.
Statistics & Probability Letters, 78(12):1526 – 1533, 2008. ISSN 0167-7152. doi: DOI:
10.1016/j.spl.2008.01.049.

I. Sonin. Optimal stopping of markov chain and three abstract optimization problems. to appear in
Stochastics, 2011.

I. Sonin and E. Presman. The problem of best choice in the case of a random number of objects.
Theory Probab. Appl., 17:695–706, 1972.

42

I. Sonin and J. Thornton. Recursive algorithm for the fundamental/group inverse matrix of a markov
chain from an explicit formula. Siam Journal on Matrix Analysis and Applications, 23(1):209–224,
2001. doi: 10.1137/S0895479899351234.

John N. Tsitsiklis. A short proof of the gittins index theorem. Annals of Applied Probability, 4:
194–199, 1994. doi: 10.1214/aoap/1177005207.

P. Whittle. Multi-armed bandits and the gittins index. J. Roy. Statist. Soc. Ser. B, 42(2):143–149,
1980.

43

APPENDIX A: SAMPLE CALCULATION

The goal of this appendix is to show how algorithm works for both cases, considered in the text,

case with no quit action, and general case. Both sample calculations are performed on a sample

chain with 5 states and variable discount factor. The transition matrix for both cases does not

correspond to the full graph, this done intentionally in order to show how elimination and insertion

change transition matrix. Transitions are shown on Figure

All probabilities in transition matrix, rewards, and calculated values are shown rounded to two

digits after decimal point.

A.1 Sample calculation for case with no quit action

The transition matrix and costs are given in Table A.1. First we need to introduce absorbing

state e and apply discount factor to obtain transition matrix, required for the algorithm. The graph

of G (x, k) for step 1 is shown in Figure A.2.

The calculation in total takes 3 steps, the elimination step is performed twice. The optimal

strategy for CQR problem is determined by the optimal strategy for Whittle family M (k) at point

w (s), which is to continue at states {b, d, s}, restart at states {a, c}. Note again, that algorithm

works on a family of OS problemsM (k), however it finds solution for CQR problem. The correctness

of this solution was verified by running simplex method for the dual formulation of corresponding

linear programming problem.

A.2 Sample calculation for general case

Let us add quit action to the problem. The w (s) is found on step 6 of the algorithm. Note, that

optimal strategy for s is continue, if we were to find t (s) = w (s), then the optimal strategy would

Figure A.1: Graph for the transition matrix in CQR sample calculation

a

b

cd

s

44

Table A.1: Sample data for CQR problem with no quit action
Original transition matrix Rewards

a b c d s β (x) c(x) q(x)
a 0.3 0 0.2 0.5 0 0.7 1 0
b 0 0.3 0 0.4 0.3 0.7 6 1
c 0.2 0 0.2 0.6 0.7 1 4
d 0.7 0.1 0 0.2 0 0.5 1 6
s 0 0.1 0.8 0 0.1 0.3 1 0

Figure A.2: CQR problem with no quit action. Graph of G (x, k) for step 1. The green thick line
on the right in the middle correspond to the maximal value of d+ (x).

Table A.2: CQR problem with no quit action, step 1. This is the first step of calculation, k0 is set
to ∞, Sr = X, no states are eliminated. The value d+ (x) is maximal for the state b, which means
that we need to eliminate state b for the next step, also we found w (b) = 8.07.
Transition matrix P , state e not shown Rewards Calculated values

a b c d s c(x) q(x) d+ (x) w (x) π (max d+ (x))
a 0.21 0 0.14 0.35 0 1 0 -14.10 restart
b 0 0.21 0 0.28 0.21 6 1 8.07 8.07 continue
c 0.14 0 0.14 0 0.42 1 4 -1.47 restart
d 0.49 0.07 0 0.14 0 1 6 4.30 restart
s 0 0.03 0.24 0 0.21 0 0 1.86 restart

Table A.3: CQR problem with no quit action, step 2. Set k0 to the last found w (x), k0 = 8.07.
State b is eliminated and is no longer in consideration. The matrix shown in the output is no longer
transition matrix, transition matrix can be obtained by setting values in row b to zero. The value
d+ (x) is maximal for the state d, which means that we need to eliminate state d for the next step,
also we found w (d) = 4.68.
Matrix W , eliminated states: b Rewards Calculated values

a b c d s c(x) q(x) d+ (x) w (x) π (max d+ (x))
a 0.21 0.00 0.14 0.35 0.00 1.00 0 -14.10 restart
b 0.00 0.27 0.00 0.35 0.27 7.59 1 8.07 continue
c 0.14 0.00 0.14 0.00 0.42 1.00 4 -1.47 restart
d 0.35 0.06 0.00 0.12 0.01 1.38 6 4.68 4.68 continue
s 0.00 0.04 0.24 0.01 0.04 1.23 0 2.06 restart

45

Table A.4: CQR problem with no quit action, step 3. Set k0 to the last found w (x), k0 = 4.68.
Found w (s) and optimal strategy: continue at states {b, d, s}, restart at states {a, c}
Matrix W , eliminated states: b, d Rewards Calculated values

a b c d s c(x) q(x) d+ (x) w (x) π (max d+ (x))
a 0.35 0.03 0.14 0.40 0.01 1.55 0 -6.46 restart
b 0.14 0.29 0.00 0.40 0.27 8.15 1 8.07 continue
c 0.14 0.00 0.14 0.00 0.42 1.00 4 -1.47 restart
d 0.40 0.07 0.00 0.13 0.02 1.56 6 4.68 continue
s 0.00 0.04 0.24 0.01 0.04 1.24 0 2.09 2.09 continue

Figure A.3: CQR problem with no quit action. Graph of G (x, k) for step 3. The black line labeled
k0 correspond to the values k, already covered by the algorithm. The green thick line on the right
in the middle correspond to the maximal value of d+ (x).

46

Table A.5: Sample data for CQR problem
Original transition matrix Rewards

a b c d s β (x) c(x) q(x) r(x)
a 0.3 0 0.2 0.5 0 0.7 1 0 3
b 0 0.3 0 0.4 0.3 0.7 6 1 2
c 0.2 0 0.2 0 0.6 0.7 1 4 1
d 0.7 0.1 0 0.2 0 0.7 1 6 0
s 0 0.1 0.8 0 0.1 0.3 1 0 0

Figure A.4: CQR problem. Graph of G (x, k) for step 1.

be to quit at state s.

Optimal strategy for the CQR problem: continue at states {b, s}, quit at states {c, d}, restart

at states {a}. The correctness of this solution was verified by running simplex method for the dual

formulation of corresponding linear programming problem.

Table A.6: CQR problem, step 1. Note, that states are reordered in order of decreasing γ (x). This
is the first step of calculation, k0 is set to ∞, working interval ∆i = [6,∞), Sr = X, no states are
eliminated. Found w (b) = 14.73, state b is eliminated for step 2.
Matrix W Rewards Calculated values

d c s b a c(x) q(x) r(x) d+ (x) or d− (x) t (x) w (x) π
d 0.21 0 0.14 0.35 0 1 0 3 8.70 restart
c 0 0.21 0 0.28 0.21 6 1 2 restart
s 0.14 0 0.14 0 0.42 1 4 1 restart
b 0.49 0.07 0 0.14 0 1 6 0 14.73 14.73 continue
a 0 0.03 0.24 0 0.21 0 0 0 restart

47

Table A.7: CQR problem, step 2. Value k0 is set to k0 = 14.73, working interval ∆i = [6,∞). Found
w (d) = 9.19. State d is eliminated for step 3. Note, that these 2 steps are performed exactly in the
same way, as in case with no quit.
Matrix W , eliminated states: {b} Rewards Calculated values

d c s b a c(x) q(x) r(x) d+ (x) or d− (x) t (x) w (x) π
d 0.16 0.00 0.02 0.09 0.49 1.53 0 3 9.19 9.19 continue
c 0.00 0.14 0.42 0.00 0.14 1.00 1 2 1.87 restart
s 0.01 0.24 0.04 0.04 0.00 1.23 4 1 2.06 restart
b 0.35 0.00 0.27 0.27 0.00 7.59 6 0 14.73 14.73 continue
a 0.35 0.14 0.00 0.00 0.21 1.00 0 0 -4.10 restart

Table A.8: CQR problem, step 3. Value k0 is set to k0 = 9.19, working interval ∆i = [6,∞). Not
found any d+/− on working interval. Proceeding to the next interval ∆i = [3, 6].
Matrix W , eliminated states: {b, d} Rewards Calculated values

d c s b a c(x) q(x) r(x) d+ (x) or d− (x) t (x) w (x) π
d 0.20 0.00 0.02 0.11 0.59 1.83 0 3 9.19 continue
c 0.00 0.14 0.42 0.00 0.14 1.00 1 2 restart
s 0.01 0.24 0.04 0.04 0.01 1.25 4 1 restart
b 0.42 0.00 0.27 0.30 0.21 8.24 6 0 14.73 continue
a 0.42 0.14 0.01 0.04 0.42 1.64 0 0 restart

Table A.9: CQR problem, step 4. Value k0 is set to k0 = 6, working interval ∆i = [3, 6]. For
the state G (d, k) = 0 for k = 3.95, since state d is eliminated, it mean that we found d− = 3.95;
t (d) = 3.95 and state d should be inserted back.
Matrix W , eliminated states: {b, d} Rewards Calculated values

d c s b a c(x) q(x) r(x) d+ (x) or d− (x) t (x) w (x) π
d 0.20 0.00 0.02 0.11 0.59 1.83 0 3 3.95 3.95 9.19 quit
c 0.00 0.14 0.42 0.00 0.14 1.00 1 2 restart
s 0.01 0.24 0.04 0.04 0.01 1.25 4 1 restart
b 0.42 0.00 0.27 0.30 0.21 8.24 6 0 13.25 14.73 continue
a 0.42 0.14 0.01 0.04 0.42 1.64 0 0 restart

Figure A.5: CQR problem. Graph of G (x, k) for step 4. Think black line starts at value k0 = 6.
Eliminated states are b and d.

48

Table A.10: CQR problem, step 5. Value k0 is set to k0 = 3.95, working interval ∆i = [3, 6]. Not
found any d+/− on working interval. Since γ (c) = 3 and we reached k0 = 0, we found t (c) = w (c) =
3, change optimal strategy for c to quit. Proceed to the next interval ∆i = [0, 3].
Matrix W , eliminated states: {b} Rewards Calculated values

d c s b a c(x) q(x) r(x) d+ (x) or d− (x) t (x) w (x) π
d 0.16 0.00 0.02 0.09 0.49 1.53 0 3 3.95 9.19 quit
c 0.00 0.14 0.42 0.00 0.14 1.00 1 2 3 3 quit
s 0.01 0.24 0.04 0.04 0.00 1.23 4 1 restart
b 0.35 0.00 0.27 0.27 0.00 7.59 6 0 14.73 continue
a 0.35 0.14 0.00 0.00 0.21 1.00 0 0 restart

Figure A.6: CQR problem. Graph of G (x, k) for step 5. Think black line starts at value k0 = 3.95.
Note, that G (x, k) for state c is minimal at k = 3.

Table A.11: CQR problem, step 6. Value k0 is set to k0 = 3, working interval ∆i = [0, 3]. Found
w (s). Set optimal strategy for s to be continue. Found optimal strategy for the CQR problem:
continue at states {b, s}, quit at states {c, d}, restart at states {a}.
Matrix W , eliminated states: {b} Rewards Calculated values

d c s b a c(x) q(x) r(x) d+ (x) or d− (x) t (x) w (x) π
d 0.16 0.00 0.02 0.09 0.49 1.53 0 3 3.95 9.19 quit
c 0.00 0.14 0.42 0.00 0.14 1.00 1 2 3 3 quit
s 0.01 0.24 0.04 0.04 0.00 1.23 4 1 2.34 2.34 continue
b 0.35 0.00 0.27 0.27 0.00 7.59 6 0 14.73 continue
a 0.35 0.14 0.00 0.00 0.21 1.00 0 0 1.63 restart

49

Figure A.7: CQR problem. Graph of G (x, k) for step 6. Think black line starts at value k0 = 3.
Found w (s). The figure on the right shows the final state of the transition matrix after elimination
of states with continue as optimal strategy, colors are responsible for the optimal strategy.

a

b

cd

s

50

APPENDIX B: PROGRAM LISTING

We used Visual Basic for Applications in Excel 2007 as language of choice. The reasons to choose

this language were: ease of input test data, including pretty large matrices, ability to plot results.

Since algorithm is fairly quick, we did not need any high-performance language.

B.1 StateEliminationInsertion.bas

This module is responsible for performing elimination and insertion step.

Option Exp l i c i t

Option Pr ivate Module

’ Performs s t a t e e l im ina t i on and i n s e r t i o n procedures on the t r a n s i t i o n

’ matrix and co s t func t i on o f Markov Dec i s i on Process

’

’ Note , that s i z e o f t r a n s i t i o n matrix P i s not changing with e l im ina t i on ;

’ a l so , e l im inated s t a t e s t i l l has non−zero va lue s in P.

’ These va lue s should be ignored whi l e c a l c u l a t i n g most o f va lue f unc t i ona l s ,

’ they are needed to perform i n s e r t i o n o f the s t a t e back to the MDP.

’

’ Requirements :

’ Expects sub s t o cha s t i c matrix as input .

’ The e l im inated s t a t e z should have p(z , z)<1

’

’ Usage :

’ Ca l l appropr ia t e funct ion , prov ide t r a n s i t i o n matrix , and ,

’ p o s s i b l y co s t func t i on

’

’ L imi ta t i ons :

’

’ d e f i n e e l im ina t i on enum

Publ ic Enum stateE l imStatus

s e s I n c l ud e ’ i n i t i a l s ta te , the s t a t e i s inc luded in the c a l c u l a t i o n

s e sE l im ina te ’ s t a t e i s e l im inated

s e sF ina l I n c l ud e ’ f i n a l inc lude , a f t e r s t a t e was e l im inated and put back

51

End Enum

’ Checks dimensions o f the input ar rays . The dimensions should match .

’

’ Var i ab l e s :

’ [P] in − t r a n s i t i o n matrix

’ [cntCost] in − cont inue co s t vec to r

’

’ Return :

’ True i f d imensions are OK

’ Fa l se i f d imensions do not match

’

Pr ivate Function checkDimensions (P() As Double , cntCost () As Double , _

idxState As Long) As Boolean

’ lower bound should be 1

I f LBound(P) <> 1 Or LBound(P, 2) <> 1 Or LBound(cntCost) <> 1 Then

checkDimensions = False

Exit Function

End I f

’ upper bound should match

Dim s i z e As Long

s i z e = UBound(cntCost)

I f UBound(P) <> s i z e Or UBound(P, 2) <> s i z e Then

checkDimensions = False

Exit Function

End I f

End Function

’ Performs e l im ina t i on o f s i n g l e s t a t e

’

’ Var i ab l e s :

’ [P] in /out − t r a n s i t i o n matrix

’ [cntCost] in /out − cont inue co s t vec to r

’ [i dxState] in − index o f s t a t e to e l im ina t e

52

’

’ Remarks :

’

Publ ic Sub e l im ina t eS ta t e (P() As Double , cntCost () As Double , idxState As Long)

Dim s i z e As Long

s i z e = UBound(cntCost)

’ need to compute cont inue co s t f i r s t , then change the p r obab i l i t y matrix

Dim cz As Double ’ c (z)

Dim nz As Double ’ 1/(1−p(z , z)

cz = cntCost (idxState)

nz = 1# / (1# − P(idxState , idxState))

Dim idxRow As Long , idxCol As Long , idx As Long

’ compute new cont inue co s t

For idxRow = 1 To s i z e

I f idxRow = idxState Then

’ t rans fo rmat ion i s the same , but has s imp le r form i f x=z

cntCost (idxRow) = nz ∗ cz

Else

cntCost (idxRow) = cntCost (idxRow) + P(idxRow , idxState) ∗ nz ∗ cz

End I f

Next idxRow

’ c a r e f u l l y compute new t r a n s i t i o n matrix

’ 1 . Go over a l l rows and columns in a l l s t a t e s , except e l im inated s t a t e

For idxRow = 1 To s i z e

For idxCol = 1 To s i z e

I f idxCol <> idxState And idxRow <> idxState Then

P(idxRow , idxCol) = P(idxRow , idxCol) + _

53

P(idxRow , idxState) ∗ nz ∗ P(idxState , idxCol)

End I f

Next idxCol

Next idxRow

’ 2 . Compute the va lue s f o r e l im inated s t a t e . Again ,

’ the formula i s the same as in (1 .) , but i t has s imp le r form

’

For idx = 1 To s i z e

’ need to have t h i s comparison in order to avoid d iv ind ing P(z , z) twice

I f idx <> idxState Then

P(idxState , idx) = P(idxState , idx) ∗ nz

P(idx , idxState) = P(idx , idxState) ∗ nz

Else

’ idx i s equal to idxState

P(idxState , idxState) = P(idxState , idxState) ∗ nz

End I f

Next idx

End Sub

’ Performs i n s e r t i o n o f s i n g l e s t a t e

’

’ Var i ab l e s :

’ [P] in /out − t r a n s i t i o n matrix

’ [cntCost] in /out − cont inue co s t vec to r

’ [i dxState] in − index o f s t a t e to e l im ina t e

’

’ Remarks :

’

Publ ic Sub i n s e r t S t a t e (P() As Double , cntCost () As Double , idxState As Long)

Dim s i z e As Long

s i z e = UBound(cntCost)

54

’ need to compute cont inue co s t f i r s t , then change the p r obab i l i t y matrix

Dim cz As Double ’ c (z)

Dim nz As Double ’ 1/(1+p(z , z)

cz = cntCost (idxState)

nz = 1# / (1# + P(idxState , idxState))

Dim idxRow As Long , idxCol As Long , idx As Long

’ compute new cont inue co s t

For idxRow = 1 To s i z e

I f idxRow = idxState Then

’ t rans fo rmat ion i s the same , but has s imp le r form i f x=z

cntCost (idxRow) = nz ∗ cz

Else

cntCost (idxRow) = cntCost (idxRow) − P(idxRow , idxState) ∗ nz ∗ cz

End I f

Next idxRow

’ c a r e f u l l y compute new t r a n s i t i o n matrix

’ 1 . Go over a l l rows and columns in a l l s t a t e s , except e l im inated s t a t e

For idxRow = 1 To s i z e

For idxCol = 1 To s i z e

I f idxCol <> idxState And idxRow <> idxState Then

P(idxRow , idxCol) = P(idxRow , idxCol) − _

P(idxRow , idxState) ∗ nz ∗ P(idxState , idxCol)

End I f

Next idxCol

Next idxRow

’ 2 . Compute the va lue s f o r e l im inated s t a t e .

’ Again , the formula i s the same as in (1 .) , but i t has s imp le r form

55

’

For idx = 1 To s i z e

’ need to have t h i s comparison in order to avoid d iv ind ing P(z , z) twice

I f idx <> idxState Then

P(idxState , idx) = P(idxState , idx) ∗ nz

P(idx , idxState) = P(idx , idxState) ∗ nz

Else

’ idx i s equal to idxState

P(idxState , idxState) = P(idxState , idxState) ∗ nz

End I f

Next idx

End Sub

B.2 ModelCqr.cls

This module is responsible for storing definition of CQR model.

Option Exp l i c i t

’ ’

’ Reward Model with continue , quit , and r e s t a r t

’ ’

’ A l l a r rays s t a r t with index 1

Pr ivate m_name As St r ing ’ name

Pr ivate m_stateNames () As St r ing ’ s t a t e names

Pr ivate m_transit ionMatrix () As Double ’ o r i g i n a l t r a n s i t i o n matrix

Pr ivate m_restartCost () As Double ’ o r i g i n a l r e s t a r t cost ,

’ has the same s i z e as t r a n s i t i o n matrix

Pr ivate m_restartAllowed () As Boolean ’ vec to r o f r e s t a r t f l a g s , has true ,

’ i f r e s t a r t to t h i s s t a t e i s a l lowed

Pr ivate m_contCost () As Double ’ c o s t func t i on f o r cont inue

Pr ivate m_quitCost () As Double ’ co s t func t i on f o r qu i t

Pr ivate m_terminationProb () As Double ’ p r obab i l i t y o f te rminat ion

Pr ivate m_size As Long ’ s i z e o f o r i g i n a l model ,

’ not i n c l ud ing te rmina l s t a t e

56

’ ’

’ Expose e lements to user

’ ’

’ name

Publ ic Property Get name () As St r ing

name = m_name

End Property

Publ ic Property Let name(modelName As St r ing)

m_name = modelName

End Property

’ Trans i t i on Matrix

Publ ic Property Get t r an s i t i onMat r i x () As Double ()

t r an s i t i onMat r i x = m_transit ionMatrix

End Property

Publ ic Property Let t r an s i t i onMat r i x (matrix () As Double)

m_transit ionMatrix = matrix

End Property

’ State Names

Publ ic Property Get stateNames () As St r ing ()

stateNames = m_stateNames

End Property

Publ ic Property Let stateNames (names () As St r ing)

m_stateNames = names

End Property

’ Cost

Publ ic Property Get contCost () As Double ()

contCost = m_contCost

End Property

Publ ic Property Let contCost (cos tVector () As Double)

m_contCost = costVector

End Property

’ Cost

57

Publ ic Property Get quitCost () As Double ()

quitCost = m_quitCost

End Property

Publ ic Property Let quitCost (cos tVector () As Double)

m_quitCost = costVector

End Property

’ P robab i l i t y o f te rminat ion

Publ ic Property Get terminat ionProb () As Double ()

terminat ionProb = m_terminationProb

End Property

Publ ic Property Let terminat ionProb (t e rm ina t i onProbab i l i t y () As Double)

m_terminationProb = te rm ina t i onProbab i l i t y

End Property

’ Restart co s t

Publ ic Property Get r e s t a r tCo s t () As Double ()

r e s t a r tCo s t = m_restartCost

End Property

Publ ic Property Let r e s t a r tCo s t (r e s ta r tCos tMatr ix () As Double)

m_restartCost = res tar tCos tMatr ix

End Property

’ Restart a l lowed

Publ ic Property Get r e s ta r tA l l owed () As Boolean ()

r e s ta r tA l l owed = m_restartAllowed

End Property

Publ ic Property Let r e s ta r tA l l owed (re s tar tAl lowedVector () As Boolean)

m_restartAllowed = res tar tAl lowedVector

End Property

’ s i z e

Publ ic Property Get s i z e () As Long

s i z e = m_size

End Property

’ ’

58

’ Error check

’ ’

Publ ic Function Ver i fy Input () As Boolean

Dim s i z e As Long

On Error GoTo errHandler

I f LBound(m_transit ionMatrix) <> 1 Or LBound(m_transitionMatrix , 2) <> 1 Or _

LBound(m_restartCost) <> 1 Or LBound(m_restartCost , 2) <> 1 Then

Ver i fy Input = False

Exit Function

End I f

I f LBound(m_stateNames) <> 1 Or LBound(m_contCost) <> 1 Or _

LBound(m_quitCost) <> 1 Or LBound(m_terminationProb) <> 1 Or _

LBound(m_restartAllowed) <> 1 Then

Ver i fy Input = False

Exit Function

End I f

s i z e = UBound(m_terminationProb)

m_size = s i z e

I f UBound(m_transit ionMatrix) <> s i z e Or _

UBound(m_transitionMatrix , 2) <> s i z e Or UBound(m_restartCost) <> s i z e Or _

UBound(m_restartCost , 2) <> s i z e Then

Ver i fy Input = False

Exit Function

End I f

I f UBound(m_stateNames) <> s i z e Or UBound(m_contCost) <> s i z e Or _

UBound(m_quitCost) <> s i z e Or UBound(m_terminationProb) <> s i z e Or _

UBound(m_restartAllowed) <> s i z e Then

59

Ver i fy Input = False

Exit Function

End I f

Ver i fy Input = True

Exit Function

errHandler :

Ver i fy Input = False

End Function

B.3 SimplexMethodDirect.cls

This module solves linear programming problem using simplex method, assuming that initial

feasible basis is given as input.

Option Exp l i c i t

’ s implex method f o r problems in the form

’

’ max sum c_j∗x_j

’ sub j e c t to

’ sum a_ij ∗x_j = b_i

’

’ the input a l s o conta in s the l i s t o f b a s i s v a r i a b l e s

’ ’

’ I n i t i a l v a r i a b l e s

’ ’

Pr ivate m_objective () As Double ’ o b j e c t i v e func t i on [vec to r]

Pr ivate m_rhs () As Double ’ rhs o f c on s t r a i n t s [vec to r] ,

’ w i l l be made p o s i t i v e

Pr ivate m_lhs () As Double ’ l h s o f c on s t r a i n t s [matrix]

Pr ivate m_basis () As Long ’ cur rent ba s i s

Pr ivate m_numVar As Long ’ number o f v a r i a b l e s

Pr ivate m_numCon As Long ’ number o f c on s t r a i n t s

60

’ ’

’ the se v a r i a b l e s are c rea ted during s o l u t i o n

’ ’

Pr ivate m_M() As Double ’ s implex tab l e

’ Enumeration f o r s i n g l e i t e r a t i o n o f s implex method

Pr ivate Enum SimplexStatus

ssOK

ssUnbounded

ssFoundSolut ion

End Enum

’ Pr in t s cur rent s t a t e o f the s o l v e r to worksheet

’

’ Var i ab l e s :

’ [shee t] in − shee t to use as output

’ [row] in − shee t row where output should be s t a r t ed

’ [c o l] in − shee t column where output should be s t a r t ed

’ [s t ep] in − s tep #

’ [message] in − custom message

’

Publ ic Function StatePr in t (shee t As Worksheet , ByVal row As Long , _

ByVal c o l As Long , s tep As Long , message As St r ing) As Long

StatePr in t = row

Exit Function

’ p r i n t cur rent s tep and name o f the model

shee t . C e l l s (row , c o l) . va lue = "Algorithm : s implex method"

row = row + 1

shee t . Ce l l s (row , c o l) . va lue = " Status : " & message

row = row + 1

61

shee t . Ce l l s (row , c o l) . va lue = " I t e r a t i o n : " & (step)

row = row + 1

OutputMatrixArbitrary sheet , row , co l , "Simplex Matrix " , m_M

StatePr in t = row + m_numCon + 1 + 2

End Function

’ Purpose :

’ I n i t i a l i z e s o l v e r

’

’ Var i ab l e s :

’ o b j e c t i v e [in] −− ob j e c t i v e func t i on c o e f f i c i e n t s , c_j

’ l h s [in] −− matrix o f l e f t hand s i d e c o e f f i c i e n t s , a_ij

’ rhs [in] −− vec to r o f r i g h t hand s i d e c o e f f i c i e n t s , b_i

’

’ S ide e f f e c t s :

’ Changes va lue s o f i n t e r n a l c l a s s v a r i a b l e s

’

Publ ic Sub setup (ob j e c t i v e () As Double , l h s () As Double , rhs () As Double , _

ba s i s () As Long)

m_objective = ob j e c t i v e

m_rhs = rhs

m_lhs = lh s

m_basis = ba s i s

’ check dimensions

m_numVar = UBound(m_objective)

m_numCon = UBound(m_rhs)

’ l e f t hand s i d e should have dimension m_numCon, m_numVars

I f UBound(m_lhs) <> m_numCon Or UBound(m_lhs , 2) <> m_numVar Then

Err . Raise 513 , "Simplex Method" , "Dimensions do not match"

End I f

62

ReDim m_varSlack (1 To m_numCon) As Long

ReDim m_varExcess (1 To m_numCon) As Long

ReDim m_varArt (1 To m_numCon) As Long

’ReDim m_basis (1 To m_numCon) As Long

’ setup i s done

End Sub

Publ ic Function s o l v e (shee t As Worksheet , ByRef row As Long , ByRef c o l As Long , _

ba s i s () As Long) As Boolean

Dim idxRow As Long

Dim idxCol As Long

ReDim var i ab l eVa lue s (1 To m_numVar) As Double

’ ’

’ PHASE 1

’ ’

’ c on s t ruc t s implex tab l e

ReDim m_M(0 To m_numCon, 1 To m_numVar + 1) As Double

’ 1 . Cost (ob j e c t i v e) func t i on

For idxCol = 1 To m_numVar

m_M(0 , idxCol) = −m_objective (idxCol)

Next idxCol

m_M(0 , m_numVar + 1) = 0#

’ 2 . LHS

Dim mu l t i p l i e r As Double

For idxRow = 1 To m_numCon

For idxCol = 1 To m_numVar

63

’ copy i n i t i a l LHS

m_M(idxRow , idxCol) = m_lhs (idxRow , idxCol)

Next idxCol

m_M(idxRow , m_numVar + 1) = m_rhs(idxRow)

Next idxRow

’ 3 . Subtract cur rent ba s i s from ob j e c t i v e func t i on

Dim basisColumn As Long

For idxRow = 1 To m_numCon

basisColumn = m_basis (idxRow)

For idxCol = 1 To m_numVar + 1

’ subt rac t

m_M(0 , idxCol) = m_M(0 , idxCol) + m_M(idxRow , idxCol) ∗ _

m_objective (basisColumn)

’ round to 0

I f Abs (m_M(0 , idxCol)) < 0.00000000001 Then

m_M(0 , idxCol) = 0

End I f

Next idxCol

Next idxRow

Dim sStatus As SimplexStatus

Dim stepNumber As Long

stepNumber = 1

’ p r i n t i n i t i a l setup

row = StatePr in t (sheet , row , co l , stepNumber , "Phase 1")

64

’ loop un t i l s o l u t i o n i s found (or u n t i l e r r o r)

Do

Debug . Pr int "Phase 1 step # " & stepNumber

stepNumber = stepNumber + 1

sStatus = simplexStep

’ p r i n t cur rent s tep

row = StatePr in t (sheet , row , co l , stepNumber , "Phase 1")

Loop While sStatus = ssOK

I f sStatus <> ssFoundSolut ion Then

so l v e = False

Exit Function

End I f

’ r e turn ba s i s

b a s i s = m_basis

s o l v e = True

End Function

Pr ivate Sub pivotStep (ByVal newBasisCol As Long , ByVal oldBasisRow As Long)

’ Update ba s i s matrix

m_basis (oldBasisRow) = newBasisCol

’ p i vo t ing step

Dim r a t i o As Double

Dim idxRow As Long , idxCol As Long

r a t i o = 1# / m_M(oldBasisRow , newBasisCol)

’ 1 . Make incoming m_M 1.0

65

For idxCol = 1 To m_numVar + 1

m_M(oldBasisRow , idxCol) = m_M(oldBasisRow , idxCol) ∗ r a t i o

Next idxCol

’ put 1 .0 at new ba s i s

m_M(oldBasisRow , newBasisCol) = 1#

’ 2 . Al l va lue s in p ivo t ing column should be 0 . 0 , except f o r the ba s i s

For idxRow = 0 To m_numCon

I f idxRow <> oldBasisRow Then

r a t i o = −m_M(idxRow , newBasisCol)

For idxCol = 1 To m_numVar + 1

m_M(idxRow , idxCol) = m_M(idxRow , idxCol) + r a t i o ∗ _

m_M(oldBasisRow , idxCol)

’ round to 0

I f Abs (m_M(idxRow , idxCol)) < 0.00000000001 Then

m_M(idxRow , idxCol) = 0

End I f

Next idxCol

’ make va lue s exac t l y 0 .0

m_M(idxRow , newBasisCol) = 0#

End I f

Next idxRow

End Sub

Pr ivate Function s implexStep () As SimplexStatus

’ f i nd 1 s t negat ive

Dim idxRow As Long

Dim idxCol As Long

Dim newBasisCol As Long ’ t h i s v a r i ab l e w i l l be introduced to

66

’ the bas i s , t h i s index goes from 1 to m_numVar

Dim oldBasisRow As Long ’ t h i s v a r i a b l e goes out o f the bas i s , _

’ t h i s index goes from 1 to m_numCon

newBasisCol = −1#

oldBasisRow = −1#

For idxCol = 1 To m_numVar

I f m_M(0 , idxCol) < 0 Then

newBasisCol = idxCol

Exit For

End I f

Next idxCol

’ no negat ive c o e f f i c i e n t s ==> found optimal s o l u t i o n

I f newBasisCol = −1 Then

s implexStep = ssFoundSolut ion

Exit Function

End I f

Dim pivotFound As Boolean ’ i n d i c a t e s that at l e a s t one

Dim minRatio As Double

Dim currRat io As Double

pivotFound = False

’ f i nd which va r i ab l e to take out

For idxRow = 1 To m_numCon

I f m_M(idxRow , newBasisCol) > 0# And m_M(idxRow , m_numVar + 1) > 0# Then

currRat io = m_M(idxRow , m_numVar + 1) / m_M(idxRow , newBasisCol)

67

’ d i f f e r e n t i a t e 1 s t p ivot vs a l l other

I f pivotFound Then

I f currRat io < minRatio Then

minRatio = currRat io

oldBasisRow = idxRow

End I f

Else

minRatio = currRat io

oldBasisRow = idxRow

End I f

pivotFound = True

End I f

Next idxRow

’ i f p ivot i s not found ==> unbounded s o l u t i o n

I f pivotFound = False Then

s implexStep = ssUnbounded

Exit Function

End I f

p ivotStep newBasisCol , oldBasisRow

simplexStep = ssOK

End Function

B.4 SolverCqrLPDual.cls

Solver for the CQR model. Uses Linear Programming dual formulation. The solution is obtained

by calling simplex method.

Option Exp l i c i t

’

’ So lve r f o r the CQR model . Uses Linear Programming dual fo rmulat ion .

68

’ The s o l u t i o n i s performed us ing s implex method .

’

’ Requirements :

’ CQR model should have sub s t o cha s t i c matrix .

’

’ Usage :

’ Ca l l setModel to pass CQR model

’ Ca l l s o l v e a f t e r that

’

’ L imi ta t i ons :

’ Current ly only 1 r e s t a r t po int i s supported . I t i s p o s s i b l e

’ to extend t h i s s o l v e r to support a rb i t r a r y r e s t a r t po in t s .

’

Pr ivate m_cqrModel As ModelCQR ’ input CQR model

Pr ivate m_size As Long ’ s i z e o f the model

Pr ivate m_P() As Double ’ t r a n s i t i o n matrix

Pr ivate m_Cc() As Double ’ cont inue co s t func t i on

Pr ivate m_Cq() As Double ’ qu i t co s t func t i on

Pr ivate m_Cr() As Double ’ r e s t a r t to the s i n g l e po int co s t func t i on

Pr ivate m_stateName () As St r ing ’ s t a t e names

Pr ivate m_restartIdx As Long ’ index f o r the s t a t e with r e s t a r t

’ Set model to the s o l v e r

’

’ Var i ab l e s :

’ [cqrModel] In − input CQR model

’

Publ ic Sub setModel (cqrModel As ModelCQR)

Set m_cqrModel = cqrModel

PrepareForCalc

End Sub

’ Prepare f o r c a l c u l a t i o n

69

’ Res i z e s a l l arrays , and i n i t i a l i z e s a l l c a l c v a r i a b l e s

’

’ S ide e f f e c t s :

’ A l l member v a r i a b l e s are r e s e t

’

Publ ic Sub PrepareForCalc ()

m_cqrModel . Ver i fy Input

m_size = m_cqrModel . s i z e

ReDim m_stateName(1 To m_size + 1) As St r ing

ReDim m_P(1 To m_size + 1 , 1 To m_size + 1) As Double

ReDim m_Cc(1 To m_size + 1) As Double

ReDim m_Cq(1 To m_size + 1) As Double

ReDim m_Cr(1 To m_size + 1) As Double

Dim idxState As Long

For idxState = 1 To m_size

I f m_cqrModel . r e s ta r tA l l owed () (idxState) Then

m_restartIdx = idxState

End I f

m_stateName(idxState) = m_cqrModel . stateNames () (idxState)

Next idxState

m_stateName(m_size + 1) = "∗"

ResetCa lcVar iab le s

End Sub

’ I n i t i a l i z e s a l l c a l c v a r i a b l e s us ing CQR model as input

’

’ S ide e f f e c t s :

70

’ Al l member v a r i a b l e s are r e s e t

’

Pr ivate Sub ResetCa lcVar iab le s ()

Dim idxRow As Long

Dim idxCol As Long

For idxRow = 1 To m_size

For idxCol = 1 To m_size

m_P(idxRow , idxCol) = _

m_cqrModel . t r an s i t i onMat r i x () (idxRow , idxCol) ∗ _

(1# − m_cqrModel . terminat ionProb () (idxRow))

m_P(m_size + 1 , idxCol) = 0#

Next idxCol

m_P(idxRow , m_size + 1) = m_cqrModel . terminat ionProb () (idxRow)

m_Cc(idxRow) = m_cqrModel . contCost () (idxRow)

m_Cq(idxRow) = m_cqrModel . qu itCost () (idxRow)

m_Cr(idxRow) = m_cqrModel . r e s t a r tCo s t () (idxRow , m_restartIdx)

Next idxRow

m_P(m_size + 1 , m_size + 1) = 1#

m_Cc(m_size + 1) = 0#

m_Cq(m_size + 1) = 0#

m_Cr(m_size + 1) = 0#

End Sub

’ So lve s CQR model us ing l i n e a r programming formulat ion

’

’ Var i ab l e s :

’ [shee t] In − worksheet to output r e s u l t s

’ [sheetRow] In/out − worksheet row where r e s u l t s should go

’

’ S ide e f f e c t s :

71

’ v a r i ab l e sheetRow i s updated to po int to the 1 s t empty l i n e in worksheet

’

Publ ic Sub so l v e (shee t As Worksheet , ByRef sheetRow As Long)

PrepareForCalc

Dim ob j ec t i veFunct i on () As Double

Dim actionName () As St r ing

Dim ac t i onS ta t e () As Long

Dim lh s () As Double

Dim rhs () As Double

Dim numVar As Long , numCon As Long

Dim idxVar As Long , idxCon As Long

Dim sheetCol As Long

sheetCol = 1

numVar = 3 ∗ m_size − 1

numCon = m_size

ReDim ob j ec t i veFunct i on (1 To numVar) As Double

ReDim actionName (1 To numVar) As St r ing

ReDim ac t i onS ta t e (1 To numVar) As Long

ReDim rhs (1 To numCon) As Double

ReDim lh s (1 To numCon , 1 To numVar) As Double

’ va lue o f under ly ing v a r i a b l e s

Dim var i ab l eVa lue s () As Double

’ d e f i n e ob j e c t i v e func t i on

Dim counter As Long

72

counter = 1

For idxVar = 1 To m_size

’ l o g i c f o r cont inue

ob j e c t i veFunct i on (idxVar) = m_Cc(idxVar)

actionName (idxVar) = "Continue"

ac t i onS ta t e (idxVar) = idxVar

’ l o g i c f o r qu i t

ob j e c t i veFunct i on (idxVar + m_size) = m_Cq(idxVar)

actionName (idxVar + m_size) = "Quit"

ac t i onS ta t e (idxVar + m_size) = idxVar

’ l o g i c f o r r e s t a r t

I f idxVar <> m_restartIdx Then

ob j e c t i veFunct i on (counter + 2 ∗ m_size) = m_Cr(idxVar)

actionName (counter + 2 ∗ m_size) = "Restart "

ac t i onS ta t e (counter + 2 ∗ m_size) = idxVar

counter = counter + 1

End I f

Next idxVar

’ LHS, t r a n s i t i o n matrix P i s t ransposed

For idxCon = 1 To m_size

counter = 1

For idxVar = 1 To m_size

I f idxCon = idxVar Then

lh s (idxCon , idxVar) = 1# − m_P(idxVar , idxCon)

l h s (idxCon , idxVar + m_size) = 1#

Else

l h s (idxCon , idxVar) = −m_P(idxVar , idxCon)

l h s (idxCon , idxVar + m_size) = 0#

End I f

’ take care o f r e s t a r t

I f idxVar <> m_restartIdx Then

73

I f idxCon <> m_restartIdx Then

I f idxVar = idxCon Then

lh s (idxCon , counter + 2 ∗ m_size) = 1

End I f

El se

l h s (idxCon , counter + 2 ∗ m_size) = −1

End I f

counter = counter + 1

End I f

Next idxVar

Next idxCon

’ RHS i s equal to 1 .0

For idxCon = 1 To m_size

rhs (idxCon) = 1#

Next idxCon

’ c r e a t e bas i s , i t po in t s to ’ quit ’ dual v a r i a b l e s

Dim ba s i s () As Long

ReDim ba s i s (1 To numCon) As Long

For idxCon = 1 To m_size

ba s i s (idxCon) = m_size + idxCon

Next idxCon

’ c a l l Simplex Method

Dim simplexMethod As New SimplexMethodDirect

simplexMethod . setup objec t iveFunct ion , lhs , rhs , b a s i s

Dim suc c e s s As Boolean

suc c e s s = simplexMethod . s o l v e (sheet , sheetRow , sheetCol , b a s i s)

’ output r e s u l t in case o f su c c e s s

I f s u c c e s s Then

74

Dim act i on () As St r ing

ReDim act i on (1 To m_size + 1) As St r ing

’ a s s i gn ac t i on based on optimal ba s i s

For idxCon = 1 To m_size

ac t i on (a c t i onS ta t e (ba s i s (idxCon))) = actionName (ba s i s (idxCon))

Next idxCon

shee t . Ce l l s (sheetRow , sheetCol) = " So lu t i on us ing Linear " & _

" Programming f o r dual fo rmulat ion "

sheetRow = sheetRow + 1

OutputVector sheet , sheetRow , sheetCol , " State " , m_stateName , m_size + 1

OutputVector sheet , sheetRow , sheetCol , "Action " , act ion , m_size + 1

sheetRow = sheetRow + m_size + 1 + 1 + 1

End I f

End Sub

B.5 SolverCqrSEA.cls

State elimination algorithm.

Option Exp l i c i t

’

’ So lve r f o r the CQR model , handles 2 ca s e s

’ ∗ no r e s t a r t po in t s

’ ∗ s i n g l e r e s t a r t po int with known value func t i on

’

’ Requirements :

’ CQR model should have sub s t o cha s t i c matrix .

’

75

’ Usage :

’ Ca l l setModel to pass CQR model

’ Ca l l s o l v e a f t e r that

’

’ L imi ta t i ons :

’ Current ly only 1 r e s t a r t po int i s supported . I t i s p o s s i b l e

’ to extend t h i s s o l v e r to support a rb i t r a r y r e s t a r t po in t s .

’

Pr ivate m_cqrModel As ModelCQR ’ input CQR model

Pr ivate m_size As Long ’ s i z e o f the model

Pr ivate m_P() As Double ’ t r a n s i t i o n matrix a f t e r e l im ina t i on

Pr ivate m_Cc() As Double ’ cont inue co s t func t i on a f t e r e l im ina t i on

Pr ivate m_Cq() As Double ’ qu i t co s t func t i on

Pr ivate m_Cr() As Double ’ r e s t a r t to the s i n g l e po int co s t func t i on

Pr ivate m_stateStatus () As s ta teE l imStatus ’ cur rent e l im ina t i on s t a tu s

Pr ivate m_stateName () As St r ing ’ s t a t e names

Pr ivate m_restartIdx As Long ’ index f o r the s t a t e with r e s t a r t

’ Set model to the s o l v e r

’

’ Var i ab l e s :

’ [cqrModel] In − input CQR model

’

Publ ic Sub setModel (cqrModel As ModelCQR)

Set m_cqrModel = cqrModel

PrepareForCalc

End Sub

’ Prepare f o r c a l c u l a t i o n

’ Res i z e s a l l arrays , and i n i t i a l i z e s a l l c a l c v a r i a b l e s

’

’ S ide e f f e c t s :

’ A l l member v a r i a b l e s are r e s e t

76

’

Publ ic Sub PrepareForCalc ()

m_cqrModel . Ver i fy Input

m_size = m_cqrModel . s i z e

ReDim m_stateName(1 To m_size + 1) As St r ing

ReDim m_stateStatus (1 To m_size + 1) As s tateE l imStatus

ReDim m_P(1 To m_size + 1 , 1 To m_size + 1) As Double

ReDim m_Cc(1 To m_size + 1) As Double

ReDim m_Cq(1 To m_size + 1) As Double

ReDim m_Cr(1 To m_size + 1) As Double

Dim idxState As Long

m_restartIdx = −1

For idxState = 1 To m_size

I f m_cqrModel . r e s ta r tA l l owed () (idxState) Then

m_restartIdx = idxState

End I f

m_stateName(idxState) = m_cqrModel . stateNames () (idxState)

Next idxState

m_stateName(m_size + 1) = "∗"

ResetCa lcVar iab le s

End Sub

’ I n i t i a l i z e s a l l c a l c v a r i a b l e s us ing CQR model as input

’

’ S ide e f f e c t s :

’ A l l member v a r i a b l e s are r e s e t

77

’

Pr ivate Sub ResetCa lcVar iab le s ()

Dim idxRow As Long

Dim idxCol As Long

For idxRow = 1 To m_size

For idxCol = 1 To m_size

m_P(idxRow , idxCol) = _

m_cqrModel . t r an s i t i onMat r i x () (idxRow , idxCol) ∗ _

(1# − m_cqrModel . terminat ionProb () (idxRow))

m_P(m_size + 1 , idxCol) = 0#

Next idxCol

m_P(idxRow , m_size + 1) = m_cqrModel . terminat ionProb () (idxRow)

m_Cc(idxRow) = m_cqrModel . contCost () (idxRow)

m_Cq(idxRow) = m_cqrModel . qu itCost () (idxRow)

m_Cr(idxRow) = m_cqrModel . r e s t a r tCo s t () (idxRow , m_restartIdx)

Next idxRow

m_P(m_size + 1 , m_size + 1) = 1#

m_Cc(m_size + 1) = 0#

m_Cq(m_size + 1) = 0#

m_Cr(m_size + 1) = 0#

End Sub

’ Pr in t s cur rent s t a t e o f the model

’ Return : number o f rows used

Publ ic Function StatePrintSEA (shee t As Worksheet , _

ByVal row As Long , ByVal c o l As Long , s tep As Long) As Long

Exit Function

Dim s ta tu s () As St r ing

Dim w As Variant

Dim t As Variant

78

Dim c () As Double

Dim beta () As Double

Dim dpm() As Double

Dim s ign () As St r ing

Dim s l ope () As Double

ReDim s ta tu s (1 To m_size + 1) As St r ing

ReDim w(1 To m_size + 1) As Variant

ReDim t (1 To m_size + 1) As Variant

ReDim c (1 To m_size + 1) As Double

ReDim beta (1 To m_size + 1) As Double

ReDim dpm(1 To m_size + 1) As Double

ReDim s ign (1 To m_size + 1) As St r ing

ReDim s l ope (1 To m_size + 1) As Double

Dim idxRow As Long

Dim i s n e g a t i v e As Boolean

For idxRow = 1 To m_size + 1

s ta tu s (idxRow) = " Inc lude "

I f m_stateStatus (idxRow) = se sE l im ina te Then

s t a tu s (idxRow) = "El iminate "

End I f

I f m_stateStatus (idxRow) = se sF ina l I n c l ud e Then

s t a tu s (idxRow) = " F ina l Inc lude "

End I f

Next idxRow

’ p r i n t cur rent s tep and name o f the model

shee t . C e l l s (row , c o l) . va lue = m_cqrModel . name

79

row = row + 1

shee t . Ce l l s (row , c o l) . va lue = " I t e r a t i o n : " & (step)

row = row + 1

OutputVector sheet , row , co l , " State " , m_stateName , m_size + 1

OutputVector sheet , row , co l , " Status " , s tatus , m_size + 1

OutputVector sheet , row , co l , "Continue " , m_Cc, m_size + 1

OutputVector sheet , row , co l , "Quit " , m_Cq, m_size + 1

OutputMatrixColorCols sheet , row , co l , " Trans i t i on Matrix " , m_P, _

m_stateStatus , m_size + 1

StatePrintSEA = row + m_size + 1 + 2

End Function

Publ ic Function s o l v e (r e s t a r tS ta t eVa lue As Double , _

useRestartValue As Boolean , shee t As Worksheet , _

ByRef sheetRow As Long) As Boolean

’ prepare f o r c a l c u l a t i o n

PrepareForCalc

Dim idxRow As Long , idxCol As Long

Dim elementStatus () As St r ing ’ act ion , continue , quit , or r e s t a r t

Dim value () As Double ’ va lue func t i on

ReDim elementStatus (1 To m_size + 1) As St r ing

ReDim value (1 To m_size + 1) As Double

80

’ i f r e s t a r t po int shouldn ’ t be cons ide r ed s e t r e s t a r t index to

’ nonex i s t i ng element

I f useRestartValue = False Then

m_restartIdx = −1

End I f

I f useRestartValue Then

’ i f r e s t a r t po int value i s known , use i t

’ apply r e s t a r tS ta t eVa lue=h(s | s) to a l l s t a t e s except s

For idxRow = 1 To m_size

I f idxRow <> m_restartIdx Then

e lementStatus (idxRow) = "Quit"

I f m_Cq(idxRow) < m_Cr(idxRow) + re s t a r tS ta t eVa lue Then

m_Cq(idxRow) = m_Cr(idxRow) + re s t a r tS ta t eVa lue

e lementStatus (idxRow) = "Restart "

End I f

End I f

Next idxRow

’ make r e s t a r t s t a t e ’ s ’ to be the absorb ing s t a t e

’ with q=h(s | s) , c=−i n f

e lementStatus (m_restartIdx) = "Quit"

I f m_Cq(m_restartIdx) < re s t a r tS ta t eVa lue Then

e lementStatus (m_restartIdx) = "Continue"

End I f

m_Cq(m_restartIdx) = re s t a r tS ta t eVa lue

m_Cc(m_restartIdx) = −1E+300

For idxCol = 1 To m_size

m_P(m_restartIdx , idxCol) = 0#

Next idxCol

m_P(m_restartIdx , m_size + 1) = 1#

value (m_restartIdx) = re s t a r tS ta t eVa lue

81

Else

’ r e s t a r t po int va lue i s not used

’ we ’ re s o l v i n g p l a i n CQ (cont inue and qu i t) problem

For idxRow = 1 To m_size

e lementStatus (idxRow) = "Quit"

Next idxRow

End I f

’ s u c c e s s o f the cur rent s tep

Dim e l im ina t i on As Boolean

Dim gValue As Double

Dim rowToEliminate As Long

sheetRow = StatePrintSEA (sheet , sheetRow , 1 , 0)

Do

e l im ina t i on = False

rowToEliminate = −1

For idxRow = 1 To m_size

’ p roce s s only inc luded s t a t e s

I f m_stateStatus (idxRow) = se s In c l ud e And _

idxRow <> m_restartIdx Then

gValue = 0#

gValue = m_Cq(idxRow) − m_Cc(idxRow)

For idxCol = 1 To m_size

I f m_stateStatus (idxCol) <> se sE l im ina t e Then

gValue = gValue − m_P(idxRow , idxCol) ∗ m_Cq(idxCol)

End I f

Next idxCol

I f gValue < 0 Then

’ i t i s opt imal to cont inue here

82

e l im ina t i on = True

rowToEliminate = idxRow

m_stateStatus (idxRow) = se sE l im ina te

e l im ina t eS ta t e m_P, m_Cc, idxRow

elementStatus (idxRow) = "Continue"

Exit For

End I f

End I f

Next idxRow

sheetRow = StatePrintSEA (sheet , sheetRow , 1 , 0)

Loop While e l im ina t i on = True

’ loop over s t a t e s and c a l c u l a t e value func t i on

’ a l l the s t a t e s , which are not e l im inated are ’ Quit ’

For idxRow = 1 To m_size

I f m_stateStatus (idxRow) = se s In c l ud e And idxRow <> m_restartIdx Then

value (idxRow) = m_Cq(idxRow)

End I f

I f m_stateStatus (idxRow) = se sE l im ina te And idxRow <> m_restartIdx Then

value (idxRow) = m_Cc(idxRow)

For idxCol = 1 To m_size

I f m_stateStatus (idxCol) <> se sE l im ina te Then

value (idxRow) = value (idxRow) + _

m_P(idxRow , idxCol) ∗ m_Cc(idxCol)

End I f

Next idxCol

End I f

Next idxRow

’ cont inue s t a t e s need precomputed va lue s f o r ’ Quit/Restart ’ s t a t e s

For idxRow = 1 To m_size

83

I f m_stateStatus (idxRow) = se sE l im ina te And idxRow <> m_restartIdx Then

value (idxRow) = m_Cc(idxRow)

For idxCol = 1 To m_size

I f m_stateStatus (idxCol) <> se sE l im ina te Then

value (idxRow) = value (idxRow) + _

m_P(idxRow , idxCol) ∗ value (idxCol)

End I f

Next idxCol

End I f

Next idxRow

’ p r i n t r e s u l t

sheetRow = sheetRow + 1

shee t . Ce l l s (sheetRow , 1) . va lue = "Resu l t s o f SEA algor i thm"

sheetRow = sheetRow + 1

Dim co l As Long

co l = 1

OutputVector sheet , sheetRow , co l , " State " , m_stateName , m_size + 1

OutputVector sheet , sheetRow , co l , "Value " , value , m_size + 1

OutputVector sheet , sheetRow , co l , "Action " , e lementStatus , m_size + 1

End Function

B.6 SolverCqrNoQuit.cls

Solves CQR problem for the case when there is no quit action.

Option Exp l i c i t

’

84

’ So lve r f o r the CQR model with s i n g l e r e s t a r t po int and no qu i t ac t i on .

’ The main a lgor i thm o f t h i s s o l v e r f i n d s h(s) ,

’ the value at the r e s t a r t s t a t e .

’ Then i t c a l l s SE algor i thm to v e r i f y opt ima l i ty

’ o f s t r a t e gy found at po int h(s)

’

’ Requirements :

’ CQR model should have sub s t o cha s t i c matrix .

’

’ Usage :

’ Ca l l setModel to pass CQR model

’ Ca l l s o l v e a f t e r that

’

’ L imi ta t i ons :

’ Current ly only 1 r e s t a r t po int i s supported . I t i s p o s s i b l e

’ to extend t h i s s o l v e r to support a rb i t r a r y r e s t a r t po in t s .

’

Pr ivate m_cqrModel As ModelCQR ’ input CQR model

Pr ivate m_size As Long ’ s i z e o f the model

Pr ivate m_stateName () As St r ing ’ s t a t e names , so r t ed aga in s t gamma

Pr ivate m_restartIdx As Long ’ index f o r the s t a t e with r e s t a r t

Pr ivate m_stateStatus () As s ta teE l imStatus ’ cur rent e l im ina t i on s t a tu s

Pr ivate m_P() As Double ’ t r a n s i t i o n matrix a f t e r e l im ina t i on

Pr ivate m_Cc() As Double ’ cont inue co s t func t i on a f t e r e l im ina t i on

Pr ivate m_Cr() As Double ’ r e s t a r t to the s i n g l e po int co s t func t i on

Pr ivate m_wIndex () As Double

Pr ivate m_wIndexKnown() As Boolean

Pr ivate m_h_s_s As Double ’ index h(s)

Pr ivate m_hsFound As Boolean ’ f l a g , i n d i c a t i n g i f h (s) i s found

’ Set model to the s o l v e r

’

’ Var i ab l e s :

85

’ [cqrModel] In − input CQR model

’

Publ ic Sub setModel (cqrModel As ModelCQR)

Set m_cqrModel = cqrModel

’ s e t − i n f to the qu i t a c t i on

Dim q () As Double

q = m_cqrModel . qu itCost

Dim idxRow As Long

For idxRow = 1 To UBound(q)

q (idxRow) = 0#

Next idxRow

m_cqrModel . qu itCost = q

PrepareForCalc

End Sub

’ Prepare f o r c a l c u l a t i o n

’ Res i z e s a l l arrays , and i n i t i a l i z e s a l l c a l c v a r i a b l e s

’

’ S ide e f f e c t s :

’ A l l member v a r i a b l e s are r e s e t

’

Publ ic Sub PrepareForCalc (Optional ByVal reorderGamma As Boolean = True)

m_size = m_cqrModel . s i z e

ReDim m_stateName(1 To m_size + 1) As St r ing

ReDim m_stateStatus (1 To m_size + 1) As s tateE l imStatus

ReDim m_P(1 To m_size + 1 , 1 To m_size + 1) As Double

ReDim m_Cc(1 To m_size + 1) As Double

ReDim m_Cq(1 To m_size + 1) As Double

ReDim m_Cr(1 To m_size + 1) As Double

ReDim m_gamma(1 To m_size + 1) As Double

ReDim m_gammaIdx(1 To m_size + 1) As Long

86

ReDim m_gammaInverseIdx (1 To m_size + 1) As Long

ReDim m_tIndex (1 To m_size + 1) As Double

ReDim m_wIndex(1 To m_size + 1) As Double

ReDim m_tIndexKnown(1 To m_size + 1) As Boolean

ReDim m_wIndexKnown(1 To m_size + 1) As Boolean

Dim idxState As Long

For idxState = 1 To m_size

m_stateStatus (idxState) = s e s I n c l ud e

I f m_cqrModel . r e s ta r tA l l owed () (idxState) Then

m_restartIdx = idxState

End I f

m_stateName(idxState) = m_cqrModel . stateNames () (idxState)

Next idxState

m_stateName(m_size + 1) = "∗"

ResetCa lcVar iab le s

End Sub

’ I n i t i a l i z e s a l l c a l c v a r i a b l e s us ing CQR model as input

’

’ S ide e f f e c t s :

’ A l l member v a r i a b l e s are r e s e t

’

Pr ivate Sub ResetCa lcVar iab le s ()

Dim idxRow As Long

Dim idxCol As Long

For idxRow = 1 To m_size

For idxCol = 1 To m_size

m_P(idxRow , idxCol) = _

m_cqrModel . t r an s i t i onMat r i x () (idxRow , idxCol) ∗ _

(1# − m_cqrModel . terminat ionProb () (idxRow))

m_P(m_size + 1 , idxCol) = 0#

Next idxCol

87

m_P(idxRow , m_size + 1) = m_cqrModel . terminat ionProb () (idxRow)

m_Cc(idxRow) = m_cqrModel . contCost () (idxRow)

m_Cr(idxRow) = m_cqrModel . r e s t a r tCo s t () (idxRow , m_restartIdx)

Next idxRow

m_P(m_size + 1 , m_size + 1) = 1#

m_Cc(m_size + 1) = 0#

m_Cr(m_size + 1) = 0#

End Sub

’ Pr in t s cur rent s t a t e o f the s o l v e r to worksheet

’

’ Var i ab l e s :

’ [shee t] in − shee t to use as output

’ [row] in − shee t row where output should be s t a r t ed

’ [c o l] in − shee t column where output should be s t a r t ed

’ [s t ep] in − s tep #

’ [message] in − custom message

’

Publ ic Function StatePr in t (shee t As Worksheet , ByVal row As Long , _

ByVal c o l As Long , s tep As Long , message As St r ing) As Long

Dim s ta tu s () As St r ing

Dim w As Variant

Dim t As Variant

Dim c () As Double

Dim beta () As Double

Dim dpm() As Double

Dim s l ope () As Double

ReDim s ta tu s (1 To m_size + 1) As St r ing

ReDim w(1 To m_size + 1) As Variant

88

ReDim c (1 To m_size + 1) As Double

ReDim beta (1 To m_size + 1) As Double

ReDim dpm(1 To m_size + 1) As Double

ReDim s l ope (1 To m_size + 1) As Double

Dim idxRow As Long

Dim i s n e g a t i v e As Boolean

For idxRow = 1 To m_size + 1

s ta tu s (idxRow) = " Inc lude "

I f m_stateStatus (idxRow) = se sE l im ina te Then

s t a tu s (idxRow) = "El iminate "

End I f

I f m_stateStatus (idxRow) = se sF ina l I n c l ud e Then

s t a tu s (idxRow) = " F ina l Inc lude "

End I f

I f m_wIndexKnown(idxRow) Then

w(idxRow) = m_wIndex(idxRow)

End I f

c (idxRow) = ca l cu la t eC (idxRow)

beta (idxRow) = ca l cu l a t eBe ta (idxRow)

I f idxRow <= m_size Then

ca l cG In t e r s e c t i on idxRow , dpm(idxRow)

s l ope (idxRow) = 1# − beta (idxRow)

End I f

Next idxRow

89

’ p r i n t cur rent s tep and name o f the model

shee t . C e l l s (row , c o l) . va lue = "Model name : " & m_cqrModel . name

row = row + 1

shee t . Ce l l s (row , c o l) . va lue = "Algorithm : f i nd i n g h(s) " & _

"with no qu i t ac t i on al lowed "

row = row + 1

shee t . Ce l l s (row , c o l) . va lue = " Status : " & message

row = row + 1

shee t . Ce l l s (row , c o l) . va lue = " I t e r a t i o n : " & (step)

row = row + 1

OutputVector sheet , row , co l , " State " , m_stateName , m_size + 1

OutputVector sheet , row , co l , " Status " , s tatus , m_size + 1

OutputVector sheet , row , co l , "Continue " , m_Cc, m_size + 1

OutputVector sheet , row , co l , "Restart " , m_Cr, m_size + 1

OutputVector sheet , row , co l , "w" , w, m_size + 1

OutputVector sheet , row , co l , "C(x)" , c , m_size + 1

90

OutputVector sheet , row , co l , " beta (x)" , beta , m_size + 1

OutputVector sheet , row , co l , " Slope " , s lope , m_size + 1

OutputVector sheet , row , co l , "d+", dpm, m_size + 1

OutputMatrixColorCols sheet , row , co l , " Trans i t i on Matrix (f u l l)" , _

m_P, m_stateStatus , m_size + 1

StatePr in t = row + m_size + 1 + 2

End Function

’ c a l c u l a t e func t i on C(x)

’

’ Var i ab l e s :

’ [rowX] In − index o f the s t a t e x

’

’ Return value :

’ va lue o f C(x) f o r the case o f no qu i t

’

Pr ivate Function ca l cu la t eC (ByVal rowX As Long)

Dim Result As Double

Dim idxCol As Long

Result = m_Cc(rowX) − m_Cr(rowX)

’ don ’ t add e l im inated columns

For idxCol = 1 To m_size

I f m_stateStatus (idxCol) <> se sE l im ina t e Then

Result = Result + m_P(rowX , idxCol) ∗ m_Cr(idxCol)

End I f

91

Next idxCol

Result = Result − m_Cr(rowX)

ca l cu la t eC = Result

End Function

’ c a l c u l a t e func t i on beta (x)

’

’ Var i ab l e s :

’ [rowX] In − index o f the s t a t e x

’

’ Return value :

’ va lue o f beta (x) f o r the case o f no qu i t

’

Pr ivate Function ca l cu l a t eBe ta (rowX As Long)

Dim Result As Double

Dim idxCol As Long

Result = 0

For idxCol = 1 To m_size

I f m_stateStatus (idxCol) <> se sE l im ina t e Then

Result = Result + m_P(rowX , idxCol)

End I f

Next idxCol

ca l cu l a t eBe ta = Result

End Function

Pr ivate Sub ca l cGIn t e r s e c t i on (_

rowX As Long , _

ByRef i n t e r s e c t i o n As Double)

Dim c As Double

Dim beta As Double

92

Dim G As Double

c = ca l cu la t eC (rowX)

beta = ca l cu l a t eBe ta (rowX)

i n t e r s e c t i o n = −1E+300

’ beta shouldn ’ t be 1 . 0 , check f o r i t

I f beta < 1# − 0.000000000000001 Then

i n t e r s e c t i o n = c / (1 − beta)

End I f

End Sub

Publ ic Function s o l v e (shee t As Worksheet , ByRef sheetRow As Long) As Boolean

s o l v e = True

PrepareForCalc

Dim idxRow As Long , idxCol As Long

m_hsFound = False

’ go over each i n t e r v a l Delta_i

Dim idx In t e r v a l As Long ’ cur rent i n t e r v a l f o r on s i d e r a t i on

Dim foundSo lut ion As Boolean ’ ’ true ’ i f found s o l u t i o n on cur rent i n t e r v a l

Dim k0 As Double ’ the sma l l e s t va lue k0 used so far ,

’ i n i t i a l l y i t i s +INF

’ in te rmed ia t e c a l c u l a t i o n r e s u l t s

Dim i s n e g a t i v e As Boolean

93

Dim k As Double

’ message to be pr in ted

Dim statusMessage As St r ing

Dim i t e r a t i o n As Long

i t e r a t i o n = 1

’ prepare everyth ing f o r c a l c u l a t i o n (r e s e t model)

ResetCa lcVar iab le s

statusMessage = " I n i t i a l model"

sheetRow = StatePr in t (sheet , sheetRow , 1 , i t e r a t i o n , statusMessage)

k0 = 1E+300

Dim maxK As Double

Dim maxKIndex As Long

’ loop un t i l a l l e lements are e l im inated

Do

foundSo lut ion = False

’ r e s e t max value / index

maxK = −1E+300

maxKIndex = −1

’ loop through a l l s t a t e s

For idxRow = 1 To m_size

’ need to proce s s only inc luded s t a t e s

I f m_stateStatus (idxRow) <> sesE l im ina te Then

94

foundSo lut ion = True

’ f i nd i n t e r s e c t i o n

c a l cG In t e r s e c t i on idxRow , k

’ check i f i t i s i n t e r s e c t i o n with maximal k

I f maxKIndex < 0 Or k > maxK Then

maxKIndex = idxRow

maxK = k

End I f

End I f

Next idxRow

’ ana lyze i f s o l u t i o n i s found

I f foundSo lut ion Then

’ found w index , e l im ina t e s t a t e

m_stateStatus (maxKIndex) = se sE l im ina te

m_wIndex(maxKIndex) = maxK

m_wIndexKnown(maxKIndex) = True

k0 = maxK

’ check i f we found h(s)

I f m_restartIdx = maxKIndex Then

m_h_s_s = maxK

m_hsFound = True

End I f

’ e l im ina t e s t a t e and pr in t matrix

statusMessage = "El iminated s t a t e : " & m_stateName(maxKIndex)

e l im ina t eS ta t e m_P, m_Cc, maxKIndex

sheetRow = StatePr in t (sheet , sheetRow , 1 , i t e r a t i o n , statusMessage)

End I f

i t e r a t i o n = i t e r a t i o n + 1

Loop While foundSo lut ion = True ’And m_hsFound = False

95

I f m_hsFound Then

statusMessage = "Found h(s)=" & m_h_s_s & _

" . End o f algor ithm , cont inue to SE algor i thm ."

sheetRow = StatePr in t (sheet , sheetRow , 1 , i dx In t e rva l , s tatusMessage)

Dim so lv e rSea As New SolverCqrSEA

so lve rSea . setModel m_cqrModel

s o l v e rSea . s o l v e m_h_s_s, True , sheet , sheetRow

End I f

End Function

B.7 SolverCqrSingleR.cls

Main solver for CQR problem.

Option Exp l i c i t

’

’ So lve r f o r the CQR model with s i n g l e r e s t a r t po int .

’ The main a lgor i thm o f t h i s s o l v e r f i n d s h(s) ,

’ the value at the r e s t a r t s t a t e . The s t r a t e gy at t h i s po int

’ i s the optimal s t r a t e gy f o r CQR problem . Then i t c a l l s SE

’ a lgor i thm to v e r i f y opt ima l i ty o f found s t r a t e gy .

’

’ Requirements :

’ CQR model should have sub s t o cha s t i c matrix .

’

’ Usage :

’ Ca l l setModel to pass CQR model

’ Ca l l s o l v e a f t e r that

’

’ L imi ta t i ons :

96

’

Pr ivate m_cqrModel As ModelCQR ’ input CQR model

Pr ivate m_size As Long ’ s i z e o f the model

Pr ivate m_stateNameSorted () As St r ing ’ s t a t e names , s o r t ed aga in s t gamma

Pr ivate m_restartIdx As Long ’ index f o r the s t a t e with r e s t a r t

Pr ivate m_stateStatus () As s ta teE l imStatus ’ cur rent e l im ina t i on s t a tu s

Pr ivate m_P() As Double ’ t r a n s i t i o n matrix a f t e r e l im ina t i on

Pr ivate m_Cc() As Double ’ cont inue co s t func t i on a f t e r e l im ina t i on

Pr ivate m_Cq() As Double ’ qu i t co s t func t i on

Pr ivate m_Cr() As Double ’ r e s t a r t to the s i n g l e po int co s t func t i on

Pr ivate m_gamma() As Double ’ va lue o f the index gamma_i

Pr ivate m_gammaIdx() As Long ’ remapping o f x_i in such way ,

’ that gamma_1>gamma_2> . . .

Pr ivate m_gammaInverseIdx () As Long ’ to map from ordered space back

’ to o r i g i n a l one

Pr ivate m_tIndex () As Double

Pr ivate m_wIndex () As Double

Pr ivate m_tIndexKnown () As Boolean

Pr ivate m_wIndexKnown() As Boolean

Pr ivate m_h_s_s As Double ’ index h(s)

Pr ivate m_hsFound As Boolean ’ f l a g , i n d i c a t i n g i f h (s) i s found

’ Set model to the s o l v e r

’

’ Var i ab l e s :

’ [cqrModel] In − input CQR model

’

Publ ic Sub setModel (cqrModel As ModelCQR)

Set m_cqrModel = cqrModel

PrepareForCalc

End Sub

’ Prepare f o r c a l c u l a t i o n

97

’ Res i z e s a l l arrays , and i n i t i a l i z e s a l l c a l c v a r i a b l e s

’

’ S ide e f f e c t s :

’ A l l member v a r i a b l e s are r e s e t

’

Publ ic Sub PrepareForCalc (Optional ByVal reorderGamma As Boolean = True)

m_size = m_cqrModel . s i z e

ReDim m_stateNameSorted (1 To m_size + 1) As St r ing

ReDim m_stateStatus (1 To m_size + 1) As s tateE l imStatus

ReDim m_P(1 To m_size + 1 , 1 To m_size + 1) As Double

ReDim m_Cc(1 To m_size + 1) As Double

ReDim m_Cq(1 To m_size + 1) As Double

ReDim m_Cr(1 To m_size + 1) As Double

ReDim m_gamma(1 To m_size + 1) As Double

ReDim m_gammaIdx(1 To m_size + 1) As Long

ReDim m_gammaInverseIdx (1 To m_size + 1) As Long

ReDim m_tIndex (1 To m_size + 1) As Double

ReDim m_wIndex(1 To m_size + 1) As Double

ReDim m_tIndexKnown(1 To m_size + 1) As Boolean

ReDim m_wIndexKnown(1 To m_size + 1) As Boolean

Dim idxState As Long

For idxState = 1 To m_size

m_stateStatus (idxState) = s e s I n c l ud e

I f m_cqrModel . r e s ta r tA l l owed () (idxState) Then

m_restartIdx = idxState

End I f

Next idxState

m_stateNameSorted (m_size + 1) = "∗"

calcGamma (reorderGamma)

ResetCa lcVar iab le s

End Sub

Pr ivate Sub calcGamma(Optional reorderGamma As Boolean = True)

98

Dim idxRow As Long

For idxRow = 1 To m_size

m_gamma(idxRow) = m_cqrModel . qu itCost () (idxRow) − _

m_cqrModel . r e s t a r tCo s t () (idxRow , m_restartIdx)

m_gammaIdx(idxRow) = idxRow

Next idxRow

m_gammaIdx(m_size + 1) = m_size + 1

’ s o r t gammas

I f reorderGamma Then

Dim i As Long , j As Long

Dim tmpDbl As Double , tmpLong As Long

For i = 1 To m_size

For j = 1 To m_size − 1

I f m_gamma(j + 1) > m_gamma(j) Then

’ swap both gamma and gammaIdx

tmpDbl = m_gamma(j + 1)

m_gamma(j + 1) = m_gamma(j)

m_gamma(j) = tmpDbl

tmpLong = m_gammaIdx(j + 1)

m_gammaIdx(j + 1) = m_gammaIdx(j)

m_gammaIdx(j) = tmpLong

End I f

Next j

Next i

End I f

’ c r e a t e backward map

For idxRow = 1 To m_size + 1

m_gammaInverseIdx (m_gammaIdx(idxRow)) = idxRow

I f idxRow <= m_size Then

99

m_stateNameSorted (idxRow) = _

m_cqrModel . stateNames () (m_gammaIdx(idxRow))

End I f

Next idxRow

End Sub

’ I n i t i a l i z e s a l l c a l c v a r i a b l e s us ing CQR model as input

’

’ S ide e f f e c t s :

’ A l l member v a r i a b l e s are r e s e t

’

Pr ivate Sub ResetCa lcVar iab le s ()

Dim idxRow As Long

Dim idxCol As Long

For idxRow = 1 To m_size

For idxCol = 1 To m_size

m_P(idxRow , idxCol) = _

m_cqrModel . t r an s i t i onMat r i x () (m_gammaIdx(idxRow) , _

m_gammaIdx(idxCol)) ∗ _

(1# − m_cqrModel . terminat ionProb () (m_gammaIdx(idxRow)))

m_P(m_size + 1 , idxCol) = 0#

Next idxCol

m_P(idxRow , m_size + 1) = _

m_cqrModel . terminat ionProb () (m_gammaIdx(idxRow))

m_Cc(idxRow) = m_cqrModel . contCost () (m_gammaIdx(idxRow))

m_Cq(idxRow) = m_cqrModel . qu itCost () (m_gammaIdx(idxRow))

m_Cr(idxRow) = _

m_cqrModel . r e s t a r tCo s t () (m_gammaIdx(idxRow) , m_restartIdx)

Next idxRow

m_P(m_size + 1 , m_size + 1) = 1#

m_Cc(m_size + 1) = 0#

100

m_Cq(m_size + 1) = 0#

m_Cr(m_size + 1) = 0#

End Sub

’ Ca l cu la t e va lue o f g (x | k)=max(q (x) , r (x)+k)

Pr ivate Function calcGreward (s t a t e As Long , k As Double)

I f m_Cq(s t a t e) > m_Cr(s t a t e) + k Then

calcGreward = m_Cq(s t a t e)

Else

calcGreward = m_Cr(s t a t e) + k

End I f

End Function

’ Ca l cu la t e va lue o f G−f unc t i on f o r g iven s t a t e and value o f parameter k

Pr ivate Function calcGValue (s t a t e As Long , k As Double) As Double

Dim Result As Double

Dim idx As Long

’ i n i t i a l va lue

Result = calcGreward (s tate , k) − m_Cc(s t a t e)

For idx = 1 To m_size

’ t r a n s i t i o n p r obab i l i t y to e l im inated s t a t e i s 0

I f m_stateStatus (idx) <> sesE l im ina t e Then

Result = Result − m_P(state , idx) ∗ calcGreward (idx , k)

End I f

Next idx

calcGValue = Result

End Function

’ Ca l cu la t e va lue o f G−f unc t i on at a l l po in t s o f Gamma(i) and 2 more on s i d e s

’ The f i r s t row o f the gTable array conta in s g (x | k) arguments

’ Res i z e s two input ar rays

’

101

Pr ivate Sub CalcGTable (args () As Double , gTable () As Double)

’ r e s i z e args to have n+2 va lues

ReDim args (1 To m_size + 2) As Double

’ r e s i z e G func t i on va lue s t ab l e

ReDim gTable (1 To m_size + 1 , 1 To m_size + 2) As Double

Dim idxRow As Long

Dim idxCol As Long

’ i n i t i a l i z e arguments

For idxCol = 2 To m_size + 1

args (idxCol) = m_gamma(m_size + 2 − idxCol)

Next idxCol

Dim argSpan As Double ’ d i f f e r e n c e between sma l l e s t gamma and l a r g e s t gamma

argSpan = Abs(args (m_size + 1) − args (1))

I f argSpan < 1 Then argSpan = 1

args (m_size + 2) = args (m_size + 1) + argSpan ∗ 2

args (1) = args (2) − argSpan ∗ 2

’ copy arguments to the f i r s t row o f gTable

For idxCol = 1 To m_size + 2

gTable (1 , idxCol) = args (idxCol)

Next idxCol

’ c a l c u l a t e va lue o f func t i on G f o r each s t a t e

For idxRow = 1 To m_size

For idxCol = 1 To m_size + 2

gTable (idxRow + 1 , idxCol) = calcGValue (idxRow , args (idxCol))

Next idxCol

Next idxRow

102

End Sub

’ Return : number o f rows used

Publ ic Function StatePr in t (shee t As Worksheet , ByVal row As Long , _

ByVal c o l As Long , s tep As Long , gammaMax As Double , _

gammaMin As Double , message As St r ing) As Long

Exit Function

Dim s ta tu s () As St r ing

Dim cha r tT i t l e () As St r ing

Dim w As Variant

Dim t As Variant

Dim c () As Double

Dim beta () As Double

Dim dpm() As Double

Dim s ign () As St r ing

Dim s l ope () As Double

ReDim s ta tu s (1 To m_size + 1) As St r ing

ReDim cha r tT i t l e (1 To m_size + 1) As St r ing

ReDim w(1 To m_size + 1) As Variant

ReDim t (1 To m_size + 1) As Variant

ReDim c (1 To m_size + 1) As Double

ReDim beta (1 To m_size + 1) As Double

ReDim dpm(1 To m_size + 1) As Double

ReDim s ign (1 To m_size + 1) As St r ing

ReDim s l ope (1 To m_size + 1) As Double

Dim gTableArgs () As Double ’ G Table

Dim gTableVals () As Double ’ G tab l e arguments

Dim idxRow As Long

103

Dim i s n e g a t i v e As Boolean

CalcGTable gTableArgs , gTableVals

’ c r e a t e chart t i t l e

c ha r tT i t l e (1) = "k"

For idxRow = 1 To m_size

cha r tT i t l e (idxRow + 1) = m_stateNameSorted (idxRow)

Next idxRow

For idxRow = 1 To m_size + 1

s ta tu s (idxRow) = " Inc lude "

I f m_stateStatus (idxRow) = se sE l im ina te Then

s t a tu s (idxRow) = "El iminate "

End I f

I f m_stateStatus (idxRow) = se sF ina l I n c l ud e Then

s t a tu s (idxRow) = " F ina l Inc lude "

End I f

I f m_wIndexKnown(idxRow) Then

w(idxRow) = m_wIndex(idxRow)

End I f

I f m_tIndexKnown(idxRow) Then

t (idxRow) = m_tIndex (idxRow)

End I f

c (idxRow) = ca l cu la t eC (idxRow , s tep)

beta (idxRow) = ca l cu l a t eBe ta (idxRow , s tep)

I f idxRow <= m_size Then

104

ca lcGSignAndIntersect ion idxRow , step , gammaMax, _

gammaMin , i s n ega t i v e , dpm(idxRow)

s i gn (idxRow) = "+"

I f i s n e g a t i v e Then

s i gn (idxRow) = "−"

End I f

I f idxRow < step Then

s l ope (idxRow) = −beta (idxRow)

Else

s l ope (idxRow) = 1# − beta (idxRow)

End I f

End I f

Next idxRow

’ p r i n t cur rent s tep and name o f the model

shee t . C e l l s (row , c o l) . va lue = "Model name : " & m_cqrModel . name

row = row + 1

shee t . Ce l l s (row , c o l) . va lue = "Algorithm : f i nd i n g h(s)"

row = row + 1

shee t . Ce l l s (row , c o l) . va lue = " Status : " & message

row = row + 1

shee t . Ce l l s (row , c o l) . va lue = " In t e r v a l d e l t a index : " & (step)

row = row + 1

shee t . Ce l l s (row , c o l) . va lue = _

" In t e r v a l d e l t a va lue s = [" & gammaMin & " , " & gammaMax & "] "

row = row + 1

105

OutputVector sheet , row , co l , " State " , m_stateNameSorted , m_size + 1

OutputVector sheet , row , co l , " Status " , s tatus , m_size + 1

OutputVector sheet , row , co l , "Continue " , m_Cc, m_size + 1

OutputVector sheet , row , co l , "Quit " , m_Cq, m_size + 1

OutputVector sheet , row , co l , "Restart " , m_Cr, m_size + 1

OutputVector sheet , row , co l , "gamma" , m_gamma, m_size + 1

OutputVector sheet , row , co l , "w" , w, m_size + 1

OutputVector sheet , row , co l , " t " , t , m_size + 1

OutputVector sheet , row , co l , "C(x | i)" , c , m_size + 1

OutputVector sheet , row , co l , " beta (x | i)" , beta , m_size + 1

OutputVector sheet , row , co l , " Sign at the beg inning o f the i n t e r v a l " , s ign , m_size + 1

OutputVector sheet , row , co l , " Slope " , s lope , m_size + 1

OutputVector sheet , row , co l , "d+−", dpm, m_size + 1

OutputMatrixColorCols sheet , row , co l , " Trans i t i on Matrix (f u l l)" , m_P, m_stateStatus , m_size + 1

OutputVector sheet , row , co l , "Chart T i t l e " , cha r tT i t l e , m_size + 1

OutputMatrix sheet , row , co l , "Value o f G(x | k)" , gTableVals , m_size + 1 , m_size + 2

StatePr in t = row + m_size + 1 + 2

End Function

’ c a l c u l a t e func t i on C(x , i) in the terms o f rearranged

’ v a r i a b l e s (a l l c a l c v a r i a b l e s are rearranged)

Pr ivate Function ca l cu la t eC (ByVal rowX As Long , ByVal rowI As Long)

Dim Result As Double

Dim idxCol As Long

I f rowI = 0 Then

rowI = 1

End I f

Result = m_Cc(rowX)

’ A(x | i)

106

For idxCol = 1 To rowI − 1

I f m_stateStatus (idxCol) <> se sE l im ina t e Then

Result = Result + m_P(rowX , idxCol) ∗ m_Cq(idxCol)

End I f

Next idxCol

’ B(x | i)

For idxCol = rowI To m_size

I f m_stateStatus (idxCol) <> se sE l im ina t e Then

Result = Result + m_P(rowX , idxCol) ∗ m_Cr(idxCol)

End I f

Next idxCol

Result = Result − m_Cr(rowX)

ca l cu la t eC = Result

End Function

’ c a l c u l a t e func t i on beta (x | i)

Pr ivate Function ca l cu l a t eBe ta (rowX As Long , rowI As Long)

Dim Result As Double

Dim idxCol As Long

I f rowI = 0 Then

rowI = 1

End I f

Result = 0

For idxCol = rowI To m_size

I f m_stateStatus (idxCol) <> se sE l im ina t e Then

Result = Result + m_P(rowX , idxCol)

End I f

Next idxCol

107

ca l cu l a t eBe ta = Result

End Function

Pr ivate Sub ca lcGSignAndIntersect ion (_

rowX As Long , _

rowI As Long , _

gammaMax As Double , _

gammaMin As Double , _

ByRef i s n e g a t i v e As Boolean , _

ByRef i n t e r s e c t i o n As Double)

Dim c As Double

Dim beta As Double

Dim G As Double

c = ca l cu la t eC (rowX , rowI)

beta = ca l cu l a t eBe ta (rowX , rowI)

i n t e r s e c t i o n = −1E+300

I f rowX < rowI Then

’ use formula 50 i f gamma(x)>gamma_i , or , a l t e r n a t i v e l y rowX<rowI

’ 1 . Get G at po int gammaMin

G = m_gamma(rowX) − c − beta ∗ gammaMin

I f beta > 0 Then

i n t e r s e c t i o n = (m_gamma(rowX) − c) / beta

Else

i n t e r s e c t i o n = −1E+300

End I f

El se

’ use formula 51

’ 1 . Get G at po int gammaMin

G = −c + gammaMin ∗ (1# − beta)

108

i n t e r s e c t i o n = c / (1# − beta)

End I f

I f G < 0# Then

i s n e g a t i v e = True

Else

i s n e g a t i v e = False

End I f

End Sub

Publ ic Function s o l v e (shee t As Worksheet , ByRef sheetRow As Long) As Boolean

s o l v e = True

PrepareForCalc

Dim gammaMin() As Double

Dim gammaMax() As Double

ReDim gammaMin(1 To m_size + 1) As Double

ReDim gammaMax(1 To m_size + 1) As Double

Dim idxRow As Long , idxCol As Long

m_hsFound = False

For idxRow = 1 To m_size

’ don ’ t f o rge t , that m_gamma i s dec r ea s ing when index i s i n c r e a s i n g

gammaMax(idxRow + 1) = m_gamma(idxRow)

gammaMin(idxRow) = m_gamma(idxRow)

Next idxRow

gammaMax(1) = 1E+300

gammaMin(m_size + 1) = −1E+300

’ go over each i n t e r v a l Delta_i

Dim idx In t e r v a l As Long ’ cur rent i n t e r v a l f o r on s i d e r a t i on

109

Dim foundSo lut ion As Boolean ’ ’ true ’ i f found s o l u t i o n on

’ cur rent i n t e r v a l

Dim k0 As Double ’ the sma l l e s t va lue k0

’ used so far , i n i t i a l l y i t i s +INF

’ d+ and d−, i . e . i n t e r s e c t i o n when going

’ from + to − and when going from − to +

Dim maxDPlus As Double

Dim maxDMinus As Double

Dim maxDPlusIndex As Long

Dim maxDMinusIndex As Long

’ in t e rmed ia t e c a l c u l a t i o n r e s u l t s

Dim i s n e g a t i v e As Boolean

Dim k As Double

’ message to be pr in ted

Dim statusMessage As St r ing

’ prepare everyth ing f o r c a l c u l a t i o n (r e s e t model)

ResetCa lcVar iab le s

Dim i t e r a t i o n As Long

i t e r a t i o n = 1

For i d x I n t e r v a l = 1 To m_size + 1

statusMessage = "Enter ing i nv e r va l : " & i dx I n t e r v a l

sheetRow = StatePr in t (sheet , sheetRow , 1 , i dx In t e rva l , _

gammaMax(i dx I n t e r v a l) , gammaMin(i d x I n t e r v a l) , s tatusMessage)

k0 = gammaMax(i d x I n t e r v a l)

Do

110

foundSo lut ion = False

maxDPlusIndex = −1

maxDMinusIndex = −1

For idxRow = 1 To m_size

I f m_stateStatus (idxRow) <> se sF ina l I n c l ud e Then

ca lcGSignAndIntersect ion idxRow , idx In t e rva l , _

gammaMax(i dx I n t e r v a l) , gammaMin(i d x I n t e r v a l) , _

i sn ega t i v e , k

End I f

’ handle inc luded s t a t e s

I f m_stateStatus (idxRow) = se s In c l ud e Then

’ the re i s an i n t e r s e c t i o n on t h i s i n t e r v a l

I f i s n e g a t i v e Then

I f k >= gammaMin(i d x I n t e r v a l) And _

k <= gammaMax(i dx I n t e r v a l) Then

I f maxDPlusIndex = −1 Or k > maxDPlus Then

maxDPlus = k

maxDPlusIndex = idxRow

foundSo lut ion = True

End I f

El se

Debug . Pr int "Something i s wrong ! "

End I f

End I f

End I f

’ handle e l im inated s t a t e s

I f m_stateStatus (idxRow) = se sE l im ina te Then

’ the re i s an i n t e r s e c t i o n on t h i s i n t e r v a l

I f i s n e g a t i v e = False Then

I f k >= gammaMin(i d x I n t e r v a l) And _

111

k <= gammaMax(i dx I n t e r v a l) Then

I f maxDMinusIndex = −1 Or k > maxDMinus Then

maxDMinus = k

maxDMinusIndex = idxRow

foundSo lut ion = True

End I f

El se

Debug . Pr int "Something i s wrong ! "

End I f

End I f

End I f

Next idxRow

’ ana lyze i f s o l u t i o n i s found

I f foundSo lut ion Then

’ check which one i s b i gge r

I f maxDPlusIndex > 0 And _

(maxDPlus >= maxDMinus Or maxDMinusIndex <= 0) Then

’ found w index , e l im ina t e s t a t e

m_stateStatus (maxDPlusIndex) = se sE l im ina te

m_wIndex(maxDPlusIndex) = maxDPlus

m_wIndexKnown(maxDPlusIndex) = True

k0 = maxDPlus

’ check i f we found h(s)

I f m_restartIdx = m_gammaIdx(maxDPlusIndex) Then

m_h_s_s = maxDPlus

m_hsFound = True

End I f

’ e l im ina t e s t a t e and pr in t matrix

statusMessage = "El iminated s t a t e : " & _

m_stateNameSorted (maxDPlusIndex)

e l im ina t eS ta t e m_P, m_Cc, maxDPlusIndex

sheetRow = StatePr in t (sheet , sheetRow , 1 , _

112

idx In t e rva l , gammaMax(i dx I n t e r v a l) , _

gammaMin(i d x I n t e r v a l) , s tatusMessage)

End I f

I f maxDMinusIndex > 0 And _

(maxDMinus > maxDPlus Or maxDPlusIndex <= 0) Then

’ found t index

m_stateStatus (maxDMinusIndex) = s e sF ina l I n c l ud e

m_tIndex (maxDMinusIndex) = maxDMinus

m_tIndexKnown(maxDMinusIndex) = True

k0 = maxDPlus

’ i n s e r t s t a t e and pr in t matrix

statusMessage = " In s e r t ed back s t a t e : " & _

m_stateNameSorted (maxDMinusIndex)

i n s e r t S t a t e m_P, m_Cc, maxDMinusIndex

sheetRow = StatePr in t (sheet , sheetRow , 1 , _

idx In t e rva l , gammaMax(i dx I n t e r v a l) , _

gammaMin(i d x I n t e r v a l) , s tatusMessage)

End I f

End I f

i t e r a t i o n = i t e r a t i o n + 1

Loop While foundSo lut ion = True ’And m_hsFound = False

’ s p e c i a l handl ing f o r case when i dx I n t e r v a l i s equal to the s t a t e

’ and s t a t e G−f unc t i on i s p o s i t i v e

I f i d x I n t e r v a l <= m_size Then ’And m_hsFound = False Then

I f m_stateStatus (i d x I n t e r v a l) = s e s I n c l ud e Then

m_stateStatus (i d x I n t e r v a l) = s e sF i na l I n c l ud e

m_tIndex (i d x I n t e r v a l) = m_gamma(i dx I n t e r v a l)

m_wIndex(i d x I n t e r v a l) = m_gamma(i dx I n t e r v a l)

m_tIndexKnown(i dx I n t e r v a l) = True

m_wIndexKnown(i d x I n t e r v a l) = True

I f m_restartIdx = m_gammaIdx(i d x I n t e r v a l) Then

113

m_h_s_s = m_gamma(i dx I n t e r v a l)

m_hsFound = True

End I f

statusMessage = "Found h(x) and t (x) f o r s t a t e " & _

"with always p o s i t i v e G(x | k , i) . State : " & _

m_stateNameSorted (i d x I n t e r v a l)

sheetRow = StatePr in t (sheet , sheetRow , 1 , _

idx In t e rva l , gammaMax(i dx I n t e r v a l) , _

gammaMin(i d x I n t e r v a l) , s tatusMessage)

End I f

End I f

I f m_hsFound Then

’ Exit For

End I f

Next i d x I n t e r v a l

I f m_hsFound Then

statusMessage = "Found h(s)=" & m_h_s_s & _

" . End o f algor ithm , cont inue to SE algor i thm ."

sheetRow = StatePr in t (sheet , sheetRow , 1 , i dx In t e rva l , _

gammaMax(m_size + 1) , gammaMin(m_size + 1) , statusMessage)

’ c a l l s t a t e e l im ina t i on to v e r i f y that i t

’ f i n d s the same optimal s t r a t e gy

Dim so lv e rSea As New SolverCqrSEA

so lve rSea . setModel m_cqrModel

s o l v e rSea . s o l v e m_h_s_s, True , sheet , sheetRow

End I f

End Function

