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Abstract

This paper establishes a sufficient condition for Turing’s formulae of various orders to have asymp-

totic multivariate normality.

1 Introduction.

Consider a multinomial distribution with its countably infinite number of prescribed categories

indexed by K = {k; k = 1, · · ·} and its category probabilities denoted by {pk}, satisfying 0 < pk <

1 for all k and
∑

pk = 1, where the sum without index is over all k as is observed in the subsequent

text unless otherwise stated. Let the category counts in an iid sample of size n from the underlying

population be denoted by {Xk; k ≥ 1} and its observed values by {xk; k ≥ 1}. For a given sample,

there are at most n non-zero xk’s. Let, for every integer r, 1 ≤ r ≤ n,

Nr =
∑

1[Xk=r], Tr =

(
n

r − 1

)(
n

r

)−1

Nr =
r

n− r + 1
Nr, and πr−1 =

∑
pk1[Xk=r−1].

Nr and πr−1 may be thought of as, respectively, the number of categories in the population that

are represented exactly r times in the sample and the total probability associated with all the

categories that are represented exactly r − 1 times in the sample. Tr may be thought of as an

estimator of πr−1. Tr is also known as Turing’s formula of the rth order introduced by Good (1953).
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Perhaps the most interesting case among all Turing’s formulae of different orders is T1, known as

just Turing’s formula, as an estimator of π0. Given a sample, π0 represents the total probability

associated with categories not observed in the sample, which is also the probability that the next

observation will belong to a category previously unseen. Since the multinomial model is essentially

nonparametric, the fact that something could be said about the total probability associated with

unobserved categories is somewhat anti-intuitive. The statistical properties of Turing’s formula

were largely unknown until Robbins (1968) gave an interpretation in terms of bias. Another fifteen

years would pass before Esty (1983) gave a sufficient condition for the asymptotic normality of

T1 − π0. In recent years, research on Turing’s formula has been revitalized. Zhang and Huang

(2007) gave another interpretation of Turing’s formula and proposed an improved version of the

formula which essentially eliminated all the bias of Turing’s original formula. Zhang and Huang

(2008) gave a sufficient condition for the normality of Turing’s formula which supports a non-empty

class of fixed distributions. Zhang and Zhang (2009) gave a necessary and sufficient condition for

the normality of Turing’s formula. However all the works thus far are on Turing’s formula of the

first order. Prior to this paper, the distributional properties of high order Turing’s formulae are

unknown.

For any fixed integer R ≥ 1, let TR = (T1−π0, · · · , TR−πR−1)
′. The objective of this paper is

to establish the asymptotic multivariate normality of TR under certain conditions. Toward that

end, the first step is to establish the asymptotic normality of Tr − πr−1, for a fixed r, 1 ≤ r ≤ R,

i.e., to show, under certain conditions, for some g(n) → ∞, g(n)(Tr−πr−1)
L−→ N(0, σ2) where σ2

is a function of {pk}. The result is derived in Section 3. The results on the multivariate normality

of TR are derived in Section 4.
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2 Preliminary Results.

Let K1 = {1} and K2 = {2, · · ·}. For any k ∈ K = K1 ∪K2, let

fk(x) =


pk x = r − 1,
−r/(n− r + 1) x = r,
0 0 ≤ x ≤ r − 2 or x ≥ r + 1,

(2.1)

and Z =
∑

fk(Xk). The objective is to derive the asymptotic behavior of Zg(n), where g(n) is a

function of n satisfying

g(n) = O(n1−2δ) (2.2)

for some δ ∈ (0, 1/4), in terms of the limit of its characteristic function, E[exp(isZg(n))]. Let

Z = Z1 + Z2, where Z1 =
∑

K1
fk(Xk) and Z2 =

∑
K2

fk(Xk). Lemma 2.1 below is a well-known

fact and Lemma 2.2 is due to Bartlett (1938).

Lemma 2.1 Let {Xk} be the counts of observations in category k, k = 1, 2, · · ·, in an iid sample

under the multinomial model with probability distribution {pk}. Then

P (Xk = xk; k = 1, · · ·) = P (Yk = xk; k = 1, · · · |
∑

Yk = n)

where {Yk} are independent Poisson random variables with mean npk.

Lemma 2.2 Let (U, V ) be a two-dimensional random vector with U integer valued. Then

E(exp(ivV |U = n)) = (2πP (U = n))−1
∫ π

−π
E[exp(iu(U − n) + ivV )]du.

Thus E(exp(isZg(n))) is

(
2πP

(∑
Yk = n

))−1
∫ π

−π
E
[
exp

(
iu
∑

(Yk − npk) + isZg(n)
)]

du.

By Stirling’s formula, (2πn)1/2P (
∑

Yk = n) → 1. Therefore it suffices to evaluate the limit of

Hn(s) =

√
n√
2π

∫ π

−π
E[exp(iu

∑
(Yk − npk) + isZg(n))]du,
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or letting t = un1/2,

Hn(s) =
1√
2π

∫ +∞

−∞
1[|t|<π

√
n]E[exp(i(n)−1/2t

∑
(Yk − npk) + isZg(n))]dt. (2.3)

Let
hn = 1[|t| < π

√
n]E[exp(i(n)−1/2t

∑
(Yk − npk) + isZg(n)]

hn1 = 1[|t| < π
√
n]E[exp(i(n)−1/2t(Y1 − np1) + isZ1g(n)]

hn2 = 1[|t| < π
√
n]E[exp(i(n)−1/2t

∑
K2

(Yk − npk) + isZ2g(n)],

(2.4)

Hn(s) =
1√
2π

∫ +∞

−∞
hndt =

1√
2π

∫ +∞

−∞
hn1hn2dt. (2.5)

The first task is to allow the limit operator to change place with the integral operator, i.e., to

show limHn(s) =
1√
2π

∫
limhndt where lim = limn→∞ as is observed elsewhere in the subsequent

text. The key element to support this exchange is

lim

∫
|hn1|dt =

∫
lim |hn1|dt, (2.6)

where
|hn1| = 1[|t|≤π

√
n]

{
exp(−itn1/2p1) exp[np1(e

itn−1/2 − 1)]

+2[(np1)
r−1 exp(−np1)/(r − 1)! + (np1)

r exp(−np1)/r!]
}

is an upper bound for |hn1| and hence, since |hn2| ≤ 1 implies |hn| ≤ |hn1|, an upper bound for

|hn|. The proof of (2.6) is given by Zhang and Huang (2008) for a special case of r = 1, however

the proof is also valid for any r ≥ 1.

By (2.6) and the extended dominated convergence theorem of Pratt (1960), the following

lemma is established.

Lemma 2.3 Let hn and Hn be as defined in (2.3) and (2.5) respectively. Then

limHn =
1√
2π

∫
limhndt.
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For each k, it can be verified that, letting

Bk = exp(−itpkn
1/2)[exp(npk(exp(itn

−1/2)− 1))]

Ck = exp(−itpkn
1/2)(exp(ispkg(n))− 1) exp(it(r − 1)n−1/2) exp(−npk)

(npk)
r−1

(r−1)!

Dk = exp(−itpkn
1/2)[exp(−isr(n− r + 1)−1g(n))− 1] exp(itrn−1/2) exp(−npk)

(npk)
r

r! ,

and Ek = Ck + Dk, hn =
∏
(Bk + Ek) for all t ∈ 0 ± π

√
n. The objective is to evaluate

lim
∏
(Bk + Ek).

The following two lemmas are given by Esty (1983) where “∼” is equality in the limit as is

observed elsewhere in the subsequent text.

Lemma 2.4 Let {βk} and {ϵk} be two sequences of complex numbers, and Mn be a sequence of

subsets of K, indexed by n. If

1.
∏

Mn
βk ∼ β,

2. (
∑

Mn
ϵk) ∼ ϵ,

3. βk ∼ 1 uniformly,

4. ϵk ∼ 0 uniformly,

5. there exists a constants, δ1 such that,
∑

Mn
|βk − 1| ≤ δ1, and

6. there exists a constants, δ2 such that,
∑

Mn
|ϵk| ≤ δ2;

then ∏
Mn

(βk + ϵk) ∼ βeϵ

where β and ϵ may also depend on n.

Lemma 2.5 For all k ∈ K, Bk = exp((−t2/2)pk +O(t3pkn
−1/2)).

The next lemma includes three trivial but useful facts.
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Lemma 2.6 1. For any complex number x satisfying |x| < 1, | ln(1 + x)| ≤ |x|
1−|x| .

2. For any real number x ∈ [0, 1), 1− x ≥ exp
(
− x

1−x

)
.

3. For any real number x ∈ (0, 1/2), 1
1−x < 1 + 2x.

Proof. (1) By Taylor’s formula, | ln(1 + x)| = |
∑∞

j=1(−1)j+1xj/j| ≤
∑∞

j=1 |x|j = |x|/(1 − |x|).

(2) The function y = 1
1+te

t is strictly increasing over [0,∞), and has value 1 at t = 0. Therefore

1
1+te

t ≥ 1 for t ∈ [0,∞). The desired inequality follows the change of variable x = t/(1 + t). (3)

The proof is trivial. 2

Consider a partition of the index set K = I ∪ II where

I = {k; pk ≤ r/n1−δ∗} and II = {k; pk > r/n1−δ∗}

where δ∗ = δ/(R+ 1) and δ is as in (2.2).

Lemma 2.7 (a)
∑

II |Ek| → 0; and (b)
∏

II(Bk + Ek)/
∏

II Bk → 1.

Proof. (a)
∑

II |Ek| ≤ 2
∑

II [e
−npk(npk)

(r−1)/(r − 1)! + e−npk(npk)
r/r!]. Since the derivative of

[e−np(np)(r−1)/(r − 1)! + e−np(np)r/r!] with respect to p is negative for all p ∈ (r/n, 1] (and

therefore for all p ∈ (r/n1−δ∗ , 1]), [e−npk(npk)
(r−1)/(r−1)!+e−npk(npk)

r/r!] attains its maximum

at pk = r/n1−δ∗ , for every k ∈ II, with value e−rnδ∗
O(nrδ∗). The total number of indices in II is

less or equal to n1−δ∗/r. Therefore

∑
II

|Ek| ≤ 2[n1−δ∗/r][e−rnδ∗
O(nrδ∗)] = (2/r)e−rnδ∗

O
(
n1+(r−1)δ∗

)
→ 0.

(b) By Lemma 2.5, |Bk| is bounded away from zero, and by the fact that lim |Ek| = 0 (and

hence lim |Ek|/|Bk| = 0), and by applying the first part of Lemma 2.6 with x = Ek/Bk, one has

|ln [
∏

II(Bk +Ek)/
∏

II Bk]| =
∣∣∣∑II ln

(
1 + Ek

Bk

)∣∣∣ ≤∑
II

∣∣∣ln (1 + Ek
Bk

)∣∣∣
≤
∑

II

(
|Ek|

|Bk|−|Ek|

)
= O(

∑
II |Ek|) → 0.

2
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The following is a sufficient condition under which many of the subsequent results are estab-

lished.

Condition 2.1 As n → ∞,

1.
∑

nr−2g2(n)prke
−npk → cr ≥ 0,

2.
∑

nr−1g2(n)pr+1
k e−npk → cr+1 ≥ 0, and

3. cr + cr+1 > 0.

Lemma 2.8 Under Condition 2.1, all the conditions of Lemma 2.4 are satisfied with Mn = I,

βk = Bk, β = B = lim
∏

Bk, ϵk = Ek, and ϵ = E = lim
∑

Ek.

The proof of Lemma 2.8 is given in Appendix. Lemma 2.4 and Lemma 2.8 give immediately the

following corollary.

Corollary 2.1 Under Condition 2.1,
∏

I(Bk + Ek) ∼
∏

I Bk exp(
∑

I Ek).

Lemma 2.9 Under Condition 2.1,
∏
(Bk+Ek) → BeE, where B = lim

∏
Bk and E = lim

∑
Ek.

Proof.∏
(Bk + Ek) =

∏
I(Bk + Ek)

∏
II(Bk + Ek) ∼

∏
I(Bk + Ek)

∏
II Bk (by Lemma 2.7)

∼
∏

I Bk(exp
∑

I Ek)
∏

II Bk (by Lemma 2.8)

∼
∏

Bk(exp
∑

Ek) (by Lemma 2.7). 2

3 Univariate Normality.

Theorem 3.1 Let g(n) be as in (2.2). Under Condition 2.1,

g(n)(Tr − πr−1)
L→ N

(
0,

cr+1 + rcr
(r − 1)!

)
.
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Proof. Since lim
∏

Bk = e−
t2

2 , by (a) of Lemma 2.7 and (5.2),

lim
∑

Ek = − s2

2(r − 1)!

[
lim

∑
nr−1g2(n)pr+1

k e−npk + r lim
∑ g2(n)nrprk

(n− r + 1)2
e−npk

]
,

limHn =

(
1√
2π

∫
e−

t2

2 dt

)
e
− s2

2(r−1)!

[
lim
∑

nr−1g2(n)pr+1
k

e−npk+r lim
∑ g2(n)nrpr

k
(n−r+1)2

e−npk

]

= e
− s2

2

[ cr+1
(r−1)!

+ rcr
(r−1)!

]
.

2

Consider the following condition:

Condition 3.1 As n → ∞,

1. g2(n)
n2 E(Nr) → cr

r! ≥ 0,

2. g2(n)
n2 E(Nr+1) → cr+1

(r+1)! ≥ 0, and

3. cr + cr+1 > 0.

Lemma 3.1 Condition 2.1 and Condition 3.1 are equivalent.

The proof of Lemma 3.1 is given in Appendix. Lemma 3.1 allows a re-statement of Theorem 3.1:

Theorem 3.2 If there exists a g(n) satisfying (2.2) and Condition 3.1, then

n(Tr − πr−1)√
r2E(Nr) + (r + 1)rE(Nr+1)

L→ N(0, 1).

Theorem 3.3 If there exists a g(n) satisfying (2.2) and Condition 3.1, then

n(Tr − πr−1)√
r2Nr + (r + 1)rNr+1

L→ N(0, 1).

The proof of Theorem 3.3 is given in Appendix.

It may be of interest to note that the results of Theorems 3.2 and 3.3 require no further

knowledge of g(n), i.e., the knowledge of δ, other than its existence.
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4 Multivariate Normality.

For every k ∈ K, any two constants a and b, and any two positive integers r1 and r2, let fk(x) in

(2.1) be redefined as

fk(x) =



apk x = r1 − 1,
−ar1/(n− r1 + 1) x = r1 ̸= r2 − 1,
bpk x = r2 − 1 ̸= r1,
−br2/(n− r2 + 1) x = r2,
bpk − ar1/(n− r1 + 1) x = r1 = r2 − 1,
0 elsewhere,

(4.1)

and Z =
∑

fk(Xk). The objective is to evaluate limHn(s) = (2π)−1/2
∫
limhndt where Hn(s)

and hn have the same forms as in (2.4) and (2.5) but with fk(x) redefined in (4.1). Two separate

cases are to be considered: r1 < r2 − 1 and r1 = r2 − 1.

Let

Bk = exp(−itpkn
1/2)[exp(npk(exp(itn

−1/2)− 1))]

Ck = exp(−itpkn
1/2)(exp(isapkg(n))− 1) exp(it(r1 − 1)n−1/2) (npk)

r1−1

(r1−1)! e−npk

Dk = exp(−itpkn
1/2)[exp(−isar1(n− r1 + 1)−1g(n))− 1] exp(itr1n

−1/2) (npk)
r1

r1!
e−npk

Fk = exp(−itpkn
1/2)(exp(isbpkg(n))− 1) exp(it(r2 − 1)n−1/2) (npk)

r2−1

(r2−1)! e−npk

Gk = exp(−itpkn
1/2)[exp(−isbr2(n− r2 + 1)−1g(n))− 1] exp(itr1n

−1/2) (npk)
r2

r2!
e−npk

Ak = exp(−itpkn
1/2){exp[isg(n)(bpk − a r1

n−r1+1)− 1]} exp(itr1n−1/2) (npk)
r1

r1!
e−npk .

If r1 < r2 − 1, let Ek = Ck +Dk + Fk + Gk. If r1 = r2 − 1, let Ek = Ck + Ak + Gk. It can be

verified that, in either case, hn =
∏
(Bk + Ek) for all t ∈ 0 ± π

√
n. The objective is to evaluate

lim
∏
(Bk + Ek).

Condition 4.1 As n → ∞,

1. g2(n)
n2 E(Nr1) →

cr1
r1!

≥ 0,

2. g2(n)
n2 E(Nr1+1) →

cr1+1

(r1+1)! ≥ 0,
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3. cr1 + cr1+1 > 0,

4. g2(n)
n2 E(Nr2) →

cr2
r2!

≥ 0,

5. g2(n)
n2 E(Nr2+1) →

cr2+1

(r2+1)! ≥ 0, and

6. cr2 + cr2+1 > 0.

Lemma 4.1 For any two constants, a and b satisfying a2 + b2 > 0, assuming that r1 < r2 − 1

and that Condition 4.1 holds, then

g(n)[a(Tr1 − πr1−1) + b(Tr2 − πr2−1)]
L→ N(0, σ2)

where σ2 = a2
cr1+1+r1cr1

(r1−1)! + b2
cr2+1+r2cr2

(r2−1)! .

The proof of Lemma 4.1 is straight forward in light of the argument that led to Theorem 3.1.

Lemma 4.2 For any two constants, a and b satisfying a2 + b2 > 0, assuming that r1 = r2 − 1

and that Condition 4.1 holds, then

g(n)[a(Tr1 − πr1−1) + b(Tr2 − πr2−1)]
L→ N(0, σ2)

where σ2 = a2
cr1+1+r1cr1

(r1−1)! − 2ab
cr2

(r1−1)! + b2
cr2+1+r2cr2

(r2−1)! .

The proof of Lemma 4.2 is also straight forward in light of the argument that led to Theorem 3.1,

but with an additional non-vanishing term in the limit.

Let σ2
r = r2E(Nr) + (r + 1)rE(Nr+1), ρr(n) = −r(r + 1)E(Nr+1)/(σrσr+1), ρr = lim ρr(n),

σ̂2
r = r2Nr + (r + 1)rNr+1, and ρ̂r = ρ̂r(n) = −r(r + 1)Nr+1/

√
σ̂2
r σ̂

2
r+1.

Corollary 4.1 Assume that r1 < r2 − 1 and that Condition 4.1 holds, then

n [(Tr1 − πr1−1)/σr1 , (Tr2 − πr2−1)/σr2 ]
′ L→ MVN (0, I2×2) .
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Corollary 4.2 Assume that r1 = r2 − 1 and that Condition 4.1 holds, then

n [(Tr1 − πr1−1)/σr1 , (Tr2 − πr2−1)/σr2 ]
′ L→ MVN

(
0,

(
1 ρr1
ρr1 1

))
.

Remark 4.1 Corollaries 4.1 and 4.2 suggest that, in {n[(Tr − πr−1)/σr]; r = 1, · · · , R}, any two

entries are asymptotically independent unless they are immediate neighbors in the series.

Theorem 4.1 For any positive integer R, if Condition 3.1 holds for every r, 1 ≤ r ≤ R, then

n [(T1 − π0)/σ1, · · · , (TR − πR−1)/σR]
′ L→ MVN(0,Σ)

where Σ = (ai,j) is a R × R covariance matrix with all the diagonal elements being ar,r = 1 for

r = 1, · · · , R, the super-diagonal and the sub-diagonal elements being ar,r+1 = ar+1,r = ρr for

r = 1, · · · , R− 1, and all the other off-diagonal elements being zeros.

Let Σ̂ be the resulting matrix of Σ with ρr replaced by ρ̂r(n) for all r. Let Σ̂
−1 denote the inverse

of Σ̂ and Σ̂−1/2 denote any R×R matrix satisfying Σ̂−1 = Σ̂−1/2Σ̂−1/2.

Theorem 4.2 For any positive integer R, if Condition 3.1 holds for every r, 1 ≤ r ≤ R, then

nΣ̂−1/2 [(T1 − π0)/σ̂1, · · · , (TR − πR−1)/σ̂R]
′ L→ MVN(0, IR×R).

An interesting special case of discrete distribution is that of {pk} following a discrete power

law, as known as a Pareto law, in the tail, i.e.,

pk = Ck−λ (4.2)

for all k > d where C > 0 and λ > 1 are unknown parameters describing the tail of the probability

distribution beyond an unknown positive integer d. This partially parametric probability model

is subsequently referred to as “the tail model”. Suppose it is of interest to estimate C and λ. An

estimation procedure is proposed in this section.
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Lemma 4.3 Under the model in (4.2), Condition 4.1 holds.

Proof. Letting δ = (4λ)−1 in (2.2), it can be verified that nr−2g2(n)
∑

prke
−npk → cr > 0 for every

integer r > 0. 2

Corollary 4.3 Under the model in (4.2), the results of both Theorems 4.1 and 4.2 hold.

5 Appendix.

5.1 Proof of Lemma 2.8.

All six conditions in Lemma 2.4 need to be checked.

(3) is true because

Bk = exp(−(t2/2)pk) exp(O((t3/
√
n)pk))),

and pk and pk/
√
n are uniformly bounded by r

n1−δ∗ and r√
nn1−δ∗ respectively.

For (1), since
∑

I pk → 0,

∏
I

Bk = exp(−(t2/2)
∑
I

pk) exp(O((t3/
√
n)
∑
I

pk))) → 1.

For (4), it suffices to show that |Ck| and |Dk| respectively converge to zero uniformly. First

for all k ∈ I, exp(−itpk
√
n) → 1 uniformly since pk

√
n ≤

√
n

g(n)nδ∗ = O(n−1/2+δ∗) → 0 uniformly.

Second, exp(it(r − 1)n−1/2) → 0 and exp(itrn−1/2) → 0 uniformly. Third, exp(−npk) ≤ 1

uniformly. By Taylor’s expansion and for sufficiently large n,

[exp(ispkg(n))− 1] (npk)
r−1

(r−1)! =

(
isg(n)pk −

s2g2(n)p2k
2! −O

(
s3g3(n)p3k

)) (npk)
r−1

(r−1)!

=
isnr−1g(n)prk

(r−1)! − s2nr−1g2(n)pr+1
k

2!(r−1)! −O
(
s3nr−1g3(n)pr+2

k

)
≤
∣∣∣∣ isnr−1g(n)prk

(r−1)!

∣∣∣∣+ ∣∣∣∣ s2nr−1g2(n)pr+1
k

2!(r−1)!

∣∣∣∣+ ∣∣∣O (s3nr−1g3(n)pr+2
k

)∣∣∣
≤ srr

(r−1)!n
−2δ+ r

R+1
δ + s2rr+1

2!(r−1)!n
−4δ+ r+1

R+1
δ +O

(
n−6δ+ r+2

R+1
δ
)
→ 0

uniformly.
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Similarly, it is easily checked that[
exp(−isr(n− r + 1)−1g(n))− 1

] (npk)
r

r! =
(
− isrg(n)

n−r+1 − s2r2g2(n)
2!(n−r+1)2

+O
(

s3r3g3(n)
3!(n−r+1)3

))
(npk)

r

r!

= − isrg(n)nrprk
r!(n−r+1) − s2r2g2(n)nrprk

2!r!(n−r+1)2
+O

(
s3g3(n)nrprk
(n−r+1)3

)

≤
∣∣∣ isrg(n)nrprk
r!(n−r+1)

∣∣∣+ ∣∣∣∣ s2r2g2(n)nrprk
2!r!(n−r+1)2

∣∣∣∣+ ∣∣∣∣O( s3g3(n)nrprk
(n−r+1)3

)∣∣∣∣
≤ srr

(r−1)!
n

n−r+1n
−2δ+ r

R+1
δ + s2rr+2

2!r!
n2

(n−r+1)2
n−4δ+ r

R+1
δ +O

(
n3

(n−r+1)3
n−6δ+ r

R+1
δ
)
→ 0

uniformly. Therefore Ek → 0 uniformly.

For (2) and (6),

Ek = e−npk exp(−itpk
√
n) exp(it(r − 1)n−1/2)

[
isnr−1g(n)prk

(r−1)! − s2nr−1g2(n)pr+1
k

2!(r−1)!

−O
(
s3nr−1g3(n)pr+2

k

)]
+e−npk exp(−itpk

√
n) exp(itrn−1/2)

[
− isrg(n)nrprk

r!(n−r+1) − s2r2g2(n)nrprk
2!r!(n−r+1)2

+O

(
s3g3(n)nrprk
(n−r+1)3

)]

= e−npk exp(−itpk
√
n) exp(it(r − 1)n−1/2)

[
isnr−1g(n)prk

(r−1)! − s2nr−1g2(n)pr+1
k

2!(r−1)!

−O
(
s3nr−1g3(n)pr+2

k

)]
+e−npk exp(−itpk

√
n) exp(itrn−1/2)

[
− isg(n)nr−1prk

(r−1)! − is(r−1)g(n)nr−1prk
(r−1)!(n−r+1) − s2r2g2(n)nrprk

2!r!(n−r+1)2

+O

(
s3g3(n)nrprk
(n−r+1)3

)]

= e−npke−itpk
√
neit(r−1)n−1/2

{
isnr−1g(n)prk

(r−1)! − s2nr−1g2(n)pr+1
k

2!(r−1)! −O
(
s3nr−1g3(n)pr+2

k

)

+
(
1 + it√

n
− t2

2!n −O( it3

3!n3/2 )
) [

− isg(n)nr−1prk
(r−1)! − is(r−1)g(n)nr−1prk

(r−1)!(n−r+1) − s2r2g2(n)nrprk
2!r!(n−r+1)2

+O

(
s3g3(n)nrprk
(n−r+1)3

)]}
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= e−npke−itpk
√
neit(r−1)n−1/2

{
− is(r−1)g(n)nr−1prk

(r−1)!(n−r+1) − s2nr−1g2(n)pr+1
k

2!(r−1)! − s2r2g2(n)nrprk
2!r!(n−r+1)2

+O

(
s3g3(n)nrprk
(n−r+1)3

)
−O

(
s3nr−1g3(n)pr+2

k

)

+
(

it√
n
− t2

2!n −O( it3

3!n3/2 )
) [

− isg(n)nr−1prk
(r−1)! − is(r−1)g(n)nr−1prk

(r−1)!(n−r+1) − s2r2g2(n)nrprk
2!r!(n−r+1)2

+O

(
s3g3(n)nrprk
(n−r+1)3

)]}
.

(5.1)

Noting the uniform convergence of e−itpk
√
neit(r−1)n−1/2 → 1 and Condition 2.1, it can be

checked that all terms in (5.1) vanish under lim
∑

I , except possibly the first three terms within

the curly brackets, i.e.,

lim
∑

k∈I Ek = lim
∑

k∈I

{
e−npk

[
− is(r−1)g(n)nr−1prk

(r−1)!(n−r+1) − s2nr−1g2(n)pr+1
k

2!(r−1)! − s2r2g2(n)nrprk
2!r!(n−r+1)2

]}

= − is(r−1)
(r−1)! lim

∑
k∈I

g(n)nr−1prk
(n−r+1) e−npk − s2

2!(r−1)! lim
∑

k∈I n
r−1g2(n)pr+1

k e−npk

− s2r2

2!r! lim
∑

k∈I
g2(n)nrprk
(n−r+1)2

e−npk .

Condition 2.1 guarantees the existence of the second and the third terms above, and the existence

of the third term implies that the first term is zero. Therefore 2) is checked and

lim
∑
k∈I

Ek = − s2

2(r − 1)!

lim∑
k∈I

nr−1g2(n)pr+1
k e−npk + r lim

∑
k∈I

g2(n)nrprk
(n− r + 1)2

e−npk

 . (5.2)

The convergence of
∑

I Ek and hence of
∑

I |Ek| guarantees (6).

For (5), since Bk = exp
(
− t2

2 pk +O(t3pkn
−1/2)

)
and − t2

2 pk +O(t3pkn
−1/2) → 0 uniformly,

|Bk − 1| ≤
| − t2

2 pk +O(t3pkn
−1/2)|

1− | − t2

2 pk +O(t3pkn−1/2)|
≤ O

(
t2

2
pk + t3pkn

−1/2

)

and hence ∑
I

|Bk − 1| ≤ O

(
t2

2

∑
I

pk) +
|t3|√
n

∑
I

pk

)
< O(t2 + |t3|).

2



Normality of Turing’s Formulae 15

5.2 Proof of Lemma 3.1.

Consider the partition of K = I ∪ II. Since pe−np has a negative derivative with respect to p on

interval (1/n, 1] and hence on (r/n1−δ∗ , 1] for large n, pe−np attains its maximum at p = r/n1−δ∗ .

Therefore noting that there are at most nδ∗/r indices in II,

0 ≤ g2(n)
n2

(n
r

)∑
II p

r
k(1− pk)

n−r ≤ g2(n)
n2

(n
r

)∑
II p

r
ke

−(n−r)pk ≤ g2(n)
n2

(n
r

)
er
∑

II pke
−npk

≤ g2(n)
n2

(n
r

)
er
∑

II

(
r

n1−δ∗ e
− nr

n1−δ∗
)
≤ g2(n)

n2

(n
r

)
er n

δ∗

r

(
r

n1−δ∗ e
− nr

n1−δ∗
)

= g2(n)
n2

(n
r

)
er nδ∗

n1−δ∗ e
−nδ∗ → 0.

Thus

lim
g2(n)

n2
E(Nr) = lim

g2(n)

n2

(
n

r

)∑
I

prk(1− pk)
n−r (5.3)

and

limnr−2g2(n)
∑

prk exp(−npk) = limnr−2g2(n)
∑
I

prk exp(−npk). (5.4)

On the other hand,

g2(n)
n2

(n
r

)∑
I p

r
k(1− pk)

n−r ≤ g2(n)
n2

(n
r

)∑
I pke

−(n−r)pk ≤ g2(n)
n2

(n
r

)
exp(r supI pk)

∑
I pke

−npk .

Furthermore, applying 2) and 3) of Lemma 2.6 in the first and the third steps below respec-

tively leads to

g2(n)
n2

(n
r

)∑
I p

r
k(1− pk)

n−r ≥ g2(n)
n2

(n
r

)∑
I p

r
k exp

(
− (n−r)pk

1−pk

)
≥ g2(n)

n2

(n
r

)∑
I p

r
k exp

(
− npk

1−supI pk

)
≥ g2(n)

n2

(n
r

)∑
I exp(−2n(supI pk)

2)prke
−npk .

Noting the fact that lim exp(r supI pk) = 1 and lim exp(−2n(supI pk)
2) = 1 uniformly by the

definition of I,

lim
g2(n)

n2

(
n

r

)∑
I

prk(1− pk)
n−r = lim

g2(n)

n2

(
n

r

)∑
I

prke
−npk ,

and hence, by (5.3) and (5.4) and by the fact that
(n
r

)
∼ nr/r!, the equivalence of the first parts

of Condition 2.1 and Condition 3.1 is established:

lim
g2(n)

n2
E(N1) = (1/r!) limnr−2g2(n)

∑
prk exp(−npk).

The equivalence of the second parts can be established similarly. 2
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5.3 Proof of Theorem 3.3.

Based on Theorem 3.2, it suffices to show that the variances of

ĉr =
r!g2(n)

n2
Nr and ĉr+1 =

(r + 1)!g2(n)

n2
Nr+1

approach zero as n increases to infinity.

V ar(ĉr) =
(r!)2g4(n)

n4
V ar(Nr) =

(r!)2g4(n)

n4

{
E(N2

r )− [E(Nr)]
2
}
. (5.5)

E(N2
r ) = E(Nr) +

∑
k ̸=j

n!
r!r!(n−2r)!p

r
kp

r
j(1− pk − pj)

n−2r

(ENr)
2 =

[(n
r

)∑
prk(1− pk)

n−r
]2

=
(n
r

)2∑
k ̸=j p

r
kp

r
j(1− pk)

n−r(1− pj)
n−r +

(n
r

)2∑
k p

2r
k (1− pk)

2n−2r.

By the first part of Condition 3.1, (r!)2g4(n)
n4 E(Nr) → 0 since g2/n2 → 0.

Therefore

lim (r!)2g4(n)
n4

[
E(N2

r )− (ENr)
2
]

≤ lim g4(n)
n4

[∑
k ̸=j

n!
(n−2r)!p

r
kp

r
j(1− pk − pj)

n−2r − (n!)2

[(n−r)!]2
∑

k ̸=j p
r
kp

r
j(1− pk)

n−r(1− pj)
n−r

]
= lim g4(n)

n4

[∑
k ̸=j

n!
(n−2r)!p

r
kp

r
j(1− pk − pj)

n−2r − n!
(n−2r)!

∑
k ̸=j p

r
kp

r
j(1− pk)

n−r(1− pj)
n−r

]
+ lim g4(n)

n4

[
n!

(n−2r)! −
(n!)2

[(n−r)!]2

] [∑
k ̸=j p

r
kp

r
j(1− pk)

n−r(1− pj)
n−r

]
.

The second term above is bounded by

lim g4(n)
n4

[
n!

(n−2r)! −
(n!)2

[(n−r)!]2

] [∑
k

∑
j p

r
kp

r
j(1− pk)

n−r(1− pj)
n−r

]
= lim

[
n!

(n−2r)! −
(n!)2

[(n−r)!]2

] (n
r

)−2
[
g2(n)
n2

(n
r

)2∑
k p

r
k(1− pk)

n−r
]2

= lim
[

n!
(n−2r)! −

(n!)2

[(n−r)!]2

] (n
r

)−2
[
g2(n)
n2 E(Nr)

]2
=
(
cr
r!

)2
lim

[
n!

(n−2r)! −
(n!)2

[(n−r)!]2

] (n
r

)−2
= 0.
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Noting (1− pj − pk)
n−2r ≤ (1− pj − pk + pjpk)

n−2r = [(1− pj)(1− pk)]
n−2r, and therefore

lim (r!)2g4(n)
n4

[
E(N2

r )− (ENr)
2
]

≤ lim g4(n)
n4

n!
(n−2r)!

[∑
k ̸=j p

r
kp

r
j [(1− pj)(1− pk)]

n−2r −
∑

k ̸=j p
r
kp

r
j(1− pk)

n−r(1− pj)
n−r

]
= lim g4(n)

n4
n!

(n−2r)!

{∑
k ̸=j p

r
kp

r
j [(1− pj)(1− pk)]

n−2r [1− (1− pk)
r(1− pj)

r]
}

≤ lim g4(n)
n4

n!
(n−2r)!

{∑
k ̸=j p

r
kp

r
j [(1− pj)(1− pk)]

n−2r {1− [1− (pk + pj)]
r}
}
.

Noting 1− (1− x)r ≤ (2r − 1)x for all x ∈ [0, 1],

lim (r!)2g4(n)
n4

[
E(N2

r )− (ENr)
2
]

≤ lim g4(n)
n4

n!(2r−1)
(n−2r)!

{∑
k ̸=j p

r
kp

r
j [(1− pj)(1− pk)]

n−2r(pk + pj)
}

= 2 lim g4(n)
n4

n!(2r−1)
(n−2r)!

{∑
k ̸=j p

r+1
k prj [(1− pj)(1− pk)]

n−2r
}
.

On the other hand,∑
k ̸=j p

r+1
k prj(1− pk)

n−2r(1− pj)
n−2r

=
(∑

k ̸=j,pk≤pj +
∑

k ̸=j,pk>pj

)
pr+1
k prj(1− pk)

n−2r(1− pj)
n−2r

≤
∑

k ̸=j,pk≤pj p
r
kp

r+1
j (1− pk)

n−r(1− pj)
n−3r

+
∑

k ̸=j,pk>pj p
r+1
k prj(1− pk)

n−3r(1− pj)
n−r

≤ 2
∑

k

∑
j p

r
kp

r+1
j (1− pk)

n−r(1− pj)
n−3r

≤ 2
∑

k p
r
k(1− pk)

n−r∑
j p

r+1
j (1− pj)

n−3r = 2
(n
r

)−1
E(Nr)

∑
j p

r+1
j (1− pj)

n−3r.

Noting that pr(1 − p)n−3r attains its maximum at p = r/(n − 2r) and hence pr(1 − p)n−3r ≤

rr/(n− 2r)r,

∑
k ̸=j p

r+1
k prj(1− pk)

n−2r(1− pj)
n−2r ≤ 2rr

(n
r

)−1
(n− 2r)−rE(Nr).

Finally

lim (r!)2g4(n)
n4

[
E(N2

r )− (ENr)
2
]
≤ 4 lim g4(n)

n4
n!(2r−1)
(n−2r)!

rr

(nr)(n−2r)r
E(Nr)

= 4rr(2r − 1)cr lim
[
g2(n)
n2

(n−r)!
(n−2r)!(n−2r)r

]
= 0.

The consistency of ĉr follows. The consistency of ĉr+1 can also be similarly proved. 2
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