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ABSTRACT

QIONG SHOU.Semiparametric time-varying coefficient regression model for
longitudinal data with censored time origin. (Under the direction of DR. YANQING

SUN)

In preventive HIV vaccine efficacy trials, thousands of HIV-negative volunteers

are randomized to receive vaccine or placebo, and are monitored for HIV infection.

The primary objective is to assess vaccine efficacy to prevent HIV infection. An impor-

tant aspect of vaccine efficacy trials is to assess whether vaccine decreases secondary

transmission of HIV and ameliorates HIV disease progression in vaccine recipients

who become infected.

This thesis investigates the vaccine effect on the post HIV longitudinal biomark-

ers (e.g., viral loads and CD4 counts) over time since the actual HIV acquisition. The

method applies to the situation when the time of the actual HIV acquisition may be

missing or censored.

The problem is investigated under the semiparametric additive time-varying

coefficient model where the influences of some covariates vary nonparametrically with

time while the effects of the other covariates remain constant. The weighted profile

least squares estimators are developed for the unknown parameters as well as for the

nonparametric coefficient functions. The method uses the expectation maximization

approach to deal with the censored time origin. The asymptotic properties of both

the parametric and nonparametric estimators are derived and the consistent estimates

of the asymptotic variances are given. The numerical simulations are conducted to

examine finite sample properties of the proposed estimators.



iv

ACKNOWLEDGMENTS

Upon the completion of this thesis I would sincerely gratefully express my

thanks to many people. First of all I would like to show my respect and gratitude

to my supervisor, Dr. Yanqing Sun who was greatly helpful and offered invaluable

guidance to me on both academic performance and personal life during my study

at University of North Carolina at Charlotte. Her attitude to research work and her

attitude to life deeply engraved in my heart and memory. Special thanks also go to the

members of the supervisory committee, Dr. Zongwu Cai, Dr. Jiancheng Jiang and

Dr. Ron Sass without whose solid wisdom and abundant assistance I would not have

accomplished my doctoral study. Also I would never forget the generous support from

Dr. Xiyuan Qian at East China University of Science and Technology and Dr. Peter

B. Gilbert at University of Washington and Fred Hutchinson Cancer Research Center.

Without their professional knowledge and endless patience the application would not

have been realized so successfully. Not forgetting to my honorable professors in the

Department of Mathematics and Statistics department who supported me on such an

unforgettable and unique study experience for five years.

Here allow me to express my full love and gratitude to my beloved families.

Speechless thanks for their understanding, their support and their love during so

many years from my birth. Finally, deep gratitude also due to my graduate friends

through the duration of my study in this university. Thank all of them for sharing

their time with me and priceless assistance.



v

TABLE OF CONTENTS

LIST OF TABLES vi

LIST OF FIGURES vii

CHAPTER 1: INTRODUCTION 1

1.1 A motivating example 1

1.2 Existing works 3

CHAPTER 2: ESTIMATION APPROACH THROUGH EM ALGORITHM 4

2.1 Preliminaries 4

2.2 Estimation Procedures 6

2.3 Computational algorithm 9

2.4 Cross-validation bandwidth selection 12

CHAPTER 3: ASYMPTOTIC PROPERTIES 13

CHAPTER 4: A SIMULATION STUDY 18

CHAPTER 5: REAL DATA APPLICATION 29

REFERENCES 39

APPENDIX A: PROOFS OF LEMMA AND THEOREM 45

A.1 Preliminaries 45

A.2 Some Lemmas 47

A.3 Proof of Theorems 62



vi

LIST OF TABLES

TABLE 4.1: Summary statistics from the estimator γ̂ and β̂(t) for no right
censoring 22

TABLE 4.2: Summary statistics from the estimator γ̂ and β̂(t) for 30% right
censoring rate 23

TABLE 4.3: Summary statistics from the estimator γ̂ for misplaced time ori-
gin with cL = 50% 24

TABLE 4.4: Summary statistics from the estimator β̂(t) for misplaced time
origin with cL = 50% 25



vii

LIST OF FIGURES

FIGURE 1.1: Time since actual HIV acqusition in case of Ab+ and PCR+. 2

FIGURE 4.1: Averages in estimating β(t) for n = 300 and h = 0.4. The solid
lines are for β1(t) and the dashed lines are for β0(t). The grey
lines are the true cures. 26

FIGURE 4.2: Sample and estimated standard errors in estimating β(t) for n =
300 and h = 0.4. The solid lines are for β1(t) and the dashed
lines are for β0(t). The grey lines are the estimated standard
error and the black ones are the sample standard error. 27

FIGURE 4.3: Coverage probability of a 95% confidence interval of β(t) for
n = 300 and h = 0.4. The solid lines are for β1(t) and the
dashed lines are for β0(t). 28

FIGURE 5.1: Histogram of the time from the first positive Elisa confirmed by
Western Blot or RNA to each visit, denoted as Tij in the paper. 33

FIGURE 5.2: Histograms of the time from actual HIV acquisition to the first
positive Elisa confirmed by Western Blot or RNA, denoted as Si

in the paper. Figure (a) shows the observed ones (Ri = 1) while
figure (b) shows the counts of censored ones (Ri = 0). 34

FIGURE 5.3: Histograms of the time from the first positive Elisa confirmed by
Western Blot or RNA to ART initiation or censoring, denoted
as Ci in the paper. 35

FIGURE 5.4: The Kaplan Meier estimator of the distribution function of the
time from actual HIV acquisition to the first positive Elisa con-
firmed by Western Blot or RNA. 36

FIGURE 5.5: Figure (a) shows the estimated intercept effect, β0(t) curve and
its 95% pointwise confidence intervals. Figure (b) shows the
estimated squared CD4 effect, β1(t) curve and its 95% pointwise
confidence intervals. Figure (c) shows the estimated treatment
effect, β2(t) curve and its 95% pointwise confidence intervals.
The solid curves are the estimated curves and the dashed curves
are the confidence intervals. 37

FIGURE 5.6: Scatter plot of residuals of the subjects with Ri = 1. 38



CHAPTER 1: INTRODUCTION

1.1 A motivating example

In preventive HIV vaccine efficacy trials, thousands of HIV-negative volunteers

are randomized to receive vaccine or placebo, and are monitored for HIV infection.

The primary objective is to assess vaccine efficacy to prevent HIV infection. An impor-

tant aspect of vaccine efficacy trials is to assess whether vaccine decreases secondary

transmission of HIV and ameliorates HIV disease progression in vaccine recipients

who become infected (cf., Clemens et al., 1997; Halloran et al., 1997; Clements-Mann,

1998; Nabel, 2001; Shiver et al., 2002; HVTN, 2004; IAVI, 2004).

We propose to investigate the vaccine effect on the post HIV longitudinal

biomarkers (e.g., viral loads and CD4 counts). Viral load and CD4 counts have

been found to be highly prognostic for both secondary transmission and progression

to clinical disease in observational studies (cf., Mellors et al., 1997; HIV Surrogate

Marker Collaborative Group, 2000; Quinn et al., 2000; Gray et al., 2001). All previous

analyses of HIV vaccine efficacy trials assessed these biomarkers based on the time

from HIV positive diagnosis. However, it is biologically meaningful to assess whether

vaccination modifies or accelerates the development of these biomarkers over time

since the actual HIV acquisition. This assessment can be challenging since exact

times of actual HIV acquisition are often unobtainable for trial participants. A brief

description of HIV vaccine efficacy trial’s diagnosis algorithm is given in the following.

HIV vaccine trials test volunteers for anti-HIV antibodies at periodic intervals

(e.g., every 3 or 6 months); these antibody-based tests have near-perfect sensitivity

to detect infections that occurred at least four weeks ago but otherwise may miss
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the infection. For all subjects with an HIV antibody positive (Ab+) test, a “look-

back” procedure is applied wherein earlier available blood samples are tested for HIV

infection using a more sensitive antigen-based HIV-specific PCR assay, which has

near-perfect sensitivity if the infection occurred at least one week ago. Therefore,

each infected subject is classified into one of two groups, defined by whether the

earliest HIV positive sample is Ab- and PCR+ or is Ab+ and PCR+. The actual

HIV acquisition time is approximated well by the time at Ab- and PCR+, while

actual infection time occur approximately between the first Ab+ and earlier Ab- test

times in the case of Ab+ and PCR+. The Ab+ and PCR+ cases occur in between

20% and 70% of infected subjects, with the rate depending on the frequency of HIV

testing.

Ti1

1st viral test

......

j-th viral testAb- test

Oi

actual HIV
acquisition

Si

DiLi

Ab+ test

Tij

Figure 1.1: Time since actual HIV acqusition in case of Ab+ and PCR+.

Consider the i = 1, . . . , n subjects who become HIV infected during the HIV

vaccine efficacy trial. Let Oi be the time of actual HIV acquisition, Di the HIV

positive diagnosis time based on the trial’s diagnosis algorithm (first Ab+ test time)

and Li the last Ab- test time. Post-infection biomarkers are measured at times

Ti1, . . . , Tini
, where Tij is the time between the first Ab+ and the time at which the jth

measurement is taken. Let Si be the gap between HIV acquisition and the diagnosis,

Si = Di−Oi. If subject i has an acute sample (Ab- and PCR+), the actual infection

time can be well approximated by Li and in this case let Si = Di −Li. Otherwise, Si

is less than Di − Li. The Si (time origin) is left censored by Di − Li with censoring

indicator Ri: Ri = 1 if Si is observed and Ri = 0 if Si is less than Di − Li. The time
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from actual HIV acquisition to the jth sampling time is then T o
ij = Si + Tij. Figure

1.1 illustrates the set-up.

1.2 Existing works

The sampling times T o
ij = Si + Tij from the actual HIV acquisition are known

when Si is completely observed. In this case many existing statistical methods can

be used to analyze model (2.1). Among others, recent works in this area include

semiparametric methods by Moyeed & Diggle (1994), Zeger & Diggle (1994), and

Liang, Wu & Carroll (2003), nonparametric methods by Hoover, Rice, Wu & Yang

(1998), Wu, Chiang & Hoover (1998), Scheike & Zhang (1998), Wu & Zhang (2002),

Wu & Liang (2004) and Sun & Wu (2003). Martinussen & Scheike (1999, 2000,

2001) and Lin & Ying (2001) considered time-varying coefficients regression models

for longitudinal data and successfully integrated counting process techniques into the

analysis of longitudinal data, providing further bridging between survival analysis,

recurrent events, and time-dependent observations. Sun and Wu (2005) developed

weighted least squares estimation procedure which avoids modeling of the sampling

times is asymptotically more efficient than a single nearest neighbor smoothing which

depends on estimation of the sampling model.



CHAPTER 2: ESTIMATION APPROACH THROUGH EM ALGORITHM

2.1 Preliminaries

Suppose that there is a random sample of n subjects. For subject i, let Yi(t)

be the response process and let Xi(t) and Zi(t) be the possibly time-dependent co-

variates of dimensions (p+1)× 1 and q× 1, respectively, where t is time since actual

acquisition. The proposed general semiparametric time-varying coefficients regression

model assumes that

Yi(t) = βT (t)Xi(t) + γTZi(t) + ϵi(t), i = 1, . . . , n (2.1)

where β(t) is an unspecified (p + 1) × 1 vector of smooth regression functions, γ

is a q × 1 dimensional vector of parameters, and ϵi(t) is a mean-zero process. The

notation xT represents transpose of a vector or matrix x. The first component of X(t)

is specified as 1 in general, giving to a model with a nonparametric baseline. The

effect of X(t) is modeled nonparametrically while the effect of Z(t) follows a given

parameter.

The observations of Yi(t) are taken at time points T o
i1 < T o

i2 < · · · < T o
ini
, where

ni is the total number of observations on the ith subject. The number of observations

taken on the ith subject by time t is N o
i (t) =

∑ni

j=1 I(T
o
ij ≤ t), where I(·) is the

indicator function. Let Ci be the end of follow-up time or censoring time for the ith

subject starting at HIV positive diagnosis (Ab+ test time). The censoring time Ci

will be allowed to depend on the covariates Xi(·) and Zi(·). The responses for the ith

subject can only be observed at the time points before Ci. The censoring time since

the actual time origin (HIV acquisition) is Si + Ci.
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Let

E{dN o
i (t) |Xi(t), Zi(t)} = α(t, Ui(t)) dt ≡ αi(t) dt, i = 1, . . . , n, (2.2)

where Ui(t), a m×1 vector, is the part of the covariates (Xi(t), Zi(t)) that affects the

potential sampling times. The function α(t,u) is an unspecified nonnegative smooth

function.

The time Si from actual HIV acquisition to HIV positive diagnosis may be

left censored. Let Ri = I(Si ≥ Vi) be the censoring indicator. For the applica-

tion concerned here, the censoring time Vi (e.g. Di − Li) is always observed. Let

Di = {Vi, Ci, Ai, Tij, Xi(T
o
ij), Zi(T

o
ij), Yi(T

o
ij), j = 1, . . . , ni}, where Ai is a collection of

possible auxiliary variables that are not of interest in the modelling of Yi(t) but may

be useful in predicting the distribution of Si. The observed data for subject i can

be expressed as Xi = {RiSi, Ri,Di}. The observation is {Si,Di} if Ri = 1 and Di if

Ri = 0. Although exact times T o
ij may be unobtainable, the values Xij = Xi(T

o
ij),

Zij = Zi(T
o
ij) and Yij = Yi(T

o
ij) at T o

ij are known. Denote the observed data by

X = {Xi, i = 1, 2, . . . , n}.

Assume that the censoring time Ci is noninformative in the sense thatE{dN o
i (t)

|Xi(t), Zi(t), Si+Ci ≥ t} = E{dN o
i (t)|Xi(t), Zi(t)} and E{Yi(t)|Xi(t), Zi(t), Si+Ci ≥

t} = E{Yi(t)|Xi(t), Zi(t)}. Assume also that Yi(t) and N o
i (t) are independent condi-

tional on Xi(t), Zi(t) and Si + Ci ≥ t. This assumption implies that, conditional on

covariate processes, sampling times are noninformative for the response. Note that

dependence between response and sampling times as well dependence between sam-

pling times and the censoring time Ci is often induced by ignoring certain covariates

(cf., Miloslavsky et al., 2004 and Zeng, 2005). The stated conditional independence

assumptions make the proposed methods applicable to situations where dependence

may exist among response process, sampling times and censoring time Ci but be-

coming independent by including appropriate additional covariates. A recent work
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by Sun and Lee (2011) on testing independent censoring for longitudinal data pro-

vides needed procedures for checking such assumptions. Let Ni(t) =
∑ni

j=1 I(Tij ≤ t).

Assume E{Yi(t)|Xi(·), Zi(·), Ni(·), Si, Vi, Ci} = E{Yi(t)|Xi(·), Zi(·)}.

When all Si’s are observed, the existing statistical methods cited in Section

1.2 can be used to analyze model (2.1). However, none of these methods address

the problem in which the time origin may be censored. We propose to extend the

investigation of model (2.1) to accommodate this situation.

2.2 Estimation Procedures

It is important to note that if the unobserved or censored Si is treated as

missing, then Si is not missing at random in the sense of Robin (1976). The inverse

probability weighting of complete-cases method of Horvitz and Thompson (1952)

and the augmented inverse probability weighted complete-case method of Robins,

Rotnitzky and Zhao (1994), which have been successfully adapted in Sun and Gilbert

(2011), Sun, Wang and Gilbert (2011) and by many other authors, will not work

in this situation. We propose an estimation procedure based on the missing-data

principle using the EM-algorithm. The EM-algorithm has been applied by Scheike

and Sun (2007) to develop maximum likelihood estimation for tied survival data under

Cox regression model.

Let FS(s|Di) be the conditional distribution of Si given Di. The conditional

distribution of Si given Di and Ri = 0, FS(s|Di, Ri = 0), equals FS(s|Di)/FS(Vi|Di)

for s ≤ Vi and 1 for s > Vi. Assume that max{Si, Vi} is bounded by a predetermined

constant c. This is reasonable since for the application concerned here max{Si, Vi}

is less than the time interval between two consecutive testing times which is usually

between 3 and 6 months. The distribution of Si based on the left censored data can

be estimated by using the right censored data through the transformation {min{c−

Si, c− Vi}, Ri = I(c− Si ≤ c− Vi)}. Thus, the Kaplan-Meier estimator can be used

to estimate the distribution of Si when Si is independent of Di. Otherwise, a failure
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time regression model such as the Cox model (Cox, 1972) can be used to estimate the

conditional distribution FS(s|Di). Observing the censoring time Vi for all subjects is

a key factor in the estimation of FS(s|Di, Ri = 0). Otherwise FS(s|Di, Ri = 0) is not

identifiable.

Let F̂S(s|Di) be the estimated conditional distribution of FS(s|Di). The prob-

ability πi = P (Ri = 1|Di) = P (Si ≥ Vi|Di) can be estimated by π̂i = 1 − F̂S(Vi|Di).

Let dN c
i (t) = I(Si + Ci ≥ t)dN o

i (t). The estimation of model (2.1) will be based on

targeting to minimize the following objective function:

lt(β, γ) =
n∑

i=1

Ri

∫ τ

0

Wi(u){Yi(u)− βT (u)Xi(u)− γTZi(u)}2 dN c
i (u)

+
n∑

i=1

(1−Ri)ÊS

{∫ τ

0

Wi(u){Yi(u)− βT (u)Xi(u)

−γTZi(u)}2 dN c
i (u)|X

}
, (2.3)

where Wi(·) is a nonnegative weight function, and ÊS{·|X} is the estimate of the

conditional expectation, ES{·|X}, of a function of Si given X . For a random function

Gn(t,Xi(t), Zi(t), Yi(t)), ÊS

{∫ τ

0
Gn(u,Xi(u), Zi(u), Yi(u))dN

c
i (u)|X

}
equals

ni∑
j=1

ÊS{Gn(Si + Tij, Xi(T
o
ij), Zi(T

o
ij), Yi(T

o
ij))I(Ci ≥ Tij)I(Si + Tij ≤ τ)|X}

=

ni∑
j=1

ÊS{Gn(Si + Tij, Xij, Zij, Yij)I(Ci ≥ Tij)I(Si + Tij ≤ τ)|X}

=

ni∑
j=1

∫ ∞

0

Gn(s+ Tij, Xij, Zij, Yij)I(Ci ≥ Tij)I(s+ Tij ≤ τ) dF̂S(s|X )

Since Fs(s|X ) is the conditional distribution of Si given X for ith subject with Ri = 0

and Xi = {Si, Ri = 1,Di} ∪ {Di, Ri = 0}, Fs(s|X ) = Fs(s|Di, Ri = 0) by indepen-

dence. This also holds for its estimator F̂s(s|X ) . Hence the above term equals

ni∑
j=1

∫ ∞

0

Gn(s+ Tij, Xij, Zij, Yij)I(Ci ≥ Tij)I(s+ Tij ≤ τ) dF̂S(s|Di, Ri = 0)
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=

ni∑
j=1

∫ ∞

0

Gn(s+ Tij, Xij, Zij, Yij)I(Ci ≥ Tij)I(Tij ≤ τ − s) dF̂S(s|Di)/F̂S(Vi|Di).

Note that the function Gn(u,Xi(u), Yi(u), Zi(u)) maybe depend on the observed data

which makes it measurable with respect to X for each fixed (u,Xi(u), Yi(u), Zi(u)).

Taking derivative of lt(β, γ) with respect to β for a fixed γ yields

∂lt(β, γ)

∂β
= −2

n∑
i=1

≪ Wi(t)Xi(t){Yi(t)− βT (t)Xi(t)− γTZi(t)} dN c
i (t) ≫R, (2.4)

where and hereafter, the notation ≪ Hi(t) ≫R= RiHi(t) + (1 − Ri)ÊS{Hi(t)|X} is

used for a random function Hi(t). This leads to the following estimating function

Ut(β, γ) =
n∑

i=1

≪ Wi(t)Xi(t){Yi(t)− βT (t)Xi(t)− γTZi(t)} dN c
i (t) ≫R . (2.5)

The root of the equation Ut(β, γ) = 0 is denoted by β̃(t, γ). However, from Ut(β, γ) =

0 we obtain
∑n

i=1 ≪ Wi(t)Xi(t)X
T
i (t)β(t) dN

c
i (t) ≫R=

∑n
i=1 ≪ Wi(t)Xi(t){Yi(t) −

ZT
i (t)γ} dN c

i (t) ≫R. The equation has no solution for β(t) for fixed γ because of spar-

sity of the data at time t. However, the solution exists by gathering the data around

a neighborhood of t. Let Ẽzx(t) = n−1
∑n

i=1 ≪
∫ τ

0
Kh(u− t)Zi(u)X

T
i (u) dN

c
i (u) ≫R,

where Kh(t) = h−1K(t/h), K(t) is a symmetric kernel function with a compact sup-

port and h is the bandwidth depending on n. The Ẽyx(t) and Ẽxx(t) are similarly

defined by replacing Zi with Yi and Xi respectively. The local least squares estimator

for β(t) for fixed γ is then given by

β̃(t; γ) = Ỹ T
x (t)− Z̃T

x (t)γ, (2.6)

where Ỹx(t) = Ẽyx(t)(Ẽxx(t))
−1 and Z̃x(t) = Ẽzx(t)(Ẽxx(t))

−1. Replacing β̃(t; γ) for

β(t) in (2.3) and taking derivative with respect to γ, we obtain the profile estimating

equation for γ:

n∑
i=1

∫ t2

t1

≪ Wi(t){Zi(t)− Z̃x(t)Xi(t)}{Yi(t)−XT
i (t)β̃(t; γ)
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−ZT
i (t)γ} dN c

i (t) ≫R= 0. (2.7)

From (2.7), we solve for γ to get γ̂ which equals D̂−1Ŵ where

D̂ = n−1

n∑
i=1

∫ t2

t1

≪ Wi(t){Zi(t)− Z̃x(t)Xi(t)}⊗2dN c
i (t) ≫R

Ŵ = n−1

n∑
i=1

∫ t2

t1

≪ Wi(t){Zi(t)− Z̃x(t)Xi(t)}{Yi(t)−XT
i (t)Ỹ

T
x (t)}dN c

i (t) ≫R .

An estimator of β(t) is given by β̂(t) = β̃(t; γ̂).

When Si is observed for all subjects, Ri = 1. The estimators for β(t) and

γ are reduced to those under Sun and Wu (2005). However, when Si is censored,

the estimating equations (2.4) and (2.7) are weighted according to the conditional

distribution of Si so that the estimated covariate effects correspond to those at the

time since the actual time origin. A key factor for this procedure to work is that the

censoring time Vi is observed for all subjects so that the estimation of FS(s | Di, Ri =

0) is possible.

2.3 Computational algorithm

The boundary effects on the estimation of β(t) and the covariance matrix of

its estimator can be reduced by applying the equivalent kernel for the local linear

approach; see Fan & Gijbels (1996).

Suppose the binary data (T1, B1), (T2, B2), · · · , (Tn, Bn) which are n indepen-

dent and identically distributed copies from (T,B). To estimatem(t0) = E(B|T = t0)

is of interest. Suppose we use symmetric kernel K(x) in local constant method. Then

the local constant estimator of m(t) at point t0 will be

m̂C =
n−1

∑n
i=1Kh(Ti − t0)Bi

n−1
∑n

i=1Kh(Ti − t0)
.

To get the equivalent kernel, we will mimic some notations in Fan & Gijbels
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(1996).

Sn,j(t0) =
n∑

i=1

Kh(Ti − t0)(Ti − t0)
j, j = 0, 1, 2.

Then

Sn(t0) =

 Sn,0(t0) Sn,1(t0)

Sn,1(t0) Sn,2(t0)

 .

Meanwhile the inverse can be written as

S−1
n (t0) =

1

Sn,0(t0)Sn,2(t0)− S2
n,1(t0)

 Sn,2(t0) −Sn,1(t0)

−Sn,1(t0) Sn,0(t0)

 .

As stated in the Section 3.2.2 of Fan & Gijbels (1996), the equivalent kernel

for local linear approach is

K∗
h(t− t0) = eT1 S

−1
n (t0)(1 t− t0)

TKh(t− t0),

where e1 = (1 0)T . Thus we can simplify the equivalent kernel as follows.

K∗
h(t− t0) = eT1 S

−1
n (t0)(1 t− t0)

TKh(t− t0)

=
Kh(t− t0)( 1 0 )

Sn,0(t0)Sn,2(t0)− S2
n,1(t0)

 Sn,2(t0) −Sn,1(t0)

−Sn,1(t0) Sn,0(t0)


 1

t− t0


=

{Sn,2(t0)− Sn,1(t0)(t− t0)}Kh(t− t0)

Sn,0(t0)Sn,2(t0)− S2
n,1(t0)

.

Therefore, the local linear estimator m̂L at point t0 under the model B = m(T )+ ϵ is

n−1
∑n

i=1K
∗
h(Ti − t0)Bi

n−1
∑n

i=1K
∗
h(Ti − t0)

=

∑n
i=1{Sn,2(t0)− Sn,1(t0)(Ti − t0)}Kh(Ti − t0)Bi∑n
i=1{Sn,2(t0)− Sn,1(t0)(Ti − t0)}Kh(Ti − t0)

.

Compared to the local constant estimator above, if we use the following kernel

Wh(Ti − t0) = {Sn,2(t0)− Sn,1(t0)(Ti − t0)}Kh(Ti − t0) (2.8)

instead of Kh(Ti − t0), we simply obtain the local linear estimator.
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Let f(t) be the density function of T . For a interior point t0, the local linear

estimator is asymptotically equivalent to the local constant estimator as h → 0 and

nh5 = O(1) since for a symmetric kernel,
∫
K(x)x dx = 0. Then

n−1ESn,j(t0) = EKh(Ti − t0)(Ti − t0)
j =

∫
Kh(t− t0)(t− t0)

jf(t) dt

=

∫
K(x)hjxjf(t0 + hx) dx = hj(f(t0) + o(h))

∫
K(x)xj dx = o(h).

Especially note that n−1ESn,1(t0) = 0. Hence

m̂L =

∑n
i=1{Sn,2(t0)− Sn,1(t0)(Ti − t0)}Kh(Ti − t0)Bi∑n
i=1{Sn,2(t0)− Sn,1(t0)(Ti − t0)}Kh(Ti − t0)

=
n−1

∑n
i=1{n−1Sn,2(t0)− n−1Sn,1(t0)h

Ti−t0
h

}Kh(Ti − t0)Bi

n−1
∑n

i=1{n−1Sn,2(t0)− n−1Sn,1(t0)h
Ti−t0

h
}Kh(Ti − t0)

≈ n−1
∑n

i=1Kh(Ti − t0)Bi

n−1
∑n

i=1Kh(Ti − t0)
+ op(h

2)

= m̂C + op(h
2).

Thus (nh)1/2(m̂L − m̂C) = op((nh
5)1/2), which means the asymptotic distributions

for the local linear estimator and the local constant estimator are the same for an

interior point t0 as h → 0 and nh5 = O(1). This enables using the equivalent kernel

for the boundary time points while using the kernel in local constant approach for

the interior time points.

In estimating β(t), time points T may be unknown since Si is left censored by

Vi. Then we cannot simply use Sn,j(t0) defined above. Let

Sn,j(t) =
n∑

i=1

≪
∫ τ

0

Kh(u− t)(u− t)jdN c
i (u) ≫R, j = 0, 1, 2.

Now under the new definition of Sn,j(t0), we still have the form of equivalent kernel

in (2.8) for local linear approach of estimating β(t).
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2.4 Cross-validation bandwidth selection

The optimal theoretical bandwidth is difficult to achieve since it would in-

volve estimating the second derivative β′′(t); see Fan and Gijbels (1996) and Cai

and Sun (2002). In practice, the appropriate bandwidth selection can be based on

a cross-validation method. This approach is widely used in nonparametric function

estimation literature; see Rice and Silverman (1991) for leave-one-subject-out cross-

validation approach and Tian, Zucker and Wei (2005) for K-fold cross-validation

approach.

An analog of the K-fold cross-validation approach in the current setting is to

divide the data into K equal-sized groups. Let Dk denote the kth subgroup of data,

then the kth prediction error is given by

PEk(h) =
∑
i∈Dk

≪
∫ t2

t1

[
Yi(t)− (β̂(−k)(t))

TXi(t)− γ̂T
(−k)Zi(t)

]2
dN c

i (t) ≫R, (2.9)

for k = 1, . . . , K, where β̂(−k)(t) and γ̂(−k) are the estimators of β(t) and γ based

on the data without the subgroup Dk. The data-driven bandwidth selection based

on the K-fold cross-validation is to choose the bandwidth h that minimizes the total

prediction error PE(h) =
∑K

k=1 PEk(h). This bandwidth selection procedure will be

further studied and tested empirically through simulations.



CHAPTER 3: ASYMPTOTIC PROPERTIES

In this section we will explore the asymptotic properties of our estimators.

First we will define some notations for the future use. Let

ezx(t) = E(ξi(t)αi(t)Zi(t)X
T
i (t)),

where ξi(t) = I(Si + Ci + c1 ≥ t). Similarly we can define exx(t) and eyx(t). Also

let yx(t) = eyx(t)(exx(t))
−1, zx(t) = ezx(t)(exx(t))

−1 and γ0, β0(t) be the true value or

true curve respectively. Then

yTx (t)− zTx (t)γ0

= (exx(t))
−1eTyx(t)− (exx(t))

−1eTzx(t)γ0

= (exx(t))
−1[E(ξi(t)αi(t)Xi(t)Y

T
i (t))− E(ξi(t)αi(t)Xi(t)Z

T
i (t))γ0]

= (exx(t))
−1E(ξi(t)αi(t)Xi(t)[Y

T
i (t)− ZT

i (t)γ0])

= (exx(t))
−1E(ξi(t)αi(t)Xi(t)[X

T
i (t)β0(t) + ϵT (t)])

= (exx(t))
−1exx(t)β0(t) + E(E[ξi(t)αi(t)Xi(t)ϵ

T (t) | Xi(t), Zi(t), Si + Ci ≥ t])

= β0(t) + E(ξi(t)αi(t)Xi(t)E[ϵT (t) | Xi(t), Zi(t), Si + Ci ≥ t])

= β0(t) + E(ξi(t)αi(t)Xi(t)E[ϵT (t) | Xi(t), Zi(t)]) = β0(t).

Let β∗(t) = ỹTx (t) − z̃Tx (t)γ0 where ỹx(t) = ẽyx(t)(ẽxx(t))
−1, z̃x(t) = ẽzx(t)(ẽxx(t))

−1

and ẽyx(t) =
∫ τ

0
Kh(u − t)eyx(u)du. We have the fact that ẽyx(t) =

∫ τ

0
Kh(u −

t)eyx(u)du
P−→ eyx(u) as h → 0. Similar definitions can de defined for ẽzx(t) and

ẽxx(t). And similar facts hold too. Also we denote the transposes of the matrices by

changing the order of the subscripts. Now let us state the following conditions.
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Conditions (I). Assume that the {ni} are bounded; the {Si} are bounded by

a large enough value L and independent of Di; the kernel function K(·) is symmetric

with compact support on [−1, 1]; the processes Xi(t), Zi(t) and αi(t), 0 ≤ t ≤ τ ,

are bounded by a constant, continuous and their total variations are bounded by a

constant; the values of the jth measurement Xij and Zij are also bounded; (exx(t))
−1

for 0 ≤ t ≤ τ are bounded; the weight function Wi(t) can be written as a difference of

two monotone functions and each converges to a deterministic function so that Wi(t)

converges to w(t) for all i.

Under the conditions above and by Lemma A.2.3 we can prove that Ẽzx(t)

P−→ ezx(t) uniformly in t ∈ [t1, t2] ⊂ [0, τ ]. Similar asymptotic results hold for Ẽyx(t)

and Ẽxx(t). By continuous mapping theorem, the above results lead to the conclusion

that Ỹx(t) and Z̃x(t) converge to yx(t) and zx(t) uniformly in t ∈ [t1, t2] respectively.

Both parametric and nonparametric estimators we proposed in the previous

chapter are consistent. First we apply (2.6) to (2.3), we can get n−1l̃(γ) equals

n−1

n∑
i=1

≪
∫ τ

0

Wi(s){Yi(s)− Ỹx(s)Xi(s) + γT (Z̃x(s)Xi(s)− Zi(s))}2 dN c
i (s) ≫R

which is a random function of γ. This function can be proved to uniformly converge

to a deterministic function of γ. Then followed by Theorem 5.7 of van der Vaart

(1998), we obtained the consistency of γ̂.

Theorem 3.1: (Consistency of γ̂) Under Condition (I), γ̂ = D̂−1Ŵ converges to its

true value γ0 in probability as n → ∞.

Then by the definition of β̂(t), it is apparent to show

Theorem 3.2: (Consistency of β̂(t)) Under Condition (I), β̂(t) = β̃(t; γ̂) converges

to β0(t) in probability uniformly on [t1, t2] as n → ∞, where 0 ≤ t1 ≤ t2 ≤ τ .

Also we can obtain the asymptotic distribution of γ̂ and β̂(t) for a fix t. In
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Section 2.2 γ̂ is the solution of (2.7). So denote U(γ) as

n∑
i=1

∫ t2

t1

≪ Wi(t){Zi(t)− Z̃x(t)Xi(t)}{Yi(t)−XT
i (t)β̃(t; γ)− ZT

i (t)γ} dN c
i (t) ≫R

which is usually called the score function. Then the Taylor expansion of U(γ̂) at γ0

is

n1/2(γ̂ − γ0) = −
(
n−1∂U(γ∗)

∂γT

)−1

[n−1/2U(γ0)],

where γ∗ is on the line segment between γ̂ and γ0. To prove the asymptotic normality

of n1/2(γ̂−γ0), it is sufficient to prove the convergence in probability to a non-singular

matrix of n−1 ∂U(γ∗)
∂γT , and the weak convergence of n−1/2U(γ0). The convergence in

probability can be easily obtained by applying Lemma A.2.2. And n−1/2U(γ0) can be

derived to equal to

n−1/2

n∑
i=1

∫ t2

t1

w(t){Zi(t)− zx(t)Xi(t)}ϵi(t)[RidN
c
i (t)

+Es{(1−Ri)dN
c
i (t) | Di, Ri = 0}] + op(1).

Then applying theorem 5.21 (van der Vaart, 1998) to the sore function, the asymptotic

normality of γ̂ is presented in the following theorem.

Theorem 3.3: (Asymptotic Normality of γ̂) Under Condition (I), n1/2(γ̂ − γ0)
D−→

N (0, D−1V D−1) as n → ∞ where

D = E

(∫ t2

t1

w(t){Zi(t)− zx(t)Xi(t)}⊗2 dN c
i (t)

)
,

V = E

{∫ t2

t1

[Riw(t)(Zi(t)− zx(t)Xi(t))ϵi(t)dN
c
i (t)

+(1−Ri)Es{w(t)(Zi(t)− zx(t)Xi(t))ϵi(t)dN
c
i (t) | Di, Ri = 0}]

}⊗2

.

Based on the equations (A.9) and (A.11), the asymptotic variance above can

be estimated by D̂−1V̂ D̂−1 where

D̂ = n−1

n∑
i=1

∫ t2

t1

≪ Wi(t){Zi(t)− Z̃x(t)Xi(t)}⊗2 dN c
i (t) ≫R,
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V̂ = n−1

n∑
i=1

{∫ t2

t1

≪ Wi(t)(Zi(t)− Z̃x(t)Xi(t))ϵ̂i(t) dN
c
i (t) ≫R

}⊗2

and ϵ̂i(t) = Yi(t)− β̂(t)TXi(t)− γ̂TZi(t). This estimator is consistent estimator of the

asymptotic variance by the consistency of D̂ and V̂ .

Before demonstrating the asymptotic normality of β̂(t) at each fixed time point

t, we first introduce the following notations. We know thatN c
i (t) is a counting process.

Let the filtration F c
t = σ{N c

i (s), Ri, Xi(·), Zi(·), Yi(·), 0 ≤ s ≤ t}. By the Doob-Meyer

decomposition theorem, under this filtration there is a unique pair of a martingale

M c
i (t) and a compensator Ac

i(t) which can be defined as
∫ t

0

∑ni

j=1 I(T
0
ij ≥ s)αc

i(s)ds

such that N c
i (t) = Ac

i(t) +M c
i (t). Let Y

c
i (t) =

∑ni

j=1 I(T
0
ij ≥ t).

By definitions we can obtain that

(nh)1/2(β̂(t)− β∗(t))

= (nh)1/2(β̃(t; γ0)− β∗(t)) + (nh)1/2(γ̂ − γ0)
∂β̃(t; γ0)

∂γ
+Op(n

−1/2h1/2),

and

β∗(t) = β0(t) + (1/2)µ2h
2(exx(t))

−1[e′′xy(t)− e′′xz(t)γ0 − e′′xx(t)β0(t)] + o(h2).

So it suffices to focus on the difference (nh)1/2(β̃(t; γ0) − β∗(t)) to get the following

theorem.

Theorem 3.4: (Asymptotic Normality of β̂(t)) Under Condition (I), ((nh)1/2(β̂(t)−

β0(t) − βBias(t))
D−→ N (0, µ0Σ(t)) for each fixed time point t as n → ∞, h → 0,

nh → ∞ and nh5 = O(1). Here µ0 =
∫ 1

−1
K2(u)du, µ2 =

∫ 1

−1
u2K2(u)du,

βBias(t) = (1/2)µ2h
2(exx(t))

−1[e′′xy(t)− e′′xz(t)γ0 − e′′xx(t)β0(t)

+2e′xx(t)β
′
0(t) + exx(t)β

′′
0 (t)],

and Σ(t) is a positive semidefinite matrix.

Based on the equation (A.14), the covariance matrix of β̂(t) can be estimated
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by

n−2(Ẽxx(t))
−1

[ n∑
i=1

(
≪

∫ τ

0

Kh(u− t)Xi(u)ϵ̂i(u)dN
c
i (u) ≫R

)⊗2]
(Ẽxx(t))

−1,

which is a consistent estimator base on the derivation in Appendix. And since

(nh)1/2(β̂(t)− β0(t)− βBias(t))

= (nh)1/2(β̃(t; γ0)− β0(t)− βBias(t)) + (nh)1/2(γ̂ − γ0)
∂β̃(t; γ0)

∂γ
+Op(n

−1/2h1/2)

= n−1/2

n∑
i=1

h1/2

[
(exx(t))

−1

(
Ri

∫ τ

0

Kh(u− t)Xi(u)ϵi(u)dN
c
i (u)

+(1−Ri)Es

{∫ τ

0

Kh(u− t)Xi(u)ϵi(u)dN
c
i (u) | Di, Ri = 0

})
−D−1

(∫ t2

t1

w(t){Zi(t)− zx(t)Xi(t)}ϵi(t)[RidN
c
i (t)

+Es{(1−Ri)dN
c
i (t) | Di, Ri = 0}]

)
z̃x(t)

]
+O(h1/2) + op(h

1/2) +Op(n
−1/2h5/2) +Op(n

−1/2h1/2),

we can adjust the estimation of covariance matrix of β̂(t) as follows

n−2

n∑
i=1

(
(Ẽxx(t))

−1 ≪
∫ τ

0

Kh(u− t)Xi(u)ϵ̂i(u)dN
c
i (u) ≫R

−D̂−1 ≪
∫ t2

t1

W (t){Zi(t)− Z̃x(t)Xi(t)}ϵ̂i(t)dN c
i (t) ≫R Z̃x(t)

)⊗2

.



CHAPTER 4: A SIMULATION STUDY

A numerical study is conducted to illustrate the feasibility and validity of the

proposed methods. The performances of the estimator for γ are measured through the

bias (Bias), the sample standard error of the estimates (SSE), the estimated standard

error of γ̂(ESE) and the coverage probability of a 95% confidence interval for γ. The

overall performance of the estimator for the jth component βj(·) on the interval [0, τ ]

is evaluated through the square root of integrated average square error

RASE(β̂j(·)) =
{
1

τ

∫ τ

0

(β̂j(t)− βj(t))
2 dt)

}1/2

,

where β̂j(t) is the estimate of βj(t). The simulation uses the unit weight function.

The interval [t1, t2] = [0.15, π] is taken to be [0, τ ] in the estimating functions (2.7).

The performance of the proposed estimators are examined under the following

selected setting of model (2.1). Let Yi(t) follow the semiparametric additive model:

Yi(t) = β0(t) + β1(t)Xi + γZi + ϵi(t), i = 1, . . . , n, (4.1)

where β0(t) = 1− t, β1(t) = 5 sin(t), γ = 8, Xi is uniformly distributed on [0, 1], and

Zi is a Bernoulli random variable with P (Zi = 1) = 0.5. The error process ϵi(t) has

a normal distribution with mean ϕi and variance 1 for subject i where ϕi follows a

standard normal distribution.

For subject i, Si is generated from the uniform distribution on [0, 0.8]. The

first sampling point is set as Ti1 = 0, and the rest Tij’s are generated from a Poisson

process Ni(t) with the intensity rate of λ0 exp(η1Xi+η2Zi) where λ0 = 0.4, η1 = 1 and

η2 = 0.3. Let Yij be the responses Yi(t) at time points T 0
ij = Tij + Si following model
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(4.1). The censoring time Ci is exponentially distributed with the parameter adjusted

to give an approximately 0% or 30% censoring in the time interval [0, τ ] = [0, 4], which

is the probability of max1≤j≤ni
{T 0

i,j∧τ} > Si+Ci, denoted as cR. The average number

of observations in the interval [0, τ ] = [0, 4] per subject is about 3.48.

The following four cases, including three different left censoring percentages for

Si,denoted as cL, and the one that ignores Si by mistreating Tij as the measurement

times since the actual time origin, are conducted to examine the behavior of both

estimators: (1) cL = 0% which means {Si} are observed for all the subjects; (2)

cL = 20%; (3) cL = 50%; and (4) the last case treats Tij as the time since the actual

time origin and Yij = Yi(T
0
ij) as the response at t = Tij. The censoring time Vi is

generated from an uniform distribution [a, b] with the parameters a and b adjusted

to yield desired percentages of left censoring for Si.

The simulation presented in the following is carried out using local linear

approach. As discussed in Section 2.3, to reduce the time consumption of simulations,

the Epanechnikov kernel K(u) = 0.75(1 − u2)I(|u| ≤ 1) is used for the inner points

of time interval, i.e. (3h, τ − 3h) while the equivalent kernel in (2.8) is applied for the

boundary points in [0, 3h]
∪
[τ − 3h, τ ].

For sample sizes n = 200, 300 and 500, and bandwidths h = 0.3, 0.4 and 0.5,

Table 4.1 shows the biases (Bias), the sample standard errors (SSE), the estimated

standard errors (ESE) of γ̂, the coverage probabilities of a 95% confidence interval

for γ and also the square root of integrated average square error (RASE) of both

components of β̂(t) for the first three cases based on 500 simulations when there is

no right censoring. While Table 4.2 shows the same criterions for the first three cases

based on 500 simulations when there is 30% of subjects right-censored during the

time scale. The biases of γ̂ for the first three cases using the proposed method are

small. The sample standard errors of γ̂ are close to its estimated standard errors.

Both standard errors reduce as the sample size increases. When the left censoring
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percentage of Si goes up, the standard errors rise a tiny bit since the increase of

percentage means more unknown information of Si. The coverage probabilities of γ̂

are slightly around 0.95 as expected. The square root of integrated average square

error of β̂0(t) is smaller than that of β̂1(t) because β0(t) is a straight line while β1(t)

is more curvy. Both RASE’s increase together with the left censoring percentage of

Si.

Furthermore, as the bandwidth h changes from small values to big values, there

are more data in the neighborhood. Then for the straight line β1(t), larger bandwidth

makes the estimator fit better. As a result RASE(β̂0(·)) becomes smaller. However

β2(t) is a curve. Larger bandwidth only leads to bigger value of RASE(β̂1(·)).

Table 4.3 present the biases, sample standard errors, estimated standard er-

rors and the coverage probabilities related to γ in the case of mistreating Tij as the

measurement times since the actual time origin. Although both the standard errors

of γ̂ increase compared to the third case with the same left censoring percentage, the

biases are also small, the coverage probabilities are close to 0.95 and two types of

standard errors are also close. This means even the time origin is mistreated, we can

still get an unbiased estimator of γ since γ is time-independent.

Table 4.4 compare the RASE’s in the two cases when the left censoring per-

centage of Si is 50%. An obvious reduction of both RASE’s is shown in the table.

Figure 4.1 shows the average estimates of β(t) = (β0(t), β1(t))
T based on 500

simulations under four cases proposed above. Figure 4.1 (a), (b) and (c) are the plots

of the average of the estimates based on the proposed method corresponding to 0%,

20% and 50% left censoring for Si, and Figure 4.1 (d) corresponds to the fourth case.

Figure 4.1 (a), (b) and (c) show that the estimated curves fit the true curve quite

well. There is an obvious time shift for the covariate effect of Xi in Figure 4.1 (d).

Figure 4.2 shows both the standard errors of β(t) = (β0(t), β1(t))
T based on

500 simulations under four cases proposed above. Figure 4.2 (a), (b) and (c) are the
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plots based on the proposed method corresponding to 0%, 20% and 50% left censoring

for Si, and Figure 4.2 (d) corresponds to the fourth case. In all four plots, the sample

standard error curves are quite close to the estimated standard error curve. In the

first three cases there are big variation at the beginning time while in the fourth case

there are large variation at the end of the time scale. It is related to the amount of

data. According to the generation of data, for each subject the first measure is taken

at Tij = 0. Then in fourth case there are most data at the beginning while least data

at the end. On the other hand, in the first three cases the time point is T o
ij = Si+Tij

which results in a time shift of length Si. Then there are less data near the beginning

and more data near t = 4 than in the fourth case.

Figure 4.3 shows the coverage probability of a pointwise 95% confidence in-

terval for each component of β(t) = (β0(t), β1(t))
T at each time point t based on 500

simulations under four cases proposed above. Figure 4.3 (a), (b) and (c) are the plots

based on the proposed method corresponding to 0%, 20% and 50% left censoring for

Si, and Figure 4.3 (d) corresponds to the fourth case. The doted line in all four plots

are the line when coverage probability is 95%. It is quite clear that all the coverage

probabilities are close to 0.95.
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Table 4.1: Summary statistics from the estimator γ̂ and β̂(t) for no right censoring

cL n h Bias SSE ESE CP RASE(β̂0(t)) RASE(β̂1(t))
0% 200 0.3 −0.0090 0.1794 0.1780 0.958 0.0205 0.0479

0.4 −0.0082 0.1794 0.1786 0.948 0.0172 0.0596
0.5 −0.0078 0.1794 0.1790 0.954 0.0161 0.0858

300 0.3 −0.0009 0.1386 0.1450 0.966 0.0182 0.0500
0.4 0.0011 0.1385 0.1454 0.966 0.0163 0.0639
0.5 0.0013 0.1384 0.1457 0.968 0.0160 0.0907

500 0.3 −0.0083 0.1117 0.1134 0.950 0.0104 0.0323
0.4 −0.0083 0.1116 0.1136 0.952 0.0064 0.0445
0.5 −0.0081 0.1116 0.1137 0.950 0.0056 0.0724

20% 200 0.3 −0.0064 0.1809 0.1781 0.948 0.0279 0.0686
0.4 −0.0064 0.1808 0.1788 0.946 0.0256 0.0758
0.5 −0.0062 0.1810 0.1793 0.944 0.0241 0.0959

300 0.3 0.0022 0.1426 0.1450 0.960 0.0314 0.0772
0.4 0.0027 0.1427 0.1454 0.960 0.0310 0.0864
0.5 0.0033 0.1426 0.1457 0.960 0.0289 0.1061

500 0.3 −0.0059 0.1127 0.1135 0.942 0.0182 0.0704
0.4 −0.0058 0.1127 0.1137 0.944 0.0154 0.0759
0.5 −0.0057 0.1127 0.1139 0.944 0.0147 0.0914

50% 200 0.3 −0.0061 0.1821 0.1784 0.952 0.0905 0.2187
0.4 −0.0055 0.1822 0.1795 0.952 0.0897 0.1960
0.5 −0.0051 0.1822 0.1800 0.952 0.0547 0.1608

300 0.3 0.0051 0.1418 0.1451 0.962 0.0725 0.1798
0.4 0.0058 0.1417 0.1458 0.964 0.0672 0.1743
0.5 0.0060 0.1417 0.1461 0.962 0.0585 0.1626

500 0.3 −0.0050 0.1132 0.1138 0.942 0.0557 0.1824
0.4 −0.0039 0.1147 0.1145 0.948 0.0544 0.1711
0.5 −0.0041 0.1135 0.1143 0.942 0.0431 0.1615
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Table 4.2: Summary statistics from the estimator γ̂ and β̂(t) for 30% right censoring
rate

cL n h Bias SSE ESE CP RASE(β̂0(t)) RASE(β̂1(t))
0% 200 0.3 −0.0131 0.1871 0.1836 0.946 0.0213 0.0479

0.4 −0.0121 0.1873 0.1843 0.946 0.0179 0.0569
0.5 −0.0113 0.1872 0.1848 0.950 0.0172 0.0823

300 0.3 −0.0011 0.1436 0.1500 0.962 0.0243 0.0548
0.4 −0.0009 0.1434 0.1504 0.968 0.0226 0.0667
0.5 −0.0006 0.1432 0.1507 0.968 0.0223 0.0921

500 0.3 −0.0092 0.1154 0.1173 0.948 0.0123 0.0334
0.4 −0.0092 0.1152 0.1175 0.946 0.0076 0.0415
0.5 −0.0089 0.1152 0.1177 0.944 0.0066 0.0677

20% 200 0.3 −0.0084 0.1874 0.1835 0.944 0.0330 0.0745
0.4 −0.0085 0.1875 0.1844 0.950 0.0306 0.0784
0.5 −0.0083 0.1879 0.1850 0.952 0.0290 0.0962

300 0.3 0.0015 0.1468 0.1500 0.960 0.0376 0.0796
0.4 0.0019 0.1469 0.1504 0.962 0.0381 0.0874
0.5 0.0024 0.1470 0.1507 0.962 0.0362 0.1065

500 0.3 −0.0066 0.1160 0.1174 0.942 0.0181 0.0773
0.4 −0.0064 0.1158 0.1176 0.942 0.0148 0.0806
0.5 −0.0063 0.1157 0.1178 0.942 0.0152 0.0924

50% 200 0.3 −0.0081 0.1897 0.1835 0.950 0.0921 0.2330
0.4 −0.0077 0.1897 0.1847 0.952 0.0873 0.2065
0.5 −0.0072 0.1898 0.1854 0.952 0.0565 0.1688

300 0.3 0.0042 0.1467 0.1500 0.962 0.0773 0.1844
0.4 0.0047 0.1468 0.1507 0.960 0.0736 0.1789
0.5 0.0052 0.1467 0.1512 0.962 0.0653 0.1672

500 0.3 −0.0057 0.1164 0.1175 0.942 0.0557 0.1935
0.4 −0.0051 0.1163 0.1179 0.944 0.0491 0.1852
0.5 −0.0049 0.1163 0.1182 0.942 0.0442 0.1683
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Table 4.3: Summary statistics from the estimator γ̂ for misplaced time origin with
cL = 50%

cR n h Bias SSE ESE CP
0% 200 0.3 −0.0016 0.2126 0.2119 0.946

0.4 −0.0005 0.2122 0.2127 0.950
0.5 0.0006 0.2121 0.2134 0.946

300 0.3 0.0019 0.1746 0.1733 0.944
0.4 0.0026 0.1746 0.1738 0.944
0.5 0.0033 0.1745 0.1742 0.948

500 0.3 −0.0066 0.1410 0.1349 0.932
0.4 −0.0058 0.1407 0.1352 0.932
0.5 −0.0052 0.1404 0.1354 0.932

30% 200 0.3 0.0003 0.2251 0.2262 0.946
0.4 0.0014 0.2251 0.2272 0.946
0.5 0.0027 0.2250 0.2281 0.946

300 0.3 0.0019 0.1853 0.1865 0.938
0.4 0.0029 0.1848 0.1871 0.940
0.5 0.0040 0.1845 0.1876 0.946

500 0.3 −0.0106 0.1487 0.1449 0.936
0.4 −0.0096 0.1486 0.1452 0.936
0.5 −0.0086 0.1480 0.1455 0.942
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Figure 4.1: Averages in estimating β(t) for n = 300 and h = 0.4. The solid lines are
for β1(t) and the dashed lines are for β0(t). The grey lines are the true cures.
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Figure 4.2: Sample and estimated standard errors in estimating β(t) for n = 300 and
h = 0.4. The solid lines are for β1(t) and the dashed lines are for β0(t). The grey lines
are the estimated standard error and the black ones are the sample standard error.
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Figure 4.3: Coverage probability of a 95% confidence interval of β(t) for n = 300 and
h = 0.4. The solid lines are for β1(t) and the dashed lines are for β0(t).



CHAPTER 5: REAL DATA APPLICATION

In this chapter a real data from the step study (cf., Buchbinder et al., 2008;

Fitzgerald et al., 2011) is analyzed by applying the methods discussed in previous

chapters. The step study was a multicenter, double-blind, randomized, placebo-

controlled, phase II test-of-concept study to determine whether the MRKAd5 HIV-1

gag/pol/nef vaccine, which elicits T cell immunity, is capable to result in controlling

the replication of the Human immunodeficiency virus among the participants who

got HIV-infected after vaccination. This study opened in December 2004 and was

conducted at 34 sites in North America, the Caribbean, South America, and Australia.

Three thousand HIV-1 negative participants aged from 18 to 45 who were at high risk

of HIV-infection were enrolled and randomly assigned to receive vaccine (X2 = 1) or

placebo (X2 = 0) in ratio 1:1, stratified by sex, study site (Z3 = 1 if North America

or Australia and 0 otherwise) and adenovirus type 5 (Ad5) antibody titer at baseline

(Z1 = lnAd5). Some of the participant were fully adherent to vaccinations (Z2 = 1)

while others not (Z2 = 0).

The analysis in this chapter includes a subset of the 3000 participants which

involves all 174 MITT cases as of September 22, 2009. It is recommended to study

males only, for the entire analysis to avoid the effect of sex since there are only

15 females that are < 10% of the sample. All 159 males got HIV-infected at time

0 which may be not observed. However, each participants had the records of the

dates of their first positive Elisa confirmed by Western Blot or RNA (Di’s in the

above chapters), their first evidence of infection, and the estimated dates of infection

which is considered as the midpoint between last RNA negative visit date (Li’s in
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the above chapters) which is not given in the data, and the date of first evidence of

infection. Using the above dates, we can calculate our Vi in the above chapters by

Vi = Di − Li = Di − 2× estimated infection dates + the date of first evidence of

infection. And Ri, the indicator of whether the actual acquisition of ith subject is

observed or not, is 1 if the date of first evidence of infection is before the date of

first positive Elisa. Otherwise Ri = 0. When Ri = 1, Vi = Si. Otherwise Si is left

censored by Vi.

After the participant was infected, there were 18 scheduled post-infection visit

per subject at weeks 0, 1, 2, 8, 12, 26, and every 26 weeks thereafter through week

338. However, the actual times and dates of visits may vary due to each individual.

During jth visit, the ith subject received tests to have the measurements of HIV virus

load (Yij = log10(virus load)) and CD4 cell counts (X1ij = square root of CD4 counts)

before the subject started the antiretroviral therapy (ART) or was censored. And the

time from the first positive Elisa to the jth visit for ith subject is Tij in the above

chapters. The time between the first positive Elisa and ART initiation or censoring

is the right censoring time. All the time in this chapter is in year. Our main interest

is to see the effect of vaccine on the HIV virus load response.

In the data 159 males made a total of 791 pre-ART visits. Among them there

are 156 missing in CD4 cell counts and 5 missing in HIV virus load. Since there are

no missing in CD4 and virus load at the same time, we could use a simple imputation

model to create a complete data set. At each time point separately, we use a linear

regression model linking log10(viral load) to square root of CD4 count (for those with

data on both), and use the viral load value for those with missing data to fill in the

missing CD4 cell count or predict missing virus load data by CD4 values. However,

at three time points there are no complete data for conducting the linear regression

model fitting; at two other points there are only one complete data which is unable to

complete the linear model fitting; at another time point one predicted value of virus
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load is relatively far beyond the range of other values of virus load and may affect

the analysis results. Therefore, we delete these six visits to get the complete data for

the entire analysis.

Now in this complete data set there are 159 subjects with 785 visits. 97 Of all

the participants were in the vaccine group while 62 received the placebo. 122 subjects

participate in the study in North America or Australia and the rest are residents in

the other sites mentioned at the beginning of this chapter. The left censoring rate of

Si is 70.44% and the right censoring rate of Tij is 69.81%. Figure 5.1 to Figure 5.3

are further exploration of the data. It is easy to figure out that there are few data

after time point 2.5. Therefore, we will choose t1 = 0 and t2 = 2.5 to estimate γ, and

also plot the estimators of β(t)’s for the time points in the interval [0,2.5]. Finally,

Figure 5.4 shows the Kaplan Meier estimator of the distribution of Si. Note that the

smallest observed Si is 0.14. Before that time we do not have enough information to

get the estimator of the distribution. However, since time is always nonnegative, the

probability of Si reduce to 0 at Si = 0.

After preliminary exploration of the data, we propose the following model for

virus load response of the ith subject in this study:

Yi(t) = β0(t) + β1(t)X1i(t) + β2(t)X2i + γ1Z1i + γ2Z2i + γ3Z3i + ϵi(t). (5.1)

By the study of simulation and several tries of different bandwidths, a possible rea-

sonable choice of the bandwidth for this data set is 0.5. And we still consider the

unit weight for the analysis. The estimates of γ1, γ2 and γ3 are 0.0302, −0.1467 and

0.1956, with the standard deviations 0.0389, 0.1492 and 0.1540, respectively. The

p-values for testing H0 : γ1 = 0, H0 : γ2 = 0 and H0 : γ3 = 0 are equal to 0.4375,

0.3255 and 0.2042, respectively, which indicates that there are no significant effects

of baseline Ad5 titer, study sites or the pre-protocol on the HIV viral load level. The

estimates of time-dependent effects and their 95% pointwise confidence interval are



32

shown in Figure 5.5. From the graph the effects of vaccine or CD4 cell count on the

HIV viral load level are not significant, either. Further hypothesis test study will be

done in the future. Finally Figure 5.6 shows the scatter plot of the residuals from

fitting the model (5.1).
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Figure 5.1: Histogram of the time from the first positive Elisa confirmed by Western
Blot or RNA to each visit, denoted as Tij in the paper.
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Figure 5.2: Histograms of the time from actual HIV acquisition to the first positive
Elisa confirmed by Western Blot or RNA, denoted as Si in the paper. Figure (a)
shows the observed ones (Ri = 1) while figure (b) shows the counts of censored ones
(Ri = 0).
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Figure 5.3: Histograms of the time from the first positive Elisa confirmed by Western
Blot or RNA to ART initiation or censoring, denoted as Ci in the paper.
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APPENDIX A: PROOFS OF LEMMA AND THEOREM

Now we will show the detailed proofs of five lemmas and four theorems we

present in Chapter 3. In Section A.2, Lemma A.2.1 is used to prove Lemma A.2.2.

The results of Lemma A.2.2 and Lemma A.2.3 states the consistent properties of our

proposed notation ≪≫R. Lemma A.2.4 is the basis of getting Lemma A.2.5. We

will repeatedly apply Lemmas A.2.2, A.2.3 and A.2.5 in proofs of theorems in Section

A.3.

A.1 Preliminaries

Preparing for future application in this section, we first derive the martingale

decomposition of the Kaplan-Meier estimator of the survival function for the left

censored data.

In general, we have the i.i.d. data structure of the left censored data as follows,

{Ti = max(Si, Ci), δi = I(Si ≥ Ci)},

where Si is the failure time censored by Ci, Ti is observed time and δi is the indicator

of non-censorship for ith subject. Suppose L be a large enough number so that all

Si < L. Then

{L− Ti = min(L− Si, L− Ci), δi = I(L− Si ≤ L− Ci)}

is the corresponding right censored data structure. Let S(t) = P (Si > t) and SR(t) =

P (L−Si > t) be the survival functions of the failure time for the left and right censored

data respectively. And Ŝ(t), ŜR(t) are the Kaplan-Meyer estimators of the survival

functions respectively. Now define the counting process NR
i (t) = I(L−Ti ≤ t, δi = 1).
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By the Doob-Meyer decomposition, there is a compensator
∫ t

0
Y R
i (s)dΛR(s) and a

martingaleMR
i (t) so that N

R
i (t) =

∫ t

0
Y R
i (s)dΛR(s)+MR

i (t). Here Y
R
i (t) = I(L−Ti ≥

t) is the at risk indicator and ΛR(t) is the cumulative hazard function. Let NR(t) =∑n
i=1N

R
i (t), M

R(t) =
∑n

i=1M
R
i (t) and Y R(t) =

∑n
i=1 Y

R
i (t) =

∑n
i=1 I(Ti ≤ L − t).

Assume that Y R(t)/n
P−→ yR(t). Hence according to Equation (2.11) in Chapter 3

on Page 98 of Fleming & Harrington (1991), we have the decomposition

n1/2(ŜR(t)− SR(t)) = −n1/2SR(t)

∫ t

0

ŜR(s−)

SR(s)

I(Y R(s) > 0)

Y R(s)
dMR(s) + op(1).

Since

S(t) = P (Si > t) = P (L− Si < L− t) = 1− P (L− Si ≥ L− t) = 1− SR((L− t)−),

then for the left censored data

n1/2(Ŝ(t)− S(t))

= −n1/2[ŜR((L− t)−)− SR((L− t)−)]

= n1/2SR((L− t)−)

∫ (L−t)−

0

ŜR(s−)

SR(s)

I(Y R(s) > 0)

Y R(s)
dMR(s) + op(1)

= n−1/2(1− S(t))

∫ (L−t)−

0

1− Ŝ(L− s)

1− S((L− s)−)

I(Y R(s) > 0)

Y R(s)/n
dMR(s) + op(1)

= n−1/2(1− S(t))

∫ (L−t)−

0

1

yR(s)
dMR(s) + op(1). (A.1)

Now let us define the following notations for the future use.

XI
zi(u) =

∫ u

0

[RiZi(w)X
T
i (w)dN

c
i (w)− E(Riξi(w)αi(w)Zi(w)X

T
i (w))dw],

XII
zi (t) =

∫ ∞

0

∫ L

0

∫ t

t1

E

{
(1−Ri)Zi(u)X

T
i (u)α

∗
i (u− s)

I(x ≤ (L− Vi)−)

Fs(Vi)

}
·(exx(u))−1dudFs(s)

dMR
i (x)

yR(x)

−
∫ L−

0

∫ (L−x)−

0

∫ t

t1

E

{
(1−Ri)

Zi(u)X
T
i (u)α

∗
i (u− s)

Fs(Vi)

}
·(exx(u))−1du dFs(s)

dMR
i (x)

yR(x)
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+

∫ L

0

∫ t

t1

E

{
(1−Ri)

Zi(u)X
T
i (u)α

∗
i (u− s)

Fs(Vi)

}
Fs(s)

·(exx(u))−1du
dMR

i ((L− s)−)

yR((L− s)−)
,

XIII
zi (u) =

∫ u

0

(Es{(1−Ri)Zi(w)X
T
i (w)dN

c
i (w) | Di, Ri = 0}

−E{(1−Ri)ξi(w)αi(w)Zi(w)X
T
i (w)}dw),

and

XI
zn(u) = n−1/2

n∑
i=1

XI
zi(u), X

II
zn(t) = n−1/2

n∑
i=1

XII
zi (t), X

III
zn (u) = n−1/2

n∑
i=1

XIII
zi (u).

Similarly, we can define XI
yi(u), X

II
yi (t), X

III
yi (u), XI

yn(u), X
II
yn(t), X

III
yn (u), XI

xi(u),

XIII
xi (u), XI

xn(u), X
III
xn (u) by replacing Zi(·) above with Yi(·) and Xi(·) respectively.

However

XII
xi (t) =

∫ ∞

0

∫ L

0

∫ t

t1

βT (u)E

{
(1−Ri)Xi(u)X

T
i (u)α

∗
i (u− s)

I(x ≤ (L− Vi)−)

Fs(Vi)

}
·(exx(u))−1dudFs(s)

dMR
i (x)

yR(x)

−
∫ L−

0

∫ (L−x)−

0

∫ t

t1

βT (u)E

{
(1−Ri)

Xi(u)X
T
i (u)α

∗
i (u− s)

Fs(Vi)

}
·(exx(u))−1du dFs(s)

dMR
i (x)

yR(x)

+

∫ L

0

∫ t

t1

βT (u)E

{
(1−Ri)

Xi(u)X
T
i (u)α

∗
i (u− s)

Fs(Vi)

}
Fs(s)

·(exx(u))−1du
dMR

i ((L− s)−)

yR((L− s)−)
.

Then XII
xn(t) = n−1/2

∑n
i=1X

II
zi (t).

A.2 Some Lemmas

Lemma A.2.1: Let a random function gi(t) = g(t,Xi(t), Zi(t), Yi(t)). Then under

Conditions (I), for t ∈ [t1, t2] ⊂ [0, τ ],

n−1

n∑
i=1

(1−Ri)Ês

{∫ t2

t1

gi(u)dN
c
i (u) | Di, Ri = 0

}
P−→ E

{
(1−Ri)

∫ t2

t1

gi(u)dN
c
i (u)

}
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as n → ∞.

Proof. As mentioned in Section 2.2,

n−1

n∑
i=1

(1−Ri)Ês

{∫ t2

t1

gi(u)dN
c
i (u) | Di, Ri = 0

}
= n−1

n∑
i=1

(1−Ri)

∫ L

0

ni∑
j=1

gi(s+ Tij)I(Ci ≥ Tij)
dF̂s(s | Di)

F̂s(Vi | Di)

= n−1

n∑
i=1

(1−Ri)

∫ L

0

ni∑
j=1

gi(s+ Tij)I(Ci ≥ Tij)
dFs(s | Di)

Fs(Vi | Di)
(A.2)

+n−1

n∑
i=1

(1−Ri)

∫ L

0

ni∑
j=1

gi(s+ Tij)I(Ci ≥ Tij)

(
dFs(s | Di)

F̂s(Vi | Di)
− dFs(s | Di)

Fs(Vi | Di)

)

+n−1

n∑
i=1

(1−Ri)

∫ L

0

ni∑
j=1

gi(s+ Tij)I(Ci ≥ Tij)
dF̂s(s | Di)− dFs(s | Di)

F̂s(Vi | Di)

If F̂s(s | Di) is the Kaplan-Meier estimator of conditional survival function, we

still have F̂s(s | Di)
P−→ Fs(s | Di), F̂s(Vi | Di)

P−→ Fs(Vi | Di). Then by continuous

theorem, 1/F̂s(Vi | Di)
P−→ 1/Fs(Vi | Di). So under the Conditions (I) the second

term in (A.2) which is equal to

n−1

n∑
i=1

(1−Ri)

∫ L

0

ni∑
j=1

gi(s+ Tij)I(Ci ≥ Tij)

(
1

F̂s(Vi | Di)
− 1

Fs(Vi | Di)

)
dFs(s | Di)

converges to zero in probability. Since Si is independent of Di and remind that

Ni(t) =
∑ni

j=1 I(Tij ≤ t), the third term in (A.2) is equal to

n−1

n∑
i=1

(1−Ri)

∫ L

0

ni∑
j=1

gi(s+ Tij)I(Ci ≥ Tij)
dF̂s(s)− dFs(s)

Fs(Vi | Di)
+ op(1)

= n−1

n∑
i=1

(1−Ri)

∫ L

0

(∫ t2−s

t1−s

gi(s+ v)I(Ci ≥ v)dNi(v)

)
d(F̂s(s)− Fs(s))

Fs(Vi | Di)

+op(1)

=

∫ L

0

[
n−1

n∑
i=1

(1−Ri)

∫ t2−s

t1−s

gi(s+ v)I(Ci ≥ v)dNi(v)
1

Fs(Vi | Di)

]
d(F̂s(s)− Fs(s)) + op(1)
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Let

Hn(s) = n−1

n∑
i=1

(1−Ri)

∫ t2−s

t1−s

gi(s+ v)I(Ci ≥ v)dNi(v)
1

Fs(Vi | Di)
.

So the absolute value of the third term in (A.2) equals∣∣∣∣ ∫ L

0

Hn(s)d(F̂s(s)− Fs(s))

∣∣∣∣
=

∣∣∣∣Hn(L)(F̂s(L)− Fs(L))−Hn(0)(F̂s(0)− Fs(0))−
∫ L

0

(F̂s(s)− Fs(s))dHn(s)

∣∣∣∣
≤ |Hn(L)(F̂s(L)− Fs(L))|+ |Hn(0)(F̂s(0)− Fs(0))|+

∣∣∣∣ ∫ L

0

(F̂s(s)− Fs(s))dHn(s)

∣∣∣∣
≤ |Hn(L)(F̂s(L)− Fs(L))|+ |Hn(0)(F̂s(0)− Fs(0))|

+ sup
s∈[0,L]

|F̂s(s)− Fs(s)|
∫ L

0

|dHn(s)|

Under Conditions (I), by the uniform consistency of F̂s(s) and the convergence of

F̂s(s) at point s = 0, or s = L, the third term converges to zero in probability

uniformly in s as n → ∞. Therefore,

(A.2)
P−→ E

{
(1−Ri)

∫ L

0

ni∑
j=1

gi(s+ Tij)I(Ci ≥ Tij)
dFs(s | Di)

Fs(Vi | Di)

}
= E

{
(1−Ri)Es

(∫ t2

t1

gi(u)dN
c
i (u) | Di, Ri = 0

)}
= E

{
I(Ri = 0)Es

(∫ t2

t1

gi(u)dN
c
i (u) | Di, Ri = 0

)}
= E

{
Es

(
I(Ri = 0)

∫ t2

t1

gi(u)dN
c
i (u) | Di, Ri = 0

)}
= E

{
(1−Ri)

∫ t2

t1

gi(u)dN
c
i (u)

}
The proof of Lemma A.2.1 is completed.

Based on the above lemma, we can easily prove the following lemma.

Lemma A.2.2: Let a random function gi(t) = g(t,Xi(t), Zi(t), Yi(t)). Then under
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Conditions (I), for t ∈ [t1, t2] ⊂ [0, τ ],

n−1

n∑
i=1

≪
∫ t2

t1

gi(u)dN
c
i (u) ≫R

P−→ E

{∫ t2

t1

gi(u)dN
c
i (u)

}
as n → ∞.

Proof. Applying Lemma A.2.1,

n−1

n∑
i=1

≪
∫ t2

t1

gi(u)dN
c
i (u) ≫R

= n−1

n∑
i=1

Ri

∫ t2

t1

gi(u)dN
c
i (u) + n−1

n∑
i=1

(1−Ri)Ês

{∫ t2

t1

gi(u)dN
c
i (u) | X

}
= n−1

n∑
i=1

Ri

∫ t2

t1

gi(u)dN
c
i (u)

+n−1

n∑
i=1

(1−Ri)Ês

{∫ t2

t1

gi(u)dN
c
i (u) | Di, Ri = 0

}
P−→ E

{
Ri

∫ t2

t1

gi(u)dN
c
i (u)

}
+ E

{
(1−Ri)

∫ t2

t1

gi(u)dN
c
i (u)

}
= E

{
Ri

∫ t2

t1

gi(u)dN
c
i (u) + (1−Ri)

∫ t2

t1

gi(u)dN
c
i (u)

}
= E

{∫ t2

t1

gi(u)dN
c
i (u)

}
Lemma A.2.2 is proved.

Lemma A.2.3: Let a random function gi(t) = g(t,Xi(t), Zi(t), Yi(t)). Then under

Conditions (I), for t ∈ [t1, t2] ⊂ [0, τ ], ξi(t) = I(S∗
i + Ci ≥ t),

n−1

n∑
i=1

≪
∫ t2

t1

Kh(u− t)gi(u)dN
c
i (u) ≫R

P−→ E(ξi(t)αi(t)gi(t))

as n → ∞, h → 0 and nh2 → ∞.

Proof. By the definition,

n−1

n∑
i=1

≪
∫ t2

t1

Kh(u− t)gi(u)dN
c
i (u) ≫R

= n−1

n∑
i=1

Ri

∫ t2

t1

Kh(u− t)gi(u)dN
c
i (u)
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+n−1

n∑
i=1

(1−Ri)Ês

{∫ t2

t1

Kh(u− t)gi(u)dN
c
i (u) | X

}
By the independence of subjects, the second term can be written as

n−1

n∑
i=1

(1−Ri)Ês

{∫ t2

t1

Kh(u− t)gi(u)dN
c
i (u) | Di, Ri = 0

}
= n−1

n∑
i=1

(1−Ri)

∫ t2

t1

Kh(u− t)d

(∫ u

0

Ês{gi(v)dN c
i (v) | Di, Ri = 0}

)
.(A.3)

Note that the limits of integration in Lemma A.2.1 can be replaced by 0 and u, and

the convergence is uniform in u. We have

n−1

n∑
i=1

(1−Ri)

[ ∫ u

0

Ês(gi(v)dN
c
i (v) | Di, Ri = 0)−

∫ u

0

Es(gi(v)dN
c
i (v) | Di, Ri = 0)

]
converges to zero in probability uniformly in u ∈ [t1, t2]. So

(A.3) =

∫ t2

t1

Kh(u− t)d

(
n−1

n∑
i=1

(1−Ri)

∫ u

0

Es{gi(v)dN c
i (v) | Di, Ri = 0}

)
+op(1)

=

∫ t2

t1

Kh(u− t)d

(
E

[
(1−Ri)

∫ u

0

Es{gi(v)dN c
i (v) | Di, Ri = 0}

])
+ op(1)

=

∫ t2

t1

Kh(u− t)d

(∫ u

0

E[Es{(1−Ri)gi(v)dN
c
i (v) | Di, Ri = 0}]

)
+ op(1)

=

∫ t2

t1

Kh(u− t)d

(∫ u

0

E{(1−Ri)gi(v)dN
c
i (v)}

)
+ op(1)

=

∫ t2

t1

Kh(u− t)E{(1−Ri)gi(u)dN
c
i (u)}+ op(1).

According to the argument on Page 37 of Sun & Wu (2005), the first term at the

beginning of this proof is equal to∫ t2

t1

Kh(u− t)E{Rigi(u)dN
c
i (u)}+Op(n

−1/2h−1).

So the whole expression equals∫ t2

t1

Kh(u− t)E{Rigi(u)dN
c
i (u)}+

∫ t2

t1

Kh(u− t)E{(1−Ri)gi(u)dN
c
i (u)}
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+Op(n
−1/2h−1) + op(1)

=

∫ t2

t1

Kh(u− t)E{gi(u)dN c
i (u)}+Op(n

−1/2h−1) + op(1)

=

∫ t2

t1

Kh(u− t)E{gi(u)ξi(u)dN0
i (u)}+Op(n

−1/2h−1) + op(1)

=

∫ t2

t1

Kh(u− t)E{E[ξi(u)gi(u)dN
0
i (u) | Xi(u), Zi(u), S

∗
i + Ci ≥ t]}

+Op(n
−1/2h−1) + op(1)

=

∫ t2

t1

Kh(u− t)E{ξi(u)E[gi(u) | Xi(u), Zi(u), S
∗
i + Ci ≥ t]

E[dN0
i (u) | Xi(u), Zi(u), S

∗
i + Ci ≥ t]}+Op(n

−1/2h−1) + op(1)

=

∫ t2

t1

Kh(u− t)E{ξi(u)E[gi(u) | Xi(u), Zi(u)]E[dN0
i (u) | Xi(u), Zi(u)]}

+Op(n
−1/2h−1) + op(1)

=

∫ t2

t1

Kh(u− t)E[ξi(u)E[gi(u) | Xi(u), Zi(u)]αi(u)du] +Op(n
−1/2h−1) + op(1)

=

∫ t2

t1

Kh(u− t)E(E[ξi(u)gi(u)αi(u)du | Xi(u), Zi(u)]) +Op(n
−1/2h−1) + op(1)

=

∫ t2

t1

Kh(u− t)E(ξi(u)gi(u)αi(u)du) +Op(n
−1/2h−1) + op(1)

= E(ξi(t)αi(t)gi(t)) +O(h2) +Op(n
−1/2h−1) + op(1)

P−→ E(ξi(t)αi(t)gi(t))

as n → ∞, h → 0 and nh2 → ∞. Lemma A.2.3 is proved.

Lemma A.2.4:

n1/2

∫ t

t1

(Ẽzx(u)− ezx(u))(exx(u))
−1du

= n−1/2

n∑
i=1

{∫ t+h

t1−h

[
d(XI

zi(v) +XIII
zi (v))((exx(v))

−1 +O(h2))

]
+XII

zi (t)

}
+Op(n

−1/2h2 + n1/2h2) + op(1)

converges weakly to a vector of mean-zero Gaussian processes with continuous paths

as n → ∞, h → 0 and nh4 → 0. Similar results hold for

n1/2

∫ t

t1

(Ẽyx(u)− eyx(u))(exx(u))
−1du
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= n−1/2

n∑
i=1

{∫ t+h

t1−h

[
d(XI

yi(v) +XIII
yi (v))((exx(v))

−1 +O(h2))

]
+XII

yi (t)

}
+Op(n

−1/2h2 + n1/2h2) + op(1),

n1/2

∫ t

t1

βT (u)(Ẽxx(u)− exx(u))(exx(u))
−1du

= n−1/2

n∑
i=1

{∫ t+h

t1−h

[
(βT (u) +O(h2))d(XI

xi(v) +XIII
xi (v))((exx(v))

−1 +O(h2))

]
+XII

xi (t)

}
+Op(n

−1/2h2 + n1/2h2) + op(1).

Proof. By the definitions,

n1/2

∫ t

t1

(Ẽzx(u)− ezx(u))(exx(u))
−1du

= n1/2

∫ t

t1

(
n−1

n∑
i=1

≪
∫ τ

0

Kh(v − u)Zi(v)X
T
i (v)dN

c
i (v) ≫R

−E{ξi(u)αi(u)Zi(u)X
T
i (u)}

)
(exx(u))

−1du

= n−1/2

n∑
i=1

∫ t

t1

[
Ri

∫ τ

0

Kh(v − u)Zi(v)X
T
i (v)dN

c
i (v)

−E{Riξi(u)αi(u)Zi(u)X
T
i (u)}

+(1−Ri)Ês

{∫ τ

0

Kh(v − u)Zi(v)X
T
i (v)dN

c
i (v) | X

}
−E{(1−Ri)ξi(u)αi(u)Zi(u)X

T
i (u)}

]
(exx(u))

−1du

= n−1/2

n∑
i=1

∫ t

t1

[
Ri

∫ τ

0

Kh(v − u)Zi(v)X
T
i (v)dN

c
i (v)

−E{Riξi(u)αi(u)Zi(u)X
T
i (u)}

+(1−Ri)Ês

{∫ τ

0

Kh(v − u)Zi(v)X
T
i (v)dN

c
i (v) | Di, Ri = 0

}
−E{(1−Ri)ξi(u)αi(u)Zi(u)X

T
i (u)}

]
(exx(u))

−1du

= n−1/2

n∑
i=1

∫ t

t1

[
Ri

∫ τ

0

Kh(v − u)Zi(v)X
T
i (v)dN

c
i (v)

−E{Riξi(u)αi(u)Zi(u)X
T
i (u)}

]
(exx(u))

−1du
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+n−1/2

n∑
i=1

∫ t

t1

(1−Ri)

[
Ês

{∫ τ

0

Kh(v − u)Zi(v)X
T
i (v)dN

c
i (v) | Di, Ri = 0

}
−Es

{∫ τ

0

Kh(v − u)Zi(v)X
T
i (v)dN

c
i (v) | Di, Ri = 0

}]
(exx(u))

−1du

+n−1/2

n∑
i=1

∫ t

t1

[
(1−Ri)Es

{∫ τ

0

Kh(v − u)Zi(v)X
T
i (v)dN

c
i (v) | Di, Ri = 0

}
−E{(1−Ri)ξi(u)αi(u)Zi(u)X

T
i (u)}

]
(exx(u))

−1du

= n−1/2

n∑
i=1

∫ t

t1

[ ∫ τ

0

RiKh(v − u)Zi(v)X
T
i (v)dN

c
i (v)

−E{Riξi(u)αi(u)Zi(u)X
T
i (u)}

]
(exx(u))

−1du

+n−1/2

n∑
i=1

∫ t

t1

(1−Ri)

∫ L

0

ni∑
j=1

Kh(s+ Tij − u)ZijX
T
ijI(Ci ≥ Tij)

[
dF̂s(s | Di)

F̂s(Vi | Di)

−dFs(s | Di)

Fs(Vi | Di)

]
(exx(u))

−1du

+n−1/2

n∑
i=1

∫ t

t1

[
(1−Ri)Es

{∫ τ

0

Kh(v − u)Zi(v)X
T
i (v)dN

c
i (v) | Di, Ri = 0

}
−E{(1−Ri)ξi(u)αi(u)Zi(u)X

T
i (u)}

]
(exx(u))

−1du. (A.4)

Now let us look at them summation by summation. The first summation of

(A.4) equals

n−1/2

n∑
i=1

∫ t

t1

[ ∫ τ

0

Kh(v − u)RiZi(v)X
T
i (v)dN

c
i (v)

−
∫ τ

0

Kh(v − u)E{Riξ(v)αi(v)Zi(v)X
T
i (v)}dv +O(h2)

]
(exx(u))

−1du

= n−1/2

n∑
i=1

∫ t

t1

∫ τ

0

Kh(v − u)[RiZi(v)X
T
i (v)dN

c
i (v)

−E{Riξ(v)αi(v)Zi(v)X
T
i (v)}dv](exx(u))−1du+Op(n

1/2h2)

= n1/2

∫ t

t1

∫ τ

0

Kh(v − u)n−1

n∑
i=1

[RiZi(v)X
T
i (v)dN

c
i (v)

−E{Riξ(v)αi(v)Zi(v)X
T
i (v)}dv](exx(u))−1du+Op(n

1/2h2)

=

∫ t

t1

∫ τ

0

Kh(v − u)d

(
n−1/2

n∑
i=1

∫ v

0

[RiZi(w)X
T
i (w)dN

c
i (w)
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−E{Riξi(w)αi(w)Zi(w)X
T
i (w)}dw]

)
(exx(u))

−1du+Op(n
1/2h2).

Let

XI
zn(v) = n−1/2

n∑
i=1

∫ v

0

[RiZi(w)X
T
i (w)dN

c
i (w)− E{Riξi(w)αi(w)Zi(w)X

T
i (w)}dw].

Under Condition (I) XI
zn(v) converges to a vector of mean zero Gaussian processes,

saying XI
z (v) uniformly in v. Then also by the compactness of K(·) and the applica-

tion of the continuous mapping theorem the first summation above equals∫ t

t1

∫ τ

0

Kh(v − u)dXI
zn(v)(exx(u))

−1du+Op(n
1/2h2)

=

∫ t+h

t1−h

[
dXI

zn(v)

∫ t

t1

h−1K(
v − u

h
)(exx(u))

−1du

]
+Op(n

1/2h2)

=

∫ t+h

t1−h

[
dXI

zn(v)((exx(v))
−1 +O(h2))

]
+Op(n

1/2h2)

D−→
∫ t

t1

[
dXI

z (v)((exx(v))
−1)

]
as n → ∞, h → 0 and nh4 → 0.

Then the third summation in (A.4) is equal to

n−1/2

n∑
i=1

∫ t

t1

[ ∫ τ

0

Kh(v − u)Es{(1−Ri)Zi(v)X
T
i (v)dN

c
i (v) | Di, Ri = 0}

−E{(1−Ri)ξi(u)αi(u)Zi(u)X
T
i (u)}

]
(exx(u))

−1du

= n−1/2

n∑
i=1

∫ t

t1

[ ∫ τ

0

Kh(v − u)Es{(1−Ri)Zi(v)X
T
i (v)dN

c
i (v) | Di, Ri = 0}

−
∫ τ

0

Kh(v − u)E{(1−Ri)ξi(v)αi(v)Zi(v)X
T
i (v)}dv +O(h2)

]
(exx(u))

−1du

=

∫ t

t1

[ ∫ τ

0

Kh(v − u)

{
n−1/2

n∑
i=1

(Es{(1−Ri)Zi(v)X
T
i (v)dN

c
i (v) | Di, Ri = 0}

−E{(1−Ri)ξi(v)αi(v)Zi(v)X
T
i (v)}dv)

}]
(exx(u))

−1du+Op(n
1/2h2)
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=

∫ t

t1

[ ∫ τ

0

Kh(v − u)d

{
n−1/2

n∑
i=1

∫ v

0

(Es{(1−Ri)Zi(w)X
T
i (w)dN

c
i (w) | Di, Ri

= 0} − E{(1−Ri)ξi(w)αi(w)Zi(w)X
T
i (w)}dw)

}]
(exx(u))

−1du

+Op(n
1/2h2).

Let

XIII
zn (v) = n−1/2

n∑
i=1

∫ v

0

(Es{(1−Ri)Zi(w)X
T
i (w)dN

c
i (w) | Di, Ri = 0}

−E{(1−Ri)ξi(w)αi(w)Zi(w)X
T
i (w)}dw).

Under Condition (I) XIII
zn (v) converges to a vector of mean zero Gaussian processes,

saying XIII
z (v) uniformly in v. Now follow the argument in discussing the first sum-

mation, we know ∫ t

t1

∫ τ

0

Kh(v − u)dXIII
zn (v)(exx(u))

−1du+Op(n
1/2h2)

=

∫ t+h

t1−h

[
dXIII

zn (v)((exx(v))
−1 +O(h2))

]
+Op(n

1/2h2)

D−→
∫ t

t1

[
dXIII

z (v)((exx(v))
−1)

]
as n → ∞, h → 0 and nh4 → 0.

Under the assumption that {Si} are independent of Di and defining the count-

ing process

N∗
i (t) =

ni∑
j=1

I(Tij ≤ t)I(Ci ≥ t)

with the mean rate

E{dN∗
i (t) | Ri, Xi(t), Yi(t), Zi(t), Vi} = α∗

i (t)dt,

the second summation of (A.4) equals

n−1/2

n∑
i=1

∫ t

t1

(1−Ri)

∫ L

0

ni∑
j=1

Kh(s+ Tij − u)ZijX
T
ijI(Ci ≥ Tij)

[
dF̂s(s)

F̂s(Vi)
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−dFs(s)

Fs(Vi)

]
(exx(u))

−1du

= n−1/2

n∑
i=1

∫ t

t1

(1−Ri)

∫ L

0

∫ τ

0

Kh(v − u)Zi(v)X
T
i (v)dN

∗
i (v − s)

[(
1

F̂s(Vi)

− 1

Fs(Vi)

)
dFs(s) +

dF̂s(s)− dFs(s)

F̂s(Vi)

]
(exx(u))

−1du

= n−1/2

n∑
i=1

∫ t

t1

(1−Ri)

∫ L

0

∫ τ

0

Kh(v − u)Zi(v)X
T
i (v)dN

∗
i (v − s)

Fs(Vi)− F̂s(Vi)

F 2
s (Vi)

dFs(s)(exx(u))
−1du

+n−1/2

n∑
i=1

∫ t

t1

(1−Ri)

∫ L

0

∫ τ

0

Kh(v − u)Zi(v)X
T
i (v)dN

∗
i (v − s)

d(F̂s(s)− Fs(s))

Fs(Vi)
(exx(u))

−1du+ op(1)

= n−1

n∑
i=1

∫ t

t1

∫ L

0

∫ τ

0

(1−Ri)Kh(v − u)Zi(v)X
T
i (v)dN

∗
i (v − s)

n1/2(Ŝs(Vi)− Ss(Vi))

F 2
s (Vi)

dFs(s)(exx(u))
−1du (A.5)

−n−1

n∑
i=1

∫ t

t1

(1−Ri)

∫ L

0

∫ τ

0

Kh(v − u)Zi(v)X
T
i (v)dN

∗
i (v − s)

d[n1/2(Ŝs(s)− Ss(s))]

Fs(Vi)
(exx(u))

−1du (A.6)

+op(1)

Plugging (A.1) into both (A.5) and (A.6), we have

(A.5) = n−1

n∑
i=1

∫ t

t1

∫ L

0

∫ τ

0

(1−Ri)Kh(v − u)Zi(v)X
T
i (v)dN

∗
i (v − s)

n−1/2Fs(Vi)

F 2
s (Vi)∫ (L−(Vi))−

0

dMR(x)

yR(x)
dFs(s)(exx(u))

−1du+ op(1)

=

∫ t

t1

∫ L

0

n−1

n∑
i=1

∫ τ

0

(1−Ri)Kh(v − u)Zi(v)X
T
i (v)dN

∗
i (v − s)

n−1/2

Fs(Vi)∫ ∞

0

I(x ≤ (L− (Vi))−)
dMR(x)

yR(x)
dFs(s)(exx(u))

−1du+ op(1)

= n−1/2

∫ ∞

0

∫ L

0

∫ t

t1

∫ τ

0

Kh(v − u)n−1

n∑
i=1

(1−Ri)Zi(v)X
T
i (v)dN

∗
i (v − s)



58

I(x ≤ (L− (Vi))−)

Fs(Vi)
(exx(u))

−1dudFs(s)
dMR(x)

yR(x)
+ op(1),

and

(A.6) = −n−1

n∑
i=1

∫ t

t1

(1−Ri)

∫ L

0

∫ τ

0

Kh(v − u)
Zi(v)X

T
i (v)dN

∗
i (v − s)

Fs(Vi)

d[n1/2(Ŝs(s)− Ss(s))](exx(u))
−1du

= −n−1

n∑
i=1

∫ t

t1

(1−Ri)

∫ L

0

∫ τ

0

Kh(v − u)
Zi(v)X

T
i (v)dN

∗
i (v − s)

Fs(Vi)

d[n−1/2Fs(s)

∫ (L−s)−

0

dMR(x)

yR(x)
](exx(u))

−1du

= −n−1

n∑
i=1

∫ t

t1

(1−Ri)

∫ L

0

∫ τ

0

Kh(v − u)
Zi(v)X

T
i (v)dN

∗
i (v − s)

Fs(Vi)

n−1/2

∫ (L−s)−

0

dMR(x)

yR(x)
dFs(s)(exx(u))

−1du

+n−1

n∑
i=1

∫ t

t1

(1−Ri)

∫ L

0

∫ τ

0

Kh(v − u)
Zi(v)X

T
i (v)dN

∗
i (v − s)

Fs(Vi)
n−1/2Fs(s)

dMR((L− s)−)

yR((L− s)−)
(exx(u))

−1du

= −n−1/2

∫ L−

0

∫ (L−x)−

0

∫ t

t1

∫ τ

0

Kh(v − u)n−1

n∑
i=1

(1−Ri)
Zi(v)X

T
i (v)

Fs(Vi)

dN∗
i (v − s)(exx(u))

−1du dFs(s)
dMR(x)

yR(x)

+n−1/2

∫ L

0

∫ t

t1

∫ τ

0

Kh(v − u)n−1

n∑
i=1

(1−Ri)
Zi(v)X

T
i (v)dN

∗
i (v − s)

Fs(Vi)
Fs(s)

(exx(u))
−1du

dMR((L− s)−)

yR((L− s)−)
.

Since ∫ τ

0

Kh(v − u)n−1

n∑
i=1

(1−Ri)Zi(v)X
T
i (v)dN

∗
i (v − s)

I(x ≤ (L− (Vi))−)

Fs(Vi)

=

∫ τ

0

Kh(v − u)d

(
n−1

n∑
i=1

∫ v

0

(1−Ri)Zi(w)X
T
i (w)dN

∗
i (w − s)

I(x ≤ (L− (Vi))−)

Fs(Vi)

)
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=

∫ τ

0

Kh(v − u)dE

{∫ v

0

(1−Ri)Zi(w)X
T
i (w)dN

∗
i (w − s)

I(x ≤ (L− (Vi))−)

Fs(Vi)

}
+op(1)

=

∫ τ

0

Kh(v − u)dE

{
E

[ ∫ v

0

(1−Ri)Zi(w)X
T
i (w)dN

∗
i (w − s)

I(x ≤ (L− (Vi))−)

Fs(Vi)

∣∣∣∣Ri, Xi(t), Yi(t), Zi(t), Vi

]}
+ op(1)

=

∫ τ

0

Kh(v − u)dE

{∫ v

0

(1−Ri)Zi(w)X
T
i (w)E[dN∗

i (w − s) | Ri, Xi(t), Yi(t),

Zi(t), Vi]
I(x ≤ (L− (Vi))−)

Fs(Vi)

}
+ op(1)

=

∫ τ

0

Kh(v − u)dE

{∫ v

0

(1−Ri)Zi(w)X
T
i (w)α

∗
i (w − s)dw

I(x ≤ (L− (Vi))−)

Fs(Vi)

}
+op(1)

=

∫ τ

0

Kh(v − u)E

{
(1−Ri)Zi(v)X

T
i (v)α

∗
i (v − s)

I(x ≤ (L− (Vi))−)

Fs(Vi)

}
dv + op(1)

= E

{
(1−Ri)Zi(u)X

T
i (u)α

∗
i (u− s)

I(x ≤ (L− (Vi))−)

Fs(Vi)

}
+O(h2) + op(1)

and similarly ∫ τ

0

Kh(v − u)n−1

n∑
i=1

(1−Ri)
Zi(v)X

T
i (v)dN

∗
i (v − s)

Fs(Vi)

= E

{
(1−Ri)

Zi(u)X
T
i (u)α

∗
i (u− s)

Fs(Vi)

}
+O(h2) + op(1),

then

(A.5) = n−1/2

∫ ∞

0

∫ L

0

∫ t

t1

E

{
(1−Ri)Zi(u)X

T
i (u)α

∗
i (u− s)

I(x ≤ (L− (Vi))−)

Fs(Vi)

}
(exx(u))

−1du dFs(s)
dMR(x)

yR(x)
+Op(n

−1/2h2) + op(1),

(A.6) = −n−1/2

∫ L−

0

∫ (L−x)−

0

∫ t

t1

E

{
(1−Ri)

Zi(u)X
T
i (u)α

∗
i (u− s)

Fs(Vi)

}
(exx(u))

−1

du dFs(s)
dMR(x)

yR(x)

+n−1/2

∫ L

0

∫ t

t1

E

{
(1−Ri)

Zi(u)X
T
i (u)α

∗
i (u− s)

Fs(Vi)

}
Fs(s)(exx(u))

−1

du
dMR((L− s)−)

yR((L− s)−)
+Op(n

−1/2h2) + op(1)
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Thus the second summation of (A.4) equals

n−1/2

[ ∫ ∞

0

∫ L

0

∫ t

t1

E

{
(1−Ri)Zi(u)X

T
i (u)α

∗
i (u− s)

I(x ≤ (L− Vi)−)

Fs(Vi)

}
(exx(u))

−1du dFs(s)
dMR(x)

yR(x)

−
∫ L−

0

∫ (L−x)−

0

∫ t

t1

E

{
(1−Ri)

Zi(u)X
T
i (u)α

∗
i (u− s)

Fs(Vi)

}
(exx(u))

−1du

dFs(s)
dMR(x)

yR(x)

+

∫ L

0

∫ t

t1

E

{
(1−Ri)

Zi(u)X
T
i (u)α

∗
i (u− s)

Fs(Vi)

}
Fs(s)(exx(u))

−1du

dMR((L− s)−)

yR((L− s)−)

]
+Op(n

−1/2h2) + op(1).

By the multivariate martingale central limit theorem, we know that the above three

terms converge weakly to Wiener processes since the integrants of the martingale

integral are deterministic functions.

Above all, Equation (A.4) weakly converges to a vector of mean zero Gaussian

processes with continuous paths as n → ∞, h → 0 and nh4 → 0.

Recall the definitions in Section A.1. We can have the following lemma.

Lemma A.2.5:

n1/2

∫ t

t1

{β̃T (u, γ0)− βT
0 (u)}du

= n−1/2

n∑
i=1

{
XII

yi (t)−XII
zi (t)−XII

xi (t)

+

∫ t+h

t1−h

d(XI
yi(v) +XIII

yi (v)−XI
zi(v)−XIII

zi (v))((exx(v))
−1 +O(h2))

−
∫ t+h

t1−h

(βT (v) +O(h2))d(XI
xi(v) +XIII

xi (v))((exx(v))
−1 +O(h2))

}
+Op(n

−1/2h2 + n1/2h2) + op(1)

converges weakly to a vector of mean zero Gaussian processes with continuous paths

as n → ∞, h → 0 and nh4 → 0.
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Proof. By the definitions,

n1/2

∫ t

t1

{β̃T (u, γ0)− βT
0 (u)}du

=

∫ t

t1

n1/2{Ỹx(u)− γT
0 Z̃x(u)− (yx(u)− γT

0 zx(u))}du

= n1/2

∫ t

t1

{Ỹx(u)− yx(u)}du− γT
0 n

1/2

∫ t

t1

{Z̃x(u)− zx(u)}du

By the continuous mapping theorem, it is sufficient to prove that(
n1/2

∫ t

t1

{Ỹx(u)− yx(u)}du, n1/2

∫ t

t1

{Z̃x(u)− zx(u)}du
)

(A.7)

converges weakly to a vector of mean zero Gaussian processes with continuous sample

paths. And

n1/2

∫ t

t1

{Ỹx(u)− yx(u)}du

= n1/2

∫ t

t1

{Ẽyx(u)(Ẽxx(u))
−1 − eyx(u)(exx(u))

−1}du

= n1/2

∫ t

t1

{[Ẽyx(u)− eyx(u)](Ẽxx(u))
−1 − eyx(u)(Ẽxx(u))

−1[Ẽxx(u)

−exx(u)](exx(u))
−1}du

= n1/2

∫ t

t1

{[Ẽyx(u)− eyx(u)](exx(u))
−1 − eyx(u)(exx(u))

−1[Ẽxx(u)

−exx(u)](exx(u))
−1}du+ op(1)

n1/2
∫ t

t1
{Ỹx(u)−yx(u)}du has a similar decomposition. Under Condition (I), applying

Lemma A.1 of Lin & Ying (2001) and Lemma A.2.4 above,

n1/2

∫ t

t1

{Ỹx(u)− yx(u)}du and n1/2

∫ t

t1

{Z̃x(u)− zx(u)}du

converges weakly to a mean zero Gaussian process respectively. So using the Wald

device, we could have the joint weak convergence of (A.7) which leads to the weak

convergence of n1/2
∫ t

t1
{β̃T (u, γ0) − βT

0 (u)}du with zero mean. This completes the

proof.
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A.3 Proof of Theorems

Proof of Theorem 3.1

By the uniform convergence of Ỹx(t) and Z̃x(t), which can be proved by using

Lemma A.2.3, we have

β̃(t; γ) = Ỹ T
x (t)− Z̃T

x (t)γ
P−→ yTx (t)− zTx (t)γ

uniformly in t ∈ [t1, t2] as n → ∞, h → 0. Since β0(t) = yTx (t) − zTx (t)γ0, by using

(2.6), replace β(s) in (2.3) and Applying Lemma A.2.2 We have n−1l̃(γ) equals

n−1

n∑
i=1

Ri

∫ τ

0

Wi(s){Yi(s)− (Ỹx(s)− γT Z̃x(s))Xi(s)− γTZi(s)}2 dN c
i (s)

+n−1

n∑
i=1

(1−Ri)ÊS

[ ∫ τ

0

Wi(s){Yi(s)− (Ỹx(s)− γT Z̃x(s))Xi(s)

−γTZi(s)}2 dN c
i (s) | X

]
= n−1

n∑
i=1

≪
∫ τ

0

Wi(s){Yi(s)− (Ỹx(s)− γT Z̃x(s))Xi(s)− γTZi(s)}2 dN c
i (s) ≫R

= n−1

n∑
i=1

≪
∫ τ

0

Wi(s){Yi(s)− Ỹx(s)Xi(s) + γT (Z̃x(s)Xi(s)

−Zi(s))}2 dN c
i (s) ≫R

where ∫ τ

0

Wi(s){Yi(s)− Ỹx(s)Xi(s) + γT (Z̃x(s)Xi(s)− Zi(s))}2 dN c
i (s)

=

∫ τ

0

Wi(s)[{Yi(s)− Ỹx(s)Xi(s) + γT (Z̃x(s)Xi(s)− Zi(s))}2 − {Yi(s)

−yx(s)Xi(s) + γT (zx(s)Xi(s)− Zi(s))}2] dN c
i (s)

+

∫ τ

0

Wi(s){Yi(s)− yx(s)Xi(s) + γT (zx(s)Xi(s)− Zi(s))}2 dN c
i (s)

=

∫ τ

0

{−(Ỹx(s)− yx(s)) + γT (Z̃x(s)− zx(s))}Xi(s)Wi(s)[2Yi(s)

−(Ỹx(s) + yx(s))Xi(s) + γT{(Z̃x(s) + zx(s))Xi(s)− 2Zi(s)}]dN c
i (s)

+

∫ τ

0

Wi(s){Yi(s)− yx(s)Xi(s) + γT (zx(s)Xi(s)− Zi(s))}2 dN c
i (s)
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=

∫ τ

0

{−(Ỹx(s)− yx(s)) + γT (Z̃x(s)− zx(s))}Xi(s)Wi(s){−(Ỹx(s)− yx(s))Xi(s)

+γT (Z̃x(s)− zx(s))Xi(s) + 2yx(s)Xi(s) + 2Yi(s)

+γT (2zx(s)Xi(s)− 2Zi(s))}dN c
i (s)

+

∫ τ

0

Wi(s){Yi(s)− yx(s)Xi(s) + γT (zx(s)Xi(s)− Zi(s))}2 dN c
i (s)

=

∫ τ

0

[{−(Ỹx(s)− yx(s)) + γT (Z̃x(s)− zx(s))}Xi(s)]
2Wi(s)dN

c
i (s)

+

∫ τ

0

2{−(Ỹx(s)− yx(s)) + γT (Z̃x(s)− zx(s))}Xi(s)Wi(s){yx(s)Xi(s) + Yi(s)

+γT (zx(s)Xi(s)− Zi(s))}dN c
i (s)

+

∫ τ

0

Wi(s){Yi(s)− yx(s)Xi(s) + γT (zx(s)Xi(s)− Zi(s))}2 dN c
i (s)

So by the linearity of the operation ≪ ≫R,

n−1l̃(γ) = n−1

n∑
i=1

≪
∫ τ

0

[{−(Ỹx(s)− yx(s)) + γT (Z̃x(s)− zx(s))}Xi(s)]
2Wi(s)

dN c
i (s) ≫R

+n−1

n∑
i=1

≪
∫ τ

0

2{−(Ỹx(s)− yx(s)) + γT (Z̃x(s)− zx(s))}Xi(s)Wi(s)

{yx(s)Xi(s) + Yi(s) + γT (zx(s)Xi(s)− Zi(s))}dN c
i (s) ≫R

+n−1

n∑
i=1

≪
∫ τ

0

Wi(s){Yi(s)− yx(s)Xi(s) + γT (zx(s)Xi(s)− Zi(s))}2

dN c
i (s) ≫R +op(1)

The first term equals

n−1

n∑
i=1

Ri

∫ τ

0

[{−(Ỹx(s)− yx(s)) + γT (Z̃x(s)− zx(s))}Xi(s)]
2Wi(s)dN

c
i (s)

+n−1

n∑
i=1

(1−Ri)Ês

{∫ τ

0

[{−(Ỹx(s)− yx(s)) + γT (Z̃x(s)− zx(s))}Xi(s)]
2Wi(s)

dN c
i (s) | X

}
= n−1

n∑
i=1

Ri

∫ τ

0

[{−(Ỹx(s)− yx(s)) + γT (Z̃x(s)− zx(s))}Xi(s)]
2Wi(s)dN

c
i (s)
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+n−1

n∑
i=1

(1−Ri)Es

{∫ τ

0

[{−(Ỹx(s)− yx(s)) + γT (Z̃x(s)− zx(s))}Xi(s)]
2Wi(s)

dN c
i (s) | X

}
+ op(1)

=

∫ τ

0

{−(Ỹx(s)− yx(s)) + γT (Z̃x(s)− zx(s))}
(
n−1

n∑
i=1

RiXi(s)Xi(s)
TW (s)

dN c
i (s)

)
{−(Ỹx(s)− yx(s)) + γT (Z̃x(s)− zx(s))}T

+Es

{∫ τ

0

{−(Ỹx(s)− yx(s)) + γT (Z̃x(s)− zx(s))}
(
n−1

n∑
i=1

(1−Ri)Xi(s)Xi(s)
T

Wi(s)dN
c
i (s)

)
{−(Ỹx(s)− yx(s)) + γT (Z̃x(s)− zx(s))}T | X

}
+ op(1)

=

∫ τ

0

{−(Ỹx(s)− yx(s)) + γT (Z̃x(s)− zx(s))}d
(
n−1

n∑
i=1

∫ s

0

RiXi(u)Xi(u)
TWi(u)

dN c
i (u)

)
{−(Ỹx(s)− yx(s)) + γT (Z̃x(s)− zx(s))}T

+Es

{∫ τ

0

{−(Ỹx(s)− yx(s)) + γT (Z̃x(s)− zx(s))}d
(
n−1

n∑
i=1

∫ s

0

(1−Ri)Xi(u)

Xi(u)
TWi(u)dN

c
i (u)

)
{−(Ỹx(s)− yx(s)) + γT (Z̃x(s)− zx(s))}T | X

}
+op(1).

Since

n−1

n∑
i=1

∫ s

0

RiXi(u)Xi(u)
TWi(u)dN

c
i (u)

P−→ E

{∫ s

0

RiXi(u)Xi(u)
TW (u)dN c

i (u)

}
,

n−1

n∑
i=1

∫ s

0

(1−Ri)Xi(u)Xi(u)
TWi(u)dN

c
i (u)

P−→ E

{∫ s

0

(1−Ri)Xi(u)Xi(u)
TWi(u)dN

c
i (u)

}
and by the uniform convergence of Ỹx(s) and Z̃x(s) which lead to −(Ỹx(s)− yx(s)) +

γT (Z̃x(s)− zx(s))
P−→ 0, the first term converges to zero in probability.
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The second term equals

n−1

n∑
i=1

Ri

∫ τ

0

2{−(Ỹx(s)− yx(s)) + γT (Z̃x(s)− zx(s))}Xi(s)Wi(s){yx(s)Xi(s)

+Yi(s) + γT [zx(s)Xi(s)− Zi(s)]}dN c
i (s)

+n−1

n∑
i=1

(1−Ri)Ês

{∫ τ

0

2{−(Ỹx(s)− yx(s)) + γT (Z̃x(s)− zx(s))}Xi(s)Wi(s)

{yx(s)Xi(s) + Yi(s) + γT [zx(s)Xi(s)− Zi(s)]}dN c
i (s) | X

}
=

∫ τ

0

2{−(Ỹx(s)− yx(s)) + γT (Z̃x(s)− zx(s))}d
(
n−1

n∑
i=1

∫ s

0

RiXi(u)Wi(u)

{yx(u)Xi(u) + Yi(u) + γT [zx(u)Xi(u)− Zi(u)]}dN c
i (u)

)
+Es

{∫ τ

0

2{−(Ỹx(s)− yx(s)) + γT (Z̃x(s)− zx(s))}d
(
n−1

n∑
i=1

∫ s

0

(1−Ri)Xi(u)

Wi(u){yx(u)Xi(u) + Yi(u) + γT [zx(u)Xi(u)− Zi(u)]}dN c
i (u)

)
| X

}
+op(1).

Also

n−1

n∑
i=1

∫ s

0

RiXi(u)Wi(u){yx(u)Xi(u) + Yi(u)

+γT [zx(u)Xi(u)− Zi(u)]}dN c
i (u)

P−→ E

{∫ s

0

RiXi(u)Wi(u){yx(u)Xi(u) + Yi(u)

+γT [zx(u)Xi(u)− Zi(u)]}dN c
i (u)

}
,

n−1

n∑
i=1

∫ s

0

(1−Ri)Xi(u)W (u){yx(u)Xi(u) + Yi(u)

+γT [zx(u)Xi(u)− Zi(u)]}dN c
i (u)

P−→ E

{∫ s

0

(1−Ri)Xi(u)W (u){yx(u)Xi(u) + Yi(u)

+γT [zx(u)Xi(u)− Zi(u)]}dN c
i (u)

}
.

Similarly to the first term, the second term converges to zero in probability.
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Therefore according to our lemma A.2.2,

n−1l̃(γ) = n−1

n∑
i=1

≪
∫ τ

0

Wi(s){Yi(s)− yx(s)Xi(s) + γT (zx(s)Xi(s)

−Zi(s))}2 dN c
i (s) ≫R +op(1)

P−→ E

{∫ τ

0

w(s){Yi(s)− yx(s)Xi(s) + γT (zx(s)Xi(s)− Zi(s))}2 dN c
i (s)

}
= E

{∫ τ

0

w(s){Yi(s)− (yx(s)− γT
0 zx(s))Xi(s)− γT

0 Zi(s)

+(γ − γ0)
T (zx(s)Xi(s)− Zi(s))}2 dN c

i (s)

}
= E

{∫ τ

0

w(s){ϵi(s) + (γ − γ0)
T (zx(s)Xi(s)− Zi(s))}2 dN c

i (s)

}
= E

{∫ τ

0

w(s){ϵ2i (s) + 2ϵi(s)[(γ − γ0)
T (zx(s)Xi(s)− Zi(s))]

+[(γ − γ0)
T (zx(s)Xi(s)− Zi(s))]

2} dN c
i (s)

}
= E

{∫ τ

0

w(s){ϵ2i (s) + [(γ − γ0)
T (zx(s)Xi(s)− Zi(s))]

2} dN c
i (s)

}
+E

{∫ τ

0

2w(s)ϵi(s)(γ − γ0)
T (zx(s)Xi(s)− Zi(s))dN

c
i (s)

}
= E

{∫ τ

0

w(s){ϵ2i (s) + [(γ − γ0)
T (zx(s)Xi(s)− Zi(s))]

2} dN c
i (s)

}
+

∫ τ

0

E{E[2w(s)ϵi(s)(γ − γ0)
T (zx(s)Xi(s)− Zi(s))dN

c
i (s) | Xi(s),

Zi(s)]}

= E

{∫ τ

0

w(s){ϵ2i (s) + [(γ − γ0)
T (zx(s)Xi(s)− Zi(s))]

2} dN c
i (s)

}
+

∫ τ

0

E{2w(s)(γ − γ0)
T (zx(s)Xi(s)− Zi(s))E[ϵi(s)dN

c
i (s) | Xi(s),

Zi(s)]}

= E

{∫ τ

0

w(s){ϵ2i (s) + [(γ − γ0)
T (zx(s)Xi(s)− Zi(s))]

2} dN c
i (s)

}
+

∫ τ

0

E{2w(s)(γ − γ0)
T (zx(s)Xi(s)− Zi(s))E[ϵi(s) | Xi(s), Zi(s)]

E[dN c
i (s) | Xi(s), Zi(s)]}

= E

{∫ τ

0

w(s){ϵ2i (s) + [(γ − γ0)
T (zx(s)Xi(s)− Zi(s))]

2} dN c
i (s)

}
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≡ l0(γ) ≥ l0(γ0) ≡ E

{∫ τ

0

w(s)ϵ2i (s)dN
c
i (s)

}
,

uniformly in γ in Γ. Let d(γ, γ0) be the Euclidean distance between γ and γ0. There-

fore, for every ϵ > 0,

sup
γ:d(γ,γ0)≥ϵ

(−l0(γ)) = − inf
γ:d(γ,γ0)≥ϵ

l0(γ)

= − inf
γ:d(γ,γ0)≥ϵ

E

{∫ τ

0

w(s){ϵ2i (s) + [(γ − γ0)
T (zx(s)Xi(s)− Zi(s))]

2} dN c
i (s)

}
< − inf

γ:d(γ,γ0)≥ϵ
E

{∫ τ

0

w(s){ϵ2i (s)dN c
i (s)

}
= − inf

γ:d(γ,γ0)≥ϵ
l0(γ0)

= sup
γ:d(γ,γ0)≥ϵ

(−l0(γ0)).

Then according to Theorem 5.7 of van der Vaart (1998), we have γ̂
P−→ γ0.

Proof of Theorem 3.2

By continuous mapping theorem, the asymptotic uniform consistency of β̂(t)

on [t1, t2] can be easily obtained by the consistency of γ̂, the uniform consistency of

Ỹx(t) and Z̃x(t) since β̂(t) = Ỹ T
x (t)− Z̃T

x (t)γ̂.

Proof of Theorem 3.3

Recall the score function U(γ) and the Taylor expansion of U(γ̂) at γ0

n1/2(γ̂ − γ0) = −
(
n−1∂U(γ∗)

∂γT

)−1

[n−1/2U(γ0)], (A.8)

where γ∗ is on the line segment between γ̂ and γ0.

By plugging (2.6) into the score function (2.7) we will have

U(γ) =
n∑

i=1

∫ t2

t1

≪ Wi(t){Zi(t)− Z̃x(t)Xi(t)}{Yi(t)−XT
i (t)(Ỹ

T
x (t)

−Z̃T
x (t)γ)− ZT

i (t)γ} dN c
i (t) ≫R

=
n∑

i=1

∫ t2

t1

≪ Wi(t){Zi(t)− Z̃x(t)Xi(t)}{Yi(t)−XT
i (t)Ỹ

T
x (t) + (XT

i (t)Z̃
T
x (t)

−ZT
i (t))γ} dN c

i (t) ≫R .
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Then take the partial derivative with respect to γ, we get

n−1∂U(γ∗)

∂γT
= −n−1

n∑
i=1

∫ t2

t1

≪ Wi(t){Zi(t)− Z̃x(t)Xi(t)}⊗2 dN c
i (t) ≫R . (A.9)

According to the similar argument we discussed in the proof of consistency of γ̂, Z̃x(t)

and Wi(t) can be replaced by their limits zx(t) and w(t) respectively, and this change

only contributes a op(1) difference to the above equation. Thus by Lemma A.2.2

n−1∂U(γ∗)

∂γT
= −n−1

n∑
i=1

≪
∫ t2

t1

w(t){Zi(t)− zx(t)Xi(t)}⊗2 dN c
i (t) ≫R +op(1)

P−→ −E

(∫ t2

t1

w(t){Zi(t)− zx(t)Xi(t)}⊗2 dN c
i (t)

)
= −D.

Now we define B(t) =
∫ t

t1
β0(s)ds and a mean zero process

Mi(t;B, γ, α) =
∫ t

t1

{[Yi(s)− γTZi(s)]dN
c
i (s)− ξi(s)αi(s)X

T
i (s)dB(s)}. (A.10)

For simplicity, we use Mi(t) = Mi(t;B, γ0, α). Also let Oi(t) = N c
i (t)−

∫ t

0
ξi(s)αi(s)ds.

Hence

n−1/2U(γ0) = n−1/2

n∑
i=1

∫ t2

t1

≪ Wi(t){Zi(t)− Z̃x(t)Xi(t)}{Yi(t)−XT
i (t)β̃(t; γ0)

−ZT
i (t)γ0} dN c

i (t) ≫R

= n−1/2

n∑
i=1

∫ t2

t1

≪ Wi(t){Zi(t)− Z̃x(t)Xi(t)}{dMi(t)

+ξi(t)αi(t)X
T
i (t)dB(t)} ≫R

−n−1/2

n∑
i=1

∫ t2

t1

≪ Wi(t){Zi(t)− Z̃x(t)Xi(t)}XT
i (t)β̃(t; γ0) dN

c
i (t) ≫R

= n−1/2

n∑
i=1

∫ t2

t1

≪ Wi(t){Zi(t)− Z̃x(t)Xi(t)}{dMi(t)

−βT
0 (t)Xi(t)dOi(t)} ≫R

−n−1/2

n∑
i=1

∫ t2

t1

≪ Wi(t){Zi(t)− Z̃x(t)Xi(t)}{β̃T (t; γ0)

−βT
0 (t)}Xi(t) dN

c
i (t) ≫R

+n−1/2

n∑
i=1

∫ t2

t1

≪ Wi(t){Zi(t)− Z̃x(t)Xi(t)}{βT
0 (t)X

T
i (t)dOi(t)
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+ξi(t)αi(t)X
T
i (t)β(t)dt− βT

0 (t)X
T
i (t) dN

c
i (t)} ≫R

By the definition of Oi(t), the third term above is equal to zero. Let η be the second

term. Hence

η = n−1/2

n∑
i=1

∫ t2

t1

≪ Wi(t){Zi(t)− Z̃x(t)Xi(t)}{β̃T (t; γ0)

−βT
0 (t)}Xi(t) dN

c
i (t) ≫R

= n−1/2

n∑
i=1

∫ t2

t1

≪ Wi(t){Zi(t)− Z̃x(t)Xi(t)}{β̃T (t; γ0)− βT
0 (t)}Xi(t)[dOi(t)

+ξi(t)αi(t)dt] ≫R

= n−1/2

n∑
i=1

∫ t2

t1

≪ Wi(t){ξi(t)αi(t)Zi(t)X
T
i (t)− Z̃x(t)ξi(t)αi(t)Xi(t)X

T
i (t)}

{β̃(t; γ0)− β0(t)}dt ≫R

+n−1/2

n∑
i=1

∫ t2

t1

≪ Wi(t){Zi(t)− Z̃x(t)Xi(t)}XT
i (t){β̃(t; γ0)

−β0(t)}dOi(t) ≫R .

Denote

η1 = n−1/2

n∑
i=1

∫ t2

t1

≪ Wi(t){ξi(t)αi(t)Zi(t)X
T
i (t)− Z̃x(t)ξi(t)αi(t)Xi(t)X

T
i (t)}

{β̃(t; γ0)− β0(t)}dt ≫R,

η2 = n−1/2

n∑
i=1

∫ t2

t1

≪ Wi(t){Zi(t)− Z̃x(t)Xi(t)}XT
i (t){β̃(t; γ0)− β0(t)}dOi(t) ≫R .

In the following statement we will prove that both terms converge to zero in proba-

bility.

η1 = n−1/2

n∑
i=1

∫ t2

t1

≪ Wi(t){ξi(t)αi(t)Zi(t)X
T
i (t)− zx(t)ξi(t)αi(t)Xi(t)X

T
i (t)}

{β̃(t; γ0)− β0(t)}dt ≫R

−n−1/2

n∑
i=1

∫ t2

t1

≪ Wi(t)(Z̃x(t)− zx(t))ξi(t)αi(t)Xi(t)X
T
i (t)(β̃(t; γ0)

−β0(t))dt ≫R
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= n−1/2

n∑
i=1

∫ t2

t1

RiW (t){ξi(t)αi(t)Zi(t)X
T
i (t)− zx(t)ξi(t)αi(t)Xi(t)X

T
i (t)}

{β̃(t; γ0)− β0(t)}dt

+n−1/2

n∑
i=1

∫ t2

t1

(1−Ri)Ês[Wi(t){ξi(t)αi(t)Zi(t)X
T
i (t)− zx(t)ξi(t)αi(t)Xi(t)

XT
i (t)}{β̃(t; γ0)− β0(t)}dt | X ]

−n−1/2

n∑
i=1

∫ t2

t1

RiW (t)(Z̃x(t)− zx(t))ξi(t)αi(t)Xi(t)X
T
i (t)(β̃(t; γ0)− β0(t))dt

−n−1/2

n∑
i=1

∫ t2

t1

(1−Ri)Ês[Wi(t)(Z̃x(t)− zx(t))ξi(t)αi(t)Xi(t)X
T
i (t)(β̃(t; γ0)

−β0(t))dt | X ].

By the X -measurability of the random functions β̃(·; γ0), Z̃x(·), Xi(·), Zi(·) Ri and

ξi(·), then

η1 = n−1/2

n∑
i=1

∫ t2

t1

RiW (t){ξi(t)αi(t)Zi(t)X
T
i (t)− zx(t)ξi(t)αi(t)Xi(t)X

T
i (t)}

{β̃(t; γ0)− β0(t)}dt

+n−1/2

n∑
i=1

∫ t2

t1

(1−Ri)Wi(t){ξi(t)αi(t)Zi(t)X
T
i (t)− zx(t)ξi(t)αi(t)Xi(t)

XT
i (t)}{β̃(t; γ0)− β0(t)}dt

−n−1/2

n∑
i=1

∫ t2

t1

RiW (t)(Z̃x(t)− zx(t))ξi(t)αi(t)Xi(t)X
T
i (t)(β̃(t; γ0)− β0(t))dt

−n−1/2

n∑
i=1

∫ t2

t1

(1−Ri)Wi(t)(Z̃x(t)− zx(t))ξi(t)αi(t)Xi(t)X
T
i (t)(β̃(t; γ0)

−β0(t))dt

= n−1/2

n∑
i=1

∫ t2

t1

Wi(t){ξi(t)αi(t)Zi(t)X
T
i (t)− zx(t)ξi(t)αi(t)Xi(t)X

T
i (t)}

{β̃(t; γ0)− β0(t)}dt

−n−1/2

n∑
i=1

∫ t2

t1

Wi(t)(Z̃x(t)− zx(t))ξi(t)αi(t)Xi(t)X
T
i (t)(β̃(t; γ0)− β0(t))dt

=

∫ t2

t1

Wi(t)n
−1

n∑
i=1

{ξi(t)αi(t)Zi(t)X
T
i (t)− zx(t)ξi(t)αi(t)Xi(t)X

T
i (t)}

d

(
n1/2

∫ t

t1

(β̃(s; γ0)− β0(s))ds

)
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−
∫ t2

t1

Wi(t)(Z̃x(t)− zx(t))n
−1

n∑
i=1

ξi(t)αi(t)Xi(t)X
T
i (t)d

(
n1/2

∫ t

t1

(β̃(s; γ0)

−β0(s))ds

)
.

By the consistency of the Z̃x(t), the convergence of Wi(t), the application of Lemma

A.2.5 and Lemma A.1 of Lin & Ying (2001), and the facts that

n−1

n∑
i=1

{ξi(t)αi(t)Zi(t)X
T
i (t)− zx(t)ξi(t)αi(t)Xi(t)X

T
i (t)}

P−→ E{ξi(t)αi(t)Zi(t)X
T
i (t)− zx(t)ξi(t)αi(t)Xi(t)X

T
i (t)}

= E{ξi(t)αi(t)Zi(t)X
T
i (t)} − zx(t)E{ξi(t)αi(t)Xi(t)X

T
i (t)}

= ezx(t)− zx(t)exx(t) = ezx(t)− ezx(t)(exx(t))
−1exx(t) = 0

and

n−1

n∑
i=1

ξi(t)αi(t)Xi(t)X
T
i (t)

P−→ E{ξi(t)αi(t)Xi(t)X
T
i (t)} = exx(t),

we have η1
P−→ 0.

η2 = n−1/2

n∑
i=1

∫ t2

t1

RiWi(t){Zi(t)− Z̃x(t)Xi(t)}XT
i (t){β̃(t; γ0)− β0(t)}dOi(t)

+n−1/2

n∑
i=1

∫ t2

t1

(1−Ri)Ês{Wi(t){Zi(t)− Z̃x(t)Xi(t)}XT
i (t){β̃(t; γ0)

−β0(t)}dOi(t) | X}

= n−1/2

n∑
i=1

∫ t2

t1

[RiWi(t){Zi(t)− Z̃x(t)Xi(t)}XT
i (t)dOi(t){β̃(t; γ0)− β0(t)}]

+n−1/2

n∑
i=1

∫ t2

t1

[(1−Ri)Ês{Wi(t){Zi(t)− Z̃x(t)Xi(t)}XT
i (t)dOi(t) | X}

{β̃(t; γ0)− β0(t)}].

The first term of η2

n−1/2

n∑
i=1

∫ t2

t1

[RiWi(t){Zi(t)− Z̃x(t)Xi(t)}XT
i (t)dOi(t){β̃(t; γ0)− β0(t)}]
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=

∫ t2

t1

Wi(t)n
−1/2

n∑
i=1

Ri{Zi(t)− Z̃x(t)Xi(t)}XT
i (t)dOi(t){β̃(t; γ0)− β0(t)}

=

∫ t2

t1

Wi(t)n
−1/2

n∑
i=1

Ri{Zi(t)− zx(t)Xi(t)}XT
i (t)dOi(t){β̃(t; γ0)− β0(t)}

−
∫ t2

t1

Wi(t)n
−1/2

n∑
i=1

Ri{Z̃x(t)− zx(t)}Xi(t)X
T
i (t)dOi(t){β̃(t; γ0)− β0(t)}

=

∫ t2

t1

d

(
n−1/2

n∑
i=1

∫ t

t1

Ri{Zi(s)− zx(s)Xi(s)}XT
i (s)dOi(s)

)
Wi(t){β̃(t; γ0)

−β0(t)}

−
∫ t2

t1

{Z̃x(t)− zx(t)}d
(
n−1/2

n∑
i=1

∫ t

t1

RiXi(s)X
T
i (s)dOi(s)

)
Wi(t){β̃(t; γ0)

−β0(t)}.

Under the condition (I) and by Lemma 1 of Sun & Wu (2005), both

n−1/2

n∑
i=1

∫ t

t1

Ri{Zi(s)− zx(s)Xi(s)}XT
i (s)dOi(s)

and

n−1/2

n∑
i=1

∫ t

t1

RiXi(s)X
T
i (s)dOi(s)

converge weakly to vectors of mean zero Gaussian processes with continuous sample

paths respectively. And from the early derivation, Wi(t){β̃(t; γ0)−β0(t)} and Z̃x(t)−

zx(t) are of bounded variations and both converge to zero in probability uniformly

in t. Hence by Lemma A.1 of Lin & Ying (2001), the first term converges to zero in

probability.

As the second term of η2

n−1/2

n∑
i=1

∫ t2

t1

[(1−Ri)Ês{Wi(t){Zi(t)− Z̃x(t)Xi(t)}XT
i (t)dOi(t) | X}{β̃(t; γ0)

−β0(t)}]

= n−1/2

n∑
i=1

∫ t2

t1

[(1−Ri)Ês{Wi(t){Zi(t)− zx(t)Xi(t)}XT
i (t)dOi(t) | X}{β̃(t; γ0)

−β0(t)}]
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−n−1/2

n∑
i=1

∫ t2

t1

[(1−Ri)Ês{Wi(t){Z̃x(t)− zx(t)}Xi(t)X
T
i (t)dOi(t) | X}{β̃(t; γ0)

−β0(t)}]

= n−1/2

n∑
i=1

∫ t2

t1

[(1−Ri)Ês{Wi(t){Zi(t)− zx(t)Xi(t)}XT
i (t)dOi(t) | Xi}{β̃(t; γ0)

−β0(t)}]

−Ês{n−1/2

n∑
i=1

∫ t2

t1

Wi(t)(1−Ri){Z̃x(t)− zx(t)}Xi(t)X
T
i (t)dOi(t){β̃(t; γ0)

−β0(t)} | X}

= n−1/2

n∑
i=1

∫ t2

t1

[(1−Ri)Ês{Wi(t){Zi(t)− zx(t)Xi(t)}XT
i (t)dOi(t) | Di, Ri = 0}

{β̃(t; γ0)− β0(t)}]

−Ês{
∫ t2

t1

Wi(t){Z̃x(t)− zx(t)}d
(
n−1/2

n∑
i=1

∫ t

t1

(1−Ri)Xi(u)X
T
i (u)dOi(u)

)
{β̃(t; γ0)− β0(t)} | X},

also by Lemma 1 of Sun & Wu (2005) n−1/2
∑n

i=1

∫ t

t1
(1−Ri)Xi(u)X

T
i (u)dOi(u) con-

verges weakly to a vector of mean zero Gaussian processes with continuous sample

paths. Then from the early derivation, Wi(t){β̃(t; γ0)−β0(t)} is of bounded variations

and converges to zero in probability uniformly in t. Hence by Lemma A.1 of Lin &

Ying (2001),∫ t2

t1

Wi(t){Z̃x(t)− zx(t)}d
(
n−1/2

n∑
i=1

∫ t

t1

(1−Ri)Xi(u)X
T
i (u)dOi(u)

)
P−→ 0.

Also using the similar argument in Lemma A.2.1, the second term of η2 equals to

n−1/2

n∑
i=1

∫ t2

t1

[(1−Ri)Es{Wi(t){Zi(t)− zx(t)Xi(t)}XT
i (t)dOi(t) | Di, Ri = 0}

{β̃(t; γ0)− β0(t)}] + op(1)

=

∫ t2

t1

[
n−1/2

n∑
i=1

(1−Ri){Zi(t)− zx(t)Xi(t)}XT
i (t)Es{dOi(t) | Di, Ri = 0}Wi(t)

{β̃(t; γ0)− β0(t)}
]
+ op(1)

=

∫ t2

t1

[
d

(
n−1/2

n∑
i=1

∫ t

t1

(1−Ri){Zi(u)− zx(u)Xi(u)}XT
i (u)Es{dOi(u) | Di,
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Ri = 0}
)
Wi(t){β̃(t; γ0)− β0(t)}

]
+ op(1)

Now apply Lemma 1 of Sun & Wu (2005) again.

n−1/2

n∑
i=1

∫ t

t1

(1−Ri){Zi(u)− zx(u)Xi(u)}XT
i (u)Es{dOi(u) | Di, Ri = 0}

converges weakly to a vector of mean zero Gaussian processes with continuous sample

paths. Also from the early derivation, Wi(t){β̃(t; γ0)−β0(t)} is of bounded variations

and converges to zero in probability uniformly in t. Hence by Lemma A.1 of Lin &

Ying (2001) the second term of η2
P−→ 0. Then η = η1 + η2

P−→ 0. Thus n−1/2U(γ0)

equals

n−1/2

n∑
i=1

∫ t2

t1

≪ Wi(t){Zi(t)− Z̃x(t)Xi(t)}{dMi(t)− βT
0 (t)Xi(t)dOi(t)} ≫R .

Since

dMi(t)− βT
0 (t)Xi(t)dOi(t)

= [Yi(t)− γT
0 Zi(t)]dN

c
i (t)− ξi(t)αi(t)X

T
i (t)dB(t)− βT

0 (t)Xi(t)dN
c
i (t)

+βT
0 (t)Xi(t)ξi(t)αi(t)dt

= [Yi(t)− γT
0 Zi(t)− βT

0 (t)Xi(t)]dN
c
i (t)− ξi(t)αi(t)X

T
i (t)β0(t)d(t)

+βT
0 (t)Xi(t)ξi(t)αi(t)dt

= ϵi(t)dN
c
i (t),

n−1/2U(γ0) = n−1/2

n∑
i=1

∫ t2

t1

≪ Wi(t){Zi(t)− Z̃x(t)Xi(t)}ϵi(t)dN c
i (t) ≫R

= n−1/2

n∑
i=1

∫ t2

t1

RiW (t){Zi(t)− Z̃x(t)Xi(t)}ϵi(t)dN c
i (t) (A.11)

+n−1/2

n∑
i=1

∫ t2

t1

(1−Ri)Ês{Wi(t){Zi(t)

−Z̃x(t)Xi(t)}ϵi(t)dN c
i (t) | X}. (A.12)
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(A.11) = n−1/2

n∑
i=1

∫ t2

t1

RiW (t){Zi(t)− zx(t)Xi(t)}ϵi(t)dN c
i (t)

−n−1/2

n∑
i=1

∫ t2

t1

RiW (t){Z̃x(t)− zx(t)}Xi(t)ϵi(t)dN
c
i (t)

= n−1/2

n∑
i=1

∫ t2

t1

RiW (t){Zi(t)− zx(t)Xi(t)}ϵi(t)dN c
i (t)

−
∫ t2

t1

Wi(t){Z̃x(t)− zx(t)}n−1/2

n∑
i=1

RiXi(t)[dMi(t)− βT
0 (t)Xi(t)dOi(t)]

= n−1/2

n∑
i=1

∫ t2

t1

RiW (t){Zi(t)− zx(t)Xi(t)}ϵi(t)dN c
i (t)

−
∫ t2

t1

Wi(t){Z̃x(t)− zx(t)}d
(
n−1/2

n∑
i=1

∫ t

t1

RiXi(u)dMi(u)

)
+

∫ t2

t1

Wi(t){Z̃x(t)− zx(t)}n−1/2

n∑
i=1

RiXi(t)X
T
i (t)dOi(t)β0(t)

= n−1/2

n∑
i=1

∫ t2

t1

RiW (t){Zi(t)− zx(t)Xi(t)}ϵi(t)dN c
i (t)

−
∫ t2

t1

Wi(t){Z̃x(t)− zx(t)}d
(
n−1/2

n∑
i=1

∫ t

t1

RiXi(u)dMi(u)

)
+

∫ t2

t1

Wi(t){Z̃x(t)− zx(t)}d
(
n−1/2

n∑
i=1

∫ t

t1

RiXi(u)X
T
i (u)dOi(u)

)
β0(t)

= n−1/2

n∑
i=1

∫ t2

t1

RiW (t){Zi(t)− zx(t)Xi(t)}ϵi(t)dN c
i (t) + op(1).

The last equality holds because of the joint weak convergence of(
n−1/2

n∑
i=1

∫ t

t1

RiXi(u)dMi(u), n−1/2

n∑
i=1

∫ t

t1

RiXi(u)X
T
i (u)dOi(u)

)

by Lemma 1 of Sun & Wu (2005), the consistency of Wi(t){Z̃x(t)−zx(t)} and Lemma

A.1 of Lin & Ying (2001).

(A.12) = n−1/2

n∑
i=1

∫ t2

t1

(1−Ri)Ês{Wi(t){Zi(t)− Z̃x(t)Xi(t)}ϵi(t)dN c
i (t) | X}

= n−1/2

n∑
i=1

∫ t2

t1

(1−Ri)Ês{Wi(t){Zi(t)− zx(t)Xi(t)}ϵi(t)dN c
i (t) | X}
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−n−1/2

n∑
i=1

∫ t2

t1

(1−Ri)Ês{Wi(t){Z̃x(t)− zx(t)}Xi(t)[dMi(t)

−βT
0 (t)Xi(t)dOi(t)] | X}

= n−1/2

n∑
i=1

∫ t2

t1

(1−Ri)Ês{Wi(t){Zi(t)− zx(t)Xi(t)}ϵi(t)dN c
i (t) | Xi}

−Ês{
∫ t2

t1

Wi(t){Z̃x(t)− zx(t)}d
(
n−1/2

n∑
i=1

∫ t

t1

(1−Ri)Xi(u)dMi(t)

)
|X}

+Ês{
∫ t2

t1

Wi(t){Z̃x(t)− zx(t)}d
(
n−1/2

n∑
i=1

∫ t

t1

(1−Ri)Xi(u)X
T
i (t)

dOi(t)

)
βT
0 (t) | X}

= n−1/2

n∑
i=1

∫ t2

t1

(1−Ri)Ês{Wi(t){Zi(t)− zx(t)Xi(t)}ϵi(t)dN c
i (t) | Di,

Ri = 0}+ op(1).

The last equality holds also because of the weak convergence of

n−1/2

n∑
i=1

∫ t

t1

(1−Ri)Xi(u)dMi(u) and n−1/2

n∑
i=1

∫ t

t1

(1−Ri)Xi(u)X
T
i (u)dOi(u)

by Lemma 1 of Sun & Wu (2005), the consistency of Wi(t){Z̃x(t)−zx(t)} and Lemma

A.1 of Lin & Ying (2001). Similarly the Wi(t) can be replaced by its limit w(t). Then

(A.12) = n−1/2

n∑
i=1

∫ t2

t1

(1−Ri)Es{w(t){Zi(t)− zx(t)Xi(t)}ϵi(t)dN c
i (t) | Di,

Ri = 0}

+n−1/2

n∑
i=1

∫ t2

t1

(1−Ri)Ês{w(t){Zi(t)− zx(t)Xi(t)}ϵi(t)dN c
i (t) | Di,

Ri = 0}

−n−1/2

n∑
i=1

∫ t2

t1

(1−Ri)Es{w(t){Zi(t)− zx(t)Xi(t)}ϵi(t)dN c
i (t) | Di,

Ri = 0}+ op(1)

= n−1/2

n∑
i=1

∫ t2

t1

(1−Ri)Es{w(t){Zi(t)− zx(t)Xi(t)}ϵi(t)dN c
i (t) | Di,

Ri = 0}
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+n−1/2

n∑
i=1

(1−Ri)

∫ L

0

ni∑
j=1

I(t1 ≤ s+ Tij ≤ t2)w(s+ Tij){Zij

−zx(s+ Tij)Xij}ϵi(s+ Tij)I(Ci ≥ Tij)

[
dF̂s(s)

F̂s(Vi)
− dFs(s)

Fs(Vi)

]
(A.13)

+op(1)

Referring to the argument in Lemma A.2.4, (A.13) has the following decomposition.

(A.13) = n−1/2

∫ ∞

0

∫ L

0

E

{∫ t2

t1

(1−Ri)w(v)(Zi(v)− zx(v)Xi(v))ϵi(v)dN
∗
i (v − s)

I(x < (L− (Vi)))

Fs(Vi)

}
dFs(s)

dMR(x)

yR(x)

+n−1/2

∫ L

0

∫ (L−x)−

0

E

{∫ t2

t1

(1−Ri)w(v)(Zi(v)− zx(v)Xi(v))ϵi(v)

dN∗
i (v − s)

Fs(Vi)

}
dFs(s)

dMR(x)

yR(x)

+n−1/2

∫ L

0

E

{∫ t2

t1

(1−Ri)w(v)(Zi(v)− zx(v)Xi(v))ϵi(v)
dN∗

i (v − s)

Fs(Vi)

}
Fs(s)

dMR(L− s)−
yR(L− s)−

+ op(1)

= n−1/2

∫ ∞

0

∫ L

0

E

{
E

[ ∫ t2

t1

(1−Ri)w(v)(Zi(v)− zx(v)Xi(v))ϵi(v)

dN∗
i (v − s)

I(x < (L− (Vi)))

Fs(Vi)

∣∣∣∣Xi(·), Zi(·), Ni(·), Si, Vi, Ci

]}
dFs(s)

dMR(x)

yR(x)

+n−1/2

∫ L

0

∫ (L−x)−

0

E

{
E

[ ∫ t2

t1

(1−Ri)w(v)(Zi(v)− zx(v)Xi(v))ϵi(v)

dN∗
i (v − s)

Fs(Vi)

∣∣∣∣Xi(·), Zi(·), Ni(·), Si, Vi, Ci

]}
dFs(s)

dMR(x)

yR(x)

+n−1/2

∫ L

0

E

{
E

[ ∫ t2

t1

(1−Ri)w(v)(Zi(v)− zx(v)Xi(v))ϵi(v)
dN∗

i (v − s)

Fs(Vi)∣∣∣∣Xi(·), Zi(·), Ni(·), Si, Vi, Ci

]}
Fs(s)

dMR(L− s)−
yR(L− s)−

+ op(1)

= n−1/2

∫ ∞

0

∫ L

0

E

{∫ t2

t1

(1−Ri)w(v)(Zi(v)− zx(v)Xi(v))E[ϵi(v) | Xi(·),

Zi(·), Ni(·), Si, Vi, Ci]dN
∗
i (v − s)

I(x < (L− (Vi)))

Fs(Vi)

}
dFs(s)
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dMR(x)

yR(x)

+n−1/2

∫ L

0

∫ (L−x)−

0

E

{∫ t2

t1

(1−Ri)w(v)(Zi(v)− zx(v)Xi(v))E[ϵi(v)

| Xi(·), Zi(·), Ni(·), Si, Vi, Ci]
dN∗

i (v − s)

Fs(Vi)

}
dFs(s)

dMR(x)

yR(x)

+n−1/2

∫ L

0

E

{∫ t2

t1

(1−Ri)w(v)(Zi(v)− zx(v)Xi(v))E[ϵi(v) | Xi(·),

Zi(·), Ni(·), Si, Vi, Ci]
dN∗

i (v − s)

Fs(Vi)

}
Fs(s)

dMR(L− s)−
yR(L− s)−

+ op(1).

Under the assumption that E{Yi(t)|Xi(·), Zi(·), Ni(·), Si, Vi, Ci} = E{Yi(t)|Xi(·), Zi(·)},

E[ϵi(v) | Xi(·), Zi(·), Ni(·), Si, Vi, Ci] = E[ϵi(v) | Xi(·), Zi(·)] = 0.

Then (A.13) = 0 + op(1)
P−→ 0. Hence

n−1/2U(γ0) = n−1/2

n∑
i=1

∫ t2

t1

Riw(t){Zi(t)− zx(t)Xi(t)}ϵi(t)dN c
i (t)

+n−1/2

n∑
i=1

∫ t2

t1

(1−Ri)Es{w(t){Zi(t)− zx(t)Xi(t)}ϵi(t)dN c
i (t) | Di,

Ri = 0}+ op(1)

= n−1/2

n∑
i=1

∫ t2

t1

w(t){Zi(t)− zx(t)Xi(t)}ϵi(t)RidN
c
i (t)

+n−1/2

n∑
i=1

∫ t2

t1

w(t){Zi(t)− zx(t)Xi(t)}ϵi(t)Es{(1−Ri)dN
c
i (t) | Di,

Ri = 0}+ op(1)

= n−1/2

n∑
i=1

∫ t2

t1

w(t){Zi(t)− zx(t)Xi(t)}ϵi(t)[RidN
c
i (t)

+Es{(1−Ri)dN
c
i (t) | Di, Ri = 0}] + op(1).

Applying theorem 5.21 (van der Vaart, 1998) to the score function, (A.8) becomes

n1/2(γ̂ − γ0) = D−1[n−1/2U(γ0)] + op(1).

Hence n1/2(γ̂ − γ0)
D−→ N (0, D−1V D−1).
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Proof of Theorem 3.4

By the definitions, we have

β̃(t; γ0)− β∗(t) = Ỹ T
x (t)− Z̃T

x (t)γ0 − [ỹTx (t)− z̃Tx (t)γ0]

= (Ẽxx(t))
−1Ẽxy(t)− (Ẽxx(t))

−1Ẽxz(t)γ0 − (ẽxx(t))
−1ẽxy(t)

+(ẽxx(t))
−1ẽxz(t)γ0

= (Ẽxx(t))
−1[(Ẽxy(t)− ẽxy(t))− (Ẽxz(t)− ẽxz(t))γ0]

−(ẽxx(t))
−1[Ẽxx(t)− ẽxx(t)](Ẽxx(t))

−1[ẽxy(t)− ẽxz(t)γ0]

= (exx(t))
−1[(Ẽxy(t)− ẽxy(t))− (Ẽxz(t)− ẽxz(t))γ0]

−(exx(t))
−1[Ẽxx(t)− ẽxx(t)](exx(t))

−1[exy(t)− exz(t)γ0] + op(1).

The last equality holds by Slutsky’s theorem. Then

β̃(t; γ0)− β∗(t)

= (exx(t))
−1[(Ẽxy(t)− ẽxy(t))− (Ẽxz(t)− ẽxz(t))γ0]

−(exx(t))
−1[Ẽxx(t)− ẽxx(t)][y

T
x (t)− zTx (t)γ0] + op(1)

= (exx(t))
−1[(Ẽxy(t)− ẽxy(t))− (Ẽxz(t)− ẽxz(t))γ0]

−(exx(t))
−1[Ẽxx(t)− ẽxx(t)]β0(t) + op(1)

= (exx(t))
−1[(Ẽxy(t)− ẽxy(t))− (Ẽxz(t)− ẽxz(t))γ0 − (Ẽxx(t)− ẽxx(t))β0(t)]

+op(1)

= (exx(t))
−1

(
n−1

n∑
i=1

Ri

∫ τ

0

Kh(u− t)Xi(u)[Yi(u)− ZT
i (u)γ0

−XT
i (u)β0(u)]dN

c
i (u)

+n−1

n∑
i=1

(1−Ri)Ês

{∫ τ

0

Kh(u− t)Xi(u)[Yi(u)− ZT
i (u)γ0

−XT
i (u)β0(u)]dN

c
i (u) | X

}
−
∫ τ

0

Kh(u− t)E{ξi(u)αi(u)Xi(u)[Yi(u)− ZT
i (u)γ0
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−XT
i (u)β0(u)]}du

)
−(exx(t))

−1

(
n−1

n∑
i=1

Ri

∫ τ

0

Kh(u− t)Xi(u)X
T
i (u)[β0(t)− β0(u)]dN

c
i (u)

+n−1

n∑
i=1

(1−Ri)Ês

{∫ τ

0

Kh(u− t)Xi(u)X
T
i (u)[β0(t)− β0(u)]

dN c
i (u) | X

}
−
∫ τ

0

Kh(u− t)E{ξ(u)αi(u)Xi(u)X
T
i (u)}[β0(t)− β0(u)]du

)
+ op(1)

= (exx(t))
−1

(
n−1

n∑
i=1

Ri

∫ τ

0

Kh(u− t)Xi(u)ϵi(u)dN
c
i (u)

+n−1

n∑
i=1

(1−Ri)Ês

{∫ τ

0

Kh(u− t)Xi(u)ϵi(u)dN
c
i (u) | X

}
−
∫ τ

0

Kh(u− t)E{ξi(u)αi(u)Xi(u)ϵi(u)}du
)

−(exx(t))
−1

(∫ τ

0

Kh(u− t)d

[
n−1

n∑
i=1

∫ u

0

RiXi(w)X
T
i (w)dN

c
i (w)

]
[β0(t)− β0(u)]

+Ês

{∫ τ

0

Kh(u− t)d

[
n−1

n∑
i=1

∫ u

0

(1−Ri)Xi(w)X
T
i (w)dN

c
i (w)

]
[β0(t)− β0(u)] | X

}
−
∫ τ

0

Kh(u− t)E{ξ(u)αi(u)Xi(u)X
T
i (u)}[β0(t)− β0(u)]du

)
+ op(1)

We know that ∫ τ

0

Kh(u− t)E{ξi(u)αi(u)Xi(u)ϵi(u)}du

=

∫ τ

0

Kh(u− t)E{E[ξi(u)αi(u)Xi(u)ϵi(u) | Xi(·), Zi(·)]}du

=

∫ τ

0

Kh(u− t)E{ξi(u)αi(u)Xi(u)E[ϵi(u) | Xi(·), Zi(·)]}du = 0.

Therefore,

(nh)1/2(β̃(t; γ0)− β∗(t))
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= (nh)1/2(exx(t))
−1

(
n−1

n∑
i=1

≪
∫ τ

0

Kh(u− t)Xi(u)ϵi(u)dN
c
i (u) ≫R

)
−(exx(t))

−1

(∫ τ

0

h1/2Kh(u− t)d

[
n−1/2

n∑
i=1

∫ u

0

RiXi(w)X
T
i (w)dN

c
i (w)

]
[β0(t)

−β0(u)]

+Ês

{∫ τ

0

h1/2Kh(u− t)d

[
n−1/2

n∑
i=1

∫ u

0

(1−Ri)Xi(w)X
T
i (w)dN

c
i (w)

]
[β0(t)− β0(u)] | X

}
−
∫ τ

0

(nh)1/2Kh(u− t)E{ξ(u)αi(u)Xi(u)X
T
i (u)}[β0(t)− β0(u)]du

)
+op(1),

Applying the substitution x = u−t
h
,∫ 1

−1

h1/2K(u− t)d

[
n−1/2

n∑
i=1

∫ u

0

RiXi(w)X
T
i (w)dN

c
i (w)

]
[β0(t)− β0(u)]

=

∫ 1

−1

h1/2K(x)d

[
n−1/2

n∑
i=1

∫ x+th

0

RiXi(w)X
T
i (w)dN

c
i (w)

]
β0(t)− β0(t+ xh)

h

= −
∫ 1

−1

h1/2K(x)d

[
n−1/2

n∑
i=1

∫ x+th

0

RiXi(w)X
T
i (w)dN

c
i (w)

]
[xβ′

0(t) +O(h)]

P−→ 0

since n−1/2
∑n

i=1

∫ x+th

0
RiXi(w)X

T
i (w)dN

c
i (w) converges weakly as h → 0 and n → ∞.

Similarly,∫ τ

0

h1/2Kh(u− t)d

[
n−1/2

n∑
i=1

∫ u

0

(1−Ri)Xi(w)X
T
i (w)dN

c
i (w)

]
[β0(t)− β0(u)]

P−→ 0

as h → 0 and n → ∞. And∫ τ

0

(nh)1/2Kh(u− t)E{ξ(u)αi(u)Xi(u)X
T
i (u)}[β0(t)− β0(u)]du

=

∫ 1

−1

(nh)1/2K(x)exx(t+ xh)[β0(t)− β0(t+ xh)]dx

= −
∫ 1

−1

(nh)1/2K(x)exx(t+ xh)[xhβ′
0(t) + (1/2)x2h2β′′

0 (t) + o(h2)]dx
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= −
∫ 1

−1

(nh)1/2K(x)[exx(t) + xhe′xx(t) + (1/2)x2h2e′′xx(t) + o(h2)][xhβ′
0(t)

+(1/2)x2h2β′′
0 (t) + o(h2)]dx

= −(nh)1/2
∫ 1

−1

K(x)[exx(t)xhβ
′
0(t) + x2h2e′xx(t)β

′
0(t) + (1/2)x2h2exx(t)β

′′
0 (t)

+o(h2)]dx

= −(nh3)1/2
∫ 1

−1

xK(x)dxexx(t)β
′
0(t)− (nh5)1/2[e′xx(t)β

′
0(t)

+(1/2)exx(t)β
′′
0 (t)]

∫ 1

−1

x2K(x)dx+ op((nh
5)1/2)

= −0− (nh5)1/2[e′xx(t)β
′
0(t) + (1/2)exx(t)β

′′
0 (t)]

∫ 1

−1

x2K(x)dx+ op((nh
5)1/2)

= −(nh5)1/2[e′xx(t)β
′
0(t) + (1/2)exx(t)β

′′
0 (t)]

∫ 1

−1

x2K(x)dx+ op((nh
5)1/2)

as nh5 = O(1). Thus

(nh)1/2
(
β̃(t; γ0)− β∗(t) + h2(exx(t))

−1[e′xx(t)β
′
0(t)

+(1/2)exx(t)β
′′
0 (t)]

∫ 1

−1

x2K(x)dx

)
= (nh)1/2(exx(t))

−1

(
n−1

n∑
i=1

≪
∫ τ

0

Kh(u− t)Xi(u)ϵi(u)dN
c
i (u) ≫R

)
(A.14)

= (nh)1/2(exx(t))
−1

(
n−1

n∑
i=1

Ri

∫ τ

0

Kh(u− t)Xi(u)ϵi(u)dN
c
i (u)

+n−1

n∑
i=1

(1−Ri)Ês

{∫ τ

0

Kh(u− t)Xi(u)ϵi(u)dN
c
i (u) | X

})
= (nh)1/2(exx(t))

−1

(
n−1

n∑
i=1

Ri

∫ τ

0

Kh(u− t)Xi(u)ϵi(u)dN
c
i (u)

+n−1

n∑
i=1

(1−Ri)Ês

{∫ τ

0

Kh(u− t)Xi(u)ϵi(u)dN
c
i (u) | Xi

})
= (nh)1/2(exx(t))

−1

(
n−1

n∑
i=1

Ri

∫ τ

0

Kh(u− t)Xi(u)ϵi(u)dN
c
i (u)

+n−1

n∑
i=1

(1−Ri)Ês

{∫ τ

0

Kh(u− t)Xi(u)ϵi(u)dN
c
i (u) | Di, Ri = 0

})
= (nh)1/2(exx(t))

−1

(
n−1

n∑
i=1

Ri

∫ τ

0

Kh(u− t)Xi(u)ϵi(u)dN
c
i (u)
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+n−1

n∑
i=1

(1−Ri)Es

{∫ τ

0

Kh(u− t)Xi(u)ϵi(u)dN
c
i (u) | Di, Ri = 0

}
+n−1

n∑
i=1

(1−Ri)Ês

{∫ τ

0

Kh(u− t)Xi(u)ϵi(u)dN
c
i (u) | Di, Ri = 0

}
−n−1

n∑
i=1

(1−Ri)Es

{∫ τ

0

Kh(u− t)Xi(u)ϵi(u)dN
c
i (u) | Di, Ri = 0

})
= (nh)1/2(exx(t))

−1

(
n−1

n∑
i=1

Ri

∫ τ

0

Kh(u− t)Xi(u)ϵi(u)dN
c
i (u)

+n−1

n∑
i=1

(1−Ri)Es

{∫ τ

0

Kh(u− t)Xi(u)ϵi(u)dN
c
i (u) | Di, Ri = 0

})
+h1/2(exx(t))

−1

{
n−1/2

[ ∫ ∞

0

∫ L

0

E

(
(1−Ri)Xi(u)ϵi(u)α

∗
i (s− u)

I(x < L− (Vi))

Fs(Vi)

)
dFs(s)

dMR(x)

yR(x)

+

∫ L−

0

∫ (L−x)−

0

E

(
(1−Ri)Xi(u)ϵi(u)α

∗
i (s− u)

Fs(Vi)

)
dFs(s)

dMR(x)

yR(x)

+

∫ L

0

E

(
(1−Ri)Xi(u)ϵi(u)α

∗
i (s− u)

Fs(Vi)

)
Fs(s)

dMR((L− s)−)

yR((L− s)−)

]
+op(1) +Op(n

−1/2h2)

}
= (nh)1/2(exx(t))

−1

(
n−1

n∑
i=1

Ri

∫ τ

0

Kh(u− t)Xi(u)ϵi(u)dN
c
i (u)

+n−1

n∑
i=1

(1−Ri)Es

{∫ τ

0

Kh(u− t)Xi(u)ϵi(u)dN
c
i (u) | Di, Ri = 0

})
+O(h1/2) + op(h

1/2) +Op(n
−1/2h5/2)

which for each fixed time point t, converges in distribution to a multivariate distri-

bution with mean 0 and covariance matrix µ0Σ(t) by Lindeberg-Feller theorem.

We derive the asymptotic covariance matrix in the following way.

cov

[
(nh)1/2

(
β̃(t; γ0)− β∗(t) + h2(exx(t))

−1[e′xx(t)β
′
0(t)

+(1/2)exx(t)β
′′
0 (t)]

∫ 1

−1

x2K(x)dx

)]
= cov

[
(nh)1/2(exx(t))

−1

(
n−1

n∑
i=1

Ri

∫ τ

0

Kh(u− t)Xi(u)ϵi(u)dN
c
i (u)
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+n−1

n∑
i=1

(1−Ri)Es

{∫ τ

0

Kh(u− t)Xi(u)ϵi(u)dN
c
i (u) | Di, Ri = 0

})]
= n−1h(exx(t))

−1cov

[( n∑
i=1

Ri

∫ τ

0

Kh(u− t)Xi(u)ϵi(u)dN
c
i (u)

+
n∑

i=1

(1−Ri)Es

{∫ τ

0

Kh(u− t)Xi(u)ϵi(u)dN
c
i (u) | Di, Ri = 0

})]
(exx(t))

−1

Note that all the subjects are i.i.d. and that Ri is an indicator,

cov

[
(nh)1/2

(
β̃(t; γ0)− β∗(t) + h2(exx(t))

−1[e′xx(t)β
′
0(t)

+(1/2)exx(t)β
′′
0 (t)]

∫ 1

−1

x2K(x)dx

)]
= n−1h(exx(t))

−1

n∑
i=1

[
cov

(
Ri

∫ τ

0

Kh(u− t)Xi(u)ϵi(u)dN
c
i (u)

)
+cov

(
(1−Ri)Es

{∫ τ

0

Kh(u− t)Xi(u)ϵi(u)dN
c
i (u) | Di, Ri = 0

})]
(exx(t))

−1

= h(exx(t))
−1

[
cov

(∫ τ

0

Kh(u− t)RiXi(u)ϵi(u)dN
c
i (u)

)
+cov

(
Es

{∫ τ

0

Kh(u− t)(1−Ri)Xi(u)ϵi(u)dN
c
i (u) | Di, Ri = 0

})]
(exx(t))

−1.

By the Doob-Meyer decomposition of N c
i (t), N

c
i (t) =

∫ t

0
Y c
i (s)α

c
i (s)ds + M c

i (t). Let

Y c
i (t) =

∑ni

j=1 I(T
0
ij ≥ t). So

h(exx(t))
−1cov

(∫ τ

0

Kh(u− t)RiXi(u)ϵi(u)dN
c
i (u)

)
(exx(t))

−1

= h(exx(t))
−1cov

(∫ τ

0

Kh(u− t)RiXi(u)ϵi(u)dM
c
i (u)

)
(exx(t))

−1

+2h(exx(t))
−1cov

(∫ τ

0

Kh(u− t)RiXi(u)ϵi(u)dM
c
i (u),∫ τ

0

Kh(u− t)RiXi(u)ϵi(u)Y
c
i (u)α

c
i(u)du

)
(exx(t))

−1

+h(exx(t))
−1cov

(∫ τ

0

Kh(u− t)RiXi(u)ϵi(u)Y
c
i (u)α

c
i(u)du

)
(exx(t))

−1.

Ri, Xi(t) and ϵi(t) are F c
t -predictable. This leads the first term above to

h(exx(t))
−1cov

(∫ τ

0

Kh(u− t)RiXi(u)ϵi(u)dM
c
i (u)

)
(exx(t))

−1
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= h(exx(t))
−1E

(∫ τ

0

K2
h(u− t)R2

iXi(u)X
T
i (u)ϵ

2
i (u)d < M >c

i (u)

)
(exx(t))

−1

= h(exx(t))
−1E

(∫ τ

0

K2
h(u− t)R2

iXi(u)X
T
i (u)ϵ

2
i (u)Y

c
i (u)α

c
i(u)du

)
(exx(t))

−1

= (exx(t))
−1E

(∫ 1

−1

K2(x)R2
iXi(t+ xh)XT

i (t+ xh)ϵ2i (t+ xh)Y c
i (t+ xh)

αc
i(t+ xh)dx

)
(exx(t))

−1

= (exx(t))
−1E

(
R2

iXi(t)X
T
i (t)ϵ

2
i (t)Y

c
i (t)α

c
i(t)

∫ 1

−1

K2(x)dx+O(h2)

)
(exx(t))

−1

= µ0(exx(t))
−1E[R2

iXi(t)X
T
i (t)ϵ

2
i (t)Y

c
i (t)α

c
i(t)](exx(t))

−1 +O(h2).

And

h(exx(t))
−1cov

(∫ τ

0

Kh(u− t)RiXi(u)ϵi(u)Y
c
i (u)α

c
i(u)du

)
(exx(t))

−1

= h(exx(t))
−1cov

(∫ 1

−1

K(x)RiXi(t+ xh)ϵi(t+ xh)Y c
i (t+ xh)αc

i(t+ xh)dx

)
·(exx(t))−1

= h(exx(t))
−1cov[RiXi(t)ϵi(t)Y

c
i (t)α

c
i(t) +O(h2)](exx(t))

−1 = O(h).

Since

E

(∫ τ

0

Kh(u− t)RiXi(u)ϵi(u)dM
c
i (u)

)
= E

[
E

(∫ τ

0

Kh(u− t)RiXi(u)ϵi(u)dM
c
i (u)

∣∣∣∣Xi(·), Zi(·), Ni(·), Si, Vi, Ci

)]
= E

[ ∫ τ

0

Kh(u− t)RiXi(u)E(ϵi(u)|Xi(·), Zi(·), Ni(·), Si, Vi, Ci)dM
c
i (u)

]
= E

[ ∫ τ

0

Kh(u− t)RiXi(u)E(ϵi(u)|Xi(·), Zi(·))dM c
i (u)

]
= 0

and

E

(∫ τ

0

Kh(u− t)RiXi(u)ϵi(u)Y
c
i (u)α

c
i (u)du

)
= E

[
E

(∫ τ

0

Kh(u− t)RiXi(u)ϵi(u)Y
c
i (u)α

c
i(u)du

∣∣∣∣Xi(·), Zi(·), Ni(·), Si, Vi, Ci

)]
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= E

[ ∫ τ

0

Kh(u− t)RiXi(u)E(ϵi(u)|Xi(·), Zi(·), Ni(·), Si, Vi, Ci)Y
c
i (u)α

c
i(u)du

]
= E

[ ∫ τ

0

Kh(u− t)RiXi(u)E(ϵi(u)|Xi(·), Zi(·))Y c
i (u)α

c
i(u)du

]
= 0,

we have

cov

(∫ τ

0

Kh(u− t)RiXi(u)ϵi(u)dM
c
i (u)

)
= E

(∫ τ

0

Kh(u− t)RiXi(u)ϵi(u)dM
c
i (u)

)⊗2

,

cov

(∫ τ

0

Kh(u− t)RiXi(u)ϵi(u)Y
c
i (u)α

c
i (u)du

)
= E

(∫ τ

0

Kh(u− t)RiXi(u)ϵi(u)Y
c
i (u)α

c
i(u)du

)⊗2

,

cov

(∫ τ

0

Kh(u− t)RiXi(u)ϵi(u)dM
c
i (u),

∫ τ

0

Kh(u− t)RiXi(u)ϵi(u)Y
c
i (u)

αc
i(u)du

)
= E

[(∫ τ

0

Kh(u− t)RiXi(u)ϵi(u)dM
c
i (u)

)(∫ τ

0

Kh(u− t)RiXi(u)ϵi(u)Y
c
i (u)

αc
i(u)du

)T]
.

Then by the Cauchy-Schwarz inequality,

h cov

(∫ τ

0

Kh(u− t)RiXi(u)ϵi(u)dM
c
i (u),

∫ τ

0

Kh(u− t)RiXi(u)ϵi(u)Y
c
i (u)

αc
i(u)du

)
= hE

[(∫ τ

0

Kh(u− t)RiXi(u)ϵi(u)dM
c
i (u)

)(∫ τ

0

Kh(u− t)RiXi(u)ϵi(u)Y
c
i (u)

αc
i(u)du

)T]
≤ h

{[
E

(∫ τ

0

Kh(u− t)RiXi(u)ϵi(u)dM
c
i (u)

)⊗2][
E

(∫ τ

0

Kh(u− t)RiXi(u)ϵi(u)

Y c
i (u)α

c
i(u)du

)⊗2]}1/2
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= h

{[
cov

(∫ τ

0

Kh(u− t)RiXi(u)ϵi(u)dM
c
i (u)

)][
cov

(∫ τ

0

Kh(u− t)RiXi(u)

ϵi(u)Y
c
i (u)α

c
i (u)du

)]}1/2

=

{[
hcov

(∫ τ

0

Kh(u− t)RiXi(u)ϵi(u)dM
c
i (u)

)][
hcov

(∫ τ

0

Kh(u− t)RiXi(u)

ϵi(u)Y
c
i (u)α

c
i (u)du

)]}1/2

= {[µ0(exx(t))
−1E[R2

iXi(t)X
T
i (t)ϵ

2
i (t)Y

c
i (t)α

c
i(t)](exx(t))

−1 +O(h2)][O(h)]}1/2

= O(h)

Hence

h(exx(t))
−1cov

(∫ τ

0

Kh(u− t)RiXi(u)ϵi(u)dN
c
i (u)

)
(exx(t))

−1

= µ0(exx(t))
−1E[R2

iXi(t)X
T
i (t)ϵ

2
i (t)Y

c
i (t)α

c
i(t)](exx(t))

−1 +O(h2) +O(h).

Note that

ẽxy(t) =

∫ τ

0

Kh(s− t)exy(s)ds =

∫ t+h

t−h

h−1K(
s− t

h
)exy(s)ds

=

∫ 1

−1

K(x)exy(t+ xh)dx

=

∫ 1

−1

K(x)(exy(t) + hxe′xy(t) + (1/2)h2x2e′′xy(t) + o(h2))dx

= exy(t)

∫ 1

−1

K(x)dx+ he′xy(t)

∫ 1

−1

xK(x)dx+ (1/2)h2e′′xy(t)

∫ 1

−1

x2K(x)dx

+o(h2)

= exy(t) + (1/2)h2e′′xy(t)

∫ 1

−1

x2K(x)dx+ o(h2).

Similar results hold for ẽxx(t) and ẽxz(t). Let µ2 =
∫ 1

−1
x2K(x)dx. So by the long

division of functions

ỹTx (t) = (ẽxx(t))
−1ẽxy(t)

= (exx(t) + (1/2)µ2h
2e′′xx(t) + o(h2))−1(exy(t) + (1/2)µ2h

2e′′xy(t) + o(h2))
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= yTx (t) + (1/2)µ2h
2(exx(t))

−1[e′′xy(t)− e′′xx(t)(exx(t))
−1exy(t)] + o(h2).

Also

z̃Tx (t) = zTx (t) + (1/2)µ2h
2(exx(t))

−1[e′′xz(t)− e′′xx(t)(exx(t))
−1exz(t)] + o(h2).

Then

β∗(t) = ỹTx (t)− z̃Tx (t)γ0

= yTx (t)− zTx (t)γ0 + (1/2)µ2h
2(exx(t))

−1[e′′xy(t)− e′′xx(t)(exx(t))
−1exy(t)]

−(1/2)µ2h
2(exx(t))

−1[e′′xz(t)− e′′xx(t)(exx(t))
−1exz(t)]γ0 + o(h2)

= yTx (t)− zTx (t)γ0 + (1/2)µ2h
2(exx(t))

−1[e′′xy(t)− e′′xx(t)y
T
x (t)]

−(1/2)µ2h
2(exx(t))

−1[e′′xz(t)− e′′xx(t)z
T
x (t)]γ0 + o(h2)

= β0(t) + (1/2)µ2h
2(exx(t))

−1[e′′xy(t)− e′′xz(t)γ0 − e′′xx(t)β(t)] + o(h2).

So

(nh)1/2(β̂(t)− β∗(t))

= (nh)1/2(β̃(t; γ̂)− β∗(t))

= (nh)1/2(β̃(t; γ0)− β∗(t)) + (nh)1/2(γ̂ − γ0)
∂β̃(t; γ0)

∂γ
+Op(n

−1/2h1/2)

= (nh)1/2(β̃(t; γ0)− β∗(t)) +O(h1/2) +Op(n
−1/2h1/2)

since n1/2(γ̂ − γ0)
D−→ N (0, D−1V D−1) and

∂β̃(t; γ0)

∂γ
= −Z̃x(t)

P−→ − zx(t).

Therefore,

(nh)1/2(β̂(t)− β0(t)− βBias(t))
D−→ N (0, µ0Σ(t)),

as n → ∞, h → 0, nh → ∞, nh5 = O(1).


