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ABSTRACT

MING XIANG. Hybrid solvation models for electrostatic interactions in molecular
dynamics simulations of ionic solvent. (Under the direction of DR. WEI CAI)

In this dissertation, we mainly discuss the image approximation methods to the reaction

field and their applications to electrostatic interactions in molecular dynamics simulations.

The Poisson-Boltzman (PB) equation, a three-dimensional second order nonlinear elliptic

partial differential equation arising in biophysics, as well as the Debye-Hückel theory are

studied as fundamentals throughout this work.

We first outline a fourth-order image approximation proposed by Deng and Cai to the

reaction field for a charge inside a dielectric sphere immersed in a solvent of low ionic

strength [36]. To present such a reaction field, the image approximations employ a point

charge at the classical Kelvin image point and two line charges that extend from the

Kelvin image point along the radial direction to infinity. A sixth-order image

approximation is then developed, using the same point charge with three different line

charges. Procedures on how to discretize the line charges by point image charges and how

to implement the resulting point image approximation in O(N) complexity for potential

and force field calculations are included. Numerical results demonstrate the sixth-order

convergence rate of the image approximation and the O(N) complexity of the fast

implementation of the point image approximation.

We then apply the image-based reaction field method to the calculation for electrostatic

interactions in molecular dynamics simulations. To extend a model developed by Lin et

al. [30], a new hybrid solvation model, termed the Image-Charge Solvation Model (ICSM),
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is extended for simulations of bioimolecules in ionic solvent, which combines the strengths

of explicit and implicit solvent representations. In our model, an accurate and efficient

multiple-image charge method to compute reaction fields is employed together with the

fast multipole method for the direct Coulomb interactions. To minimize the surface effect,

we pursue the periodic boundary strategy for nonelectrostatic interactions. We test our

model in a simulation of sodium-chloride-water solvent. Using the Particle Mesh Ewald

(PME) simulations as a reference, our results demonstrate that the proposed model can

faithfully reproduce known solvation properties of sodium and chloride ions as well as

many structural and dynamic properties of the water. We conclude that the employed model

achieves convergence and controlled accuracy with only one image charge in the case of

ionic solvent.
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80



xi

TABLE 3.12: Count of ion visits within the “productive” area (1 NaCl pair, τ =
6 Å).
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CHAPTER 1: INTRODUCTION

1.1 Poisson equation

In this section, we motivate the material to follow by starting our contents from the

Poisson equation - the fundamental of the basic theory of molecular dynamics simulation.

A further discussion of the Poisson equation as well as the Poisson-Boltzman (PB)

equation, based on the Debye-Hückel’s potential of mean force (PMF) approximation for

electrostatic interactions for biomolecules in ionic solvent, will be provided in Chapter 2

and 3. Let us begin with a quote from an article appearing in Chemical Review in 1990’s

[9]:

Electromagnetism is the force of chemistry. Combined with the consequences

of quantum and statistical mechanics, electromagnetic forces maintain the

structure and drive the processes of the chemistry around us and inside us.

Because of the long-range nature of Coulombic interactions, electrostatics

plays a particularly vital role in intra- and intermolecular interactions of

chemistry and biochemistry.

Currently, there is intensive study of the electrostatic structure and stability properties

of biomolecules in an aqueous environment. The continuum models of molecules in ionic

solutions first proposed in 1923 by Debye and Hückel were developed and applied to the

medium comprising of the solute macromolecule and the surrounding ionic solvent
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environment [10].

In this classical continuum approach, the solute is usually described as a region with

a low dielectric constant ϵi, typically ϵi = 1 ∼ 4, and the enclosed atoms are treated

explicitly, while the solvent, occupying the exterior of the solute, is generally assigned

with a higher dielectric constant ϵo. Between the solute and solvent, the solute boundary

Γ is defined by the molecular surface which is given by either the van der Waals (vdW)

surface or the Solvent Accessible Surface (SAS), as shown in Figure 1.1 [5].

Figure 1.1: Molecular surfaces of the carbonic anhydrases-II. (Left) The van der Waals
(vdW) surface of the domain composed of the sum of overlapping vdW spheres. (Right)
The Solvent Accessible Surface (SAS) generated by rolling a small sphere on the vdW
surface.

Due to the embedded charges in the solute and the mobile ionic charges in the solvent,

the macroscopic potential Φ(r) at a field position r is described by the following Poisson

equation:

−∇ · ϵ(r)∇Φ(r) = ρ(r) + ρn(r), (1.1)

where ϵ(r) is the dielectric constant function at the field position r and ρ(r) =
∑N

j qjδ(r−

rj) is the interior charge distribution inside of the solute. qj are the particle charges assigned
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to atomic locations rj . ρn(r) is given by

ρn(r) =
∑
i

ni(r)zie, (1.2)

where ni(r) is the mobile ionic charge number density outside of the solute for the ions of

the type i at the field position r.

At the boundary Γ, due to the discontinuities of dielectric constants inside and outside of

the solute, the continuities of the potential Φ(r) and the normal displacement flux require

two interface conditions given by

Φ(r−) = Φ(r+), ϵi
∂Φ(r−)

∂n
= ϵo

∂Φ(r+)

∂n
, (1.3)

where r− and r+ are the inner and outer limits at the position r ∈ Γ, and n is the outward

unit normal to the surface of the solute.

1.2 Review of recent developments of methods for macroscopic electrostatic
calculations in biological applications

As discussed in section 1.1, electrostatic interactions play a centrally important role in

computer simulations of chemical and biological systems in condensed phase. When

considering ionic materials, the electrostatic interaction is by far the dominant term and

can represent, typically, up to 90% of the total energy. A diverse class of physical

properties and processes in simulation systems such as equilibrium structures, reaction

rates, electronic spectra, charge separation and transfer, rely on the treatment of the

long-range electrostatic interactions. Although the approaches to treat electrostatic

interactions differ greatly in their conceptual framework, complexity, and technical detail,

the majority of these approaches can be broadly divided into two general categories:



4

implicit and explicit.

In implicit solvation models, the solute is treated ‘explicitly’ in atomic details while the

solvent is modeled ‘implicitly’ as a dielectric continuum. To model the effect of solvent

on the solute, Poisson or Poisson-Boltzmann (PB) equations are employed. A number of

existing numerical algorithms are available for solving the PB equation in the simulation,

including finite-difference, finite-element, and boundary-element methods. One advantage

of this group of models is that with water molecules integrated out, implicit solvents

present far fewer degrees of freedom in computer simulations than the explicit solvents.

This greatly reduces the computational cost, which is the main motivation behind the

development of the implicit models. However, in spite of much recent progress in

developing numerical methods and formulating approximate treatment, the demanding

numerical implementation of solving a three-dimensional PB equation for a

macromolecule of arbitrary shape still presents a major challenge for the computer

simulations. The approximate representation of discrete molecular solvent as continuum

medium is another drawback of the implicit models, which is encountered in many

situations mentioned in [36].

In contrast, explicit models represent the entire simulated system, both solute and solvent

explicitly, namely, in atomic details, by assigning fixed charges to all atoms present in the

system. A wide range of approaches have been developed to compute interactions among

charges in the explicit solvents. These approaches include simple cutoff methods, a variety

of lattice-sum methods such as Ewald summation, Particle Mesh Ewald (PME), and fast

multipole methods (FMM), among which the lattice-sum methods are considered the most

accurate. To avoid surface effects, periodic boundary conditions (PBCs) are used in the
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simulations with explicit models. This application of PBCs eliminates the boundary of

the central simulation box by introducing an infinite number of identical boxes around

it throughout physical space on a lattice. However, periodicity also induces undesirable

artifacts resulting from the interactions between particles in different image boxes. The

effect of these artificial interactions depends on the sizes of box L. It was mentioned

that large L significantly improves accuracy but increases the computational cost of the

simulations, negatively affecting their practical use [30]. A more detailed discussion about

the effect of L on reducing the periodicity artifacts can be found in [16]. Compared to

explicit solvents, implicit model has a distinct advantage that they do not require PBCs and

thus are not affected by the periodicity artifacts.

Combining their complementary strengths of both implicit and explicit approaches, a

promising research strategy led to the development of numerous implicit/explicit models,

also referred as hybrid models. A common design principle of all the hybrid models is the

following: a central part of the simulation system containing the solute and some solvent

is treated explicitly in atomic details while the rest of the surrounding part is modeled

implicitly as dielectric continuum. Between these two explicit and implicit parts, a buffer

layer is constructed in which molecules are treated atomically but experience forces that are

different than those present in the central part, as shown in Figure 1.2. The total potential

within the explicit solvent region is the sum of two types of potentials, namely, ΦS +ΦRF ,

where ΦS is the direct electrostatic (or Coulomb) potential through which the charges in the

explicit solvent region interact with one another; ΦRF is the indirect reaction field resulting

from the polarization of the continuum solvent region (implicit solvent part) by the explicit

solvent charges.
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Figure 1.2: Cartoon illustrating the buffer layer filled with solvent.

How ΦRF is computed becomes a major difference among the hybrid electrostatic

solvation models. Friedman was first to apply an approach termed the image charge

method in the context of the solvation problem [16]. This group of approaches computes

the reaction field by one or more fictitious charges particles, called ‘image charges’,

located outside of the area where potential is calculated. In a recent paper by Lin et al, a

hybrid solvation model was introduced, in which the reaction fields are computed

efficiently using the image charge method and the fast multipole expansion

technique [30]. This model was successfully tested in a simulation of pure water solutions

previously and is extended in this work to the ionic solutions with arbitrary ionic strength.

The structure of this thesis is as follows. In Chapter 2, a high-order image

approximation to the ionic solvent induced reaction field is developed followed by the

numerical results to validate the convergence property and investigate the efficiency of this

image approximation. Next in Chapter 3, the image approximation methodology is

applied on the biological molecular simulation. After a brief review of the basics of

molecular dynamics simulation and a short description of mathematical formulation, a
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new hybrid solvation model based on the image charge method is discussed and tested for

simulations of biomolecules in ionic solvent. Finally, a conclusion is made in Chapter 4

followed by the intended future research topics.



CHAPTER 2: A SIXTH-ORDER IMAGE APPROXIMATION TO THE IONIC
SOLVENT INDUCED REACTION FIELD

2.1 Background and exact solutions

2.1.1 Background

We concern fast and accurate calculation of electrostatic interactions among point

charges inside a spherical dielectric cavity embedded in an ionic solvent of dissimilar

dielectric constant. Such a problem could be encountered in many applications such as

hybrid explicit/implicit solvent biomolecular dynamics simulations [28, 29, 36], in which

biomolecules and a part of solvent molecules within a dielectric cavity are explicitly

modeled while a surrounding dielectric continuum is used to model bulk effects of the

solvent outside the cavity.

The point charges in the dielectric cavity will polarize the surrounding dielectric

medium, which in turn generates a reaction field to the electric field throughout the cavity.

The electric potential field inside the cavity is thus expressed as Φin = ΦS + ΦRF, where

ΦS is the Coulomb potential given by the Coulomb’s Law, and ΦRF is the reaction field

which will dominate the computational cost for calculating the electric field inside the

cavity. Therefore, fast and accurate calculation of such a reaction field will have a wide

impact on computational simulations for chemical and biological systems involving

electrostatic interactions within a solvent.

In case of a spherical cavity, a popular approach to calculate the reaction field is the
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method of images, in which the reaction field is represented in terms of potentials of

discrete image charges. For the pure water solvent, namely, with no ions present in the

solvent, a variety of approaches exist for calculating the reaction field for charges inside

the spherical cavity, for example, the high-order accurate multiple image

approximation [6] and references therein. For an ionic solvent, by assuming that the ionic

strength of the solvent is low enough so that the product of the inverse Debye screening

length of the solvent and the radius of the spherical cavity is less than one, image

approximations of various orders (up to fourth-order) to the ionic solvent induced reaction

field have been developed. More specifically, in [11], a first- and a second-order image

approximations are presented using a point image charge at the classical Kelvin image

point and a line image charge that extends from this Kelvin image point along the radial

direction to infinity. Later in [12], a fourth-order image approximation and its improved

version are obtained using the same point image charge together with two line image

charges that extend from the Kelvin image point along the radial direction to infinity.

Following the same procedure as used in [11, 12], we shall develop a sixth-order accurate

image approximation to the ionic solvent induced reaction field, which will provide higher

accuracy in the evaluation of potential and force fields inside the cavity.

2.1.2 Exact series solution to the ionic solvent induced reaction field

By the principle of linear superposition, the reaction field due to a single point charge

q inside a spherical cavity of radius a centered at the origin only needs to be considered.

The sphere has a dielectric constant ϵi, and the surrounding ionic solvent is represented

as a homogeneous medium of a dielectric constant ϵo. The point charge q is located on
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the x-axis inside the sphere at a distance r
S
< a from the spherical center, as shown in

Figure 2.1.
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Figure 2.1: A point charge and a dielectric sphere immersed in an ionic solvent.

It is well-known that the total electric potential Φin(r) inside the cavity is given by the

solution of the Poisson equation

∇ · (ϵi∇Φin(r)) = −qδ(|r− rs|), (2.1)

where δ(r) denotes the Dirac delta function. Moreover, this potential can be expressed as

Φin(r)=ΦS(r)+ΦRF(r), where ΦS(r) is the Coulomb potential due to the source charge q

alone, and ΦRF(r) is the reaction potential due to the polarization of the outside dielectric

medium.

Outside the cavity, on the other hand, by assuming that the mobile ion concentration

follows the Debye-Hückel theory, namely, the mobile ion charges follow a Boltzmann

distribution in the mean field approximation, for a solvent of low ionic strength, the electric

potential Φout(r) is then given by the solution of the linearized Poisson-Boltzmann equation

(LPBE) [24]

∇2Φout(r)− λ2Φout(r) = 0, (2.2)
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here λ is the inverse Debye screening length determined by

λ2 =
8πNAe

2ρA
1000ϵokBT

cs, (2.3)

where NA is Avogadro’s number, ρA is the solvent density, e is the protonic charge

(4.803×10−10esu), kB is the Boltzmann constant, T is the absolute temperature, and cs is

the ionic concentration measured in molar units. From (2.3), we see that the inverse

Debye screening length λ is proportional to the square root of the ionic concentration cs.

In particular, for 1:1 electrolytes (monovalent:monovalent salts like NaCl),

λ ≈ 0.33
√
csÅ

−1 (2.4)

at room temperature (25o), with ϵo=78.5 and Å=10−10m [38].

On the interface Γ of the dielectric cavity and its surrounding dielectric medium, the

following two boundary conditions are to be satisfied for the continuities of the potential

and the fluxes along the normal direction of the interface

Φout|Γ = Φin|Γ and ϵo
∂Φout

∂n

∣∣∣∣
Γ

= ϵi
∂Φin

∂n

∣∣∣∣
Γ

, (2.5)

where n is the unit outward vector normal to the surface of the cavity.

Using the classical electrostatic theory, the reaction field of the spherical dielectric can

be solved analytically [11]. More precisely, with respect to a spherical coordinate system

(r, θ, ϕ) originating in the center of the sphere (the pole is denoted by the x-axis in this

paper), due to the azimuthal symmetry, the reaction field at a point r=(r, θ, ϕ) inside the

sphere takes on the form

ΦRF(r) =
∞∑
n=0

Anr
nPn(cos θ), (2.6)
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where Pn(x) represent the Legendre polynomials and An are the expansion coefficients

given by

An =
q

ϵia

1

rn
K

ϵi(n+ 1)kn(u) + ϵouk
′
n(u)

ϵinkn(u)− ϵouk′
n(u)

, n ≥ 0, (2.7)

where u=λa, r
K

=a2/r
S

with r
K

=(r
K
, 0, 0) denoting the classical Kelvin image point, and

kn(r) are the modified spherical Hankel functions [1, 19]

kn(r) =
π

2r
e−r

n∑
k=0

(n+ k)!

k!(n− k)!

1

(2r)k
, n ≥ 0. (2.8)

In theory, any desired degree of accuracy can be obtained using the direct series

expansion (2.6). In the case that the point charge is close to the spherical boundary, when

calculating the reaction field at an observation point also close to the boundary, the

convergence of the series expansion is slow due to the fact that r/r
K

=rr
S
/a2 ≈ 1,

requiring a great number of terms in the series expansion to achieve satisfactory accuracy

in the reaction field.

2.2 Line and point image approximations to the reaction field

Let us now turn ourselves to the problem of finding image charges outside the spherical

region giving rise to the reaction potential inside the sphere. For the pure water solvent,

such image charges include a point charge at the classical Kelvin image point and a

continuous line charge extending along the radial direction from this Kelvin image point

to infinity [31, 34, 35]. For an ionic solvent, as mentioned earlier, by assuming that the

ionic strength of the solvent is low enough such that the product of the inverse Debye

screening length λ (which is proportional to the square root of the ionic concentration)

and the radius of the spherical cavity a is less than one (u=λa < 1), several image
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approximations of various orders (in terms of u=λa) to the ionic solvent induced reaction

field have been developed [11, 12]. It should be emphasized again that the assumption of

u=λa < 1 is physically justifiable since the condition of low ionic strength is required for

the linearization of the Poisson-Boltzmann equation to be meaningful.

2.2.1 Previous first- and second-order image approximations

In this subsection, we review the mathematical formulation of a previous paper [11].

The key idea in the development of the foregoing image charge methods is to approximate

kn(u)/uk
′
n(u) with simple rational functions of n when u is small. In fact, by applying the

expansion of the modified spherical Hankel function

kn(r) = π
(2n)!

(n)!

1

(2r)n+1
+O

(
1

rn

)
, n ≥ 0, (2.9)

which essentially implies

kn(r)

rk′
n(r)

= − 1

n+ 1
+O(r), n ≥ 0,

a first-order image approximation to the ionic solvent induced reaction field can be obtained

as follows [11]

ΦRF(r) =
q
K

ϵi|r− r
K
|
+

∫ ∞

r
K

q̂
L0
(x)

ϵi|r− x|
dx+O(u), (2.10)

where the point image charge q
K

and the line image charge q̂
L0
(x) are defined by

q
K
= γ

a

r
S

q, q̂
L0
(x) =

δ̂0q

a

(
x

r
K

)−σ̂0

, r
K
≤ x,
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respectively, where

γ =
ϵi − ϵo
ϵi + ϵo

, σ̂0 =
ϵo

ϵi + ϵo
, δ̂0 =

ϵi(ϵi − ϵo)

(ϵi + ϵo)2
.

Note that neither of the point charge q
K

and the line charge q̂
L0
(x) depends on the inverse

Debye screening length λ, indicating that in essence the first-order image approximation

to the ionic solvent induced reaction field totally ignores the ionic strength effect in the

reaction potential. Hence, more accurate image approximations have to be developed to

account for the ionic strength effect. To this end, by noticing that instead of the (1/rn)

truncation error as described in (2.9), in fact we have

kn(r) = π
(2n)!

(n)!

1

(2r)n+1
+O

(
1

rn−1

)
, n ≥ 1, (2.11)

The first-order image approximation thus can be improved by simply including a constant,

position-independent correction potential, resulting in the following second-order image

approximation to the ionic solvent induced reaction field [11]:

ΦRF(r) =
q
K

ϵi|r− r
K
|
+

∫ ∞

r
K

q̂
L0
(x)

ϵi|r− x|
dx+ Φ̂C1(r) +O(u2), (2.12)

with the constant, position-independent correction potential Φ̂C1 defined by

Φ̂C1 =
q

ϵia

(
C0(u)− γ − δ̂0

σ̂0

)
,

where

C0(u) =
ϵi − (1 + u)ϵo
(1 + u)ϵo

. (2.13)

Moreover, the accuracy of the second-order image approximation (2.12) can be further

improved by including another position-dependent correction potential, yielding the
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improved second-order image approximation [11]

ΦRF(r) =
q
K

ϵi|r− r
K
|
+

∫ ∞

r
K

q̂
L0
(x)

ϵi|r− x|
dx+ Φ̂C1 + Φ̂C2(r) +O(u2), (2.14)

with the position-dependent correction potential Φ̂C2(r) defined by

Φ̂C2(r) =
q

ϵia

(
C1(u)− γ − δ̂0

1 + σ̂0

)(
r

r
K

)
cos θ,

where

C1(u) =
2(1 + u)ϵi − (2 + 2u+ u2)ϵo
(1 + u)ϵi + (2 + 2u+ u2)ϵo

. (2.15)

2.2.2 Previous fourth-order image approximations

Using the same key idea as Section 2.2.1, a fourth-order image approximation is obtained

in [12]. In fact, by applying the expansion of the modified spherical Hankel function

kn(r) = π
(2n− 2)!

(n− 1)!

(
2(2n− 1)

(2r)n+1
− 1

4(2r)n−1

)
+O

(
1

rn−3

)
, n ≥ 2, (2.16)

which essentially implies

kn(r)

rk′
n(r)

= − −(2 + r2) + 4n

(r2 − 2) + (2− r2)n+ 4n2
+O(r4), n ≥ 2,
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a fourth-order image approximation to the ionic solvent induced reaction field can be

obtained as follows [12]

ΦRF(r) =
q
K

ϵi|r− r
K
|
+

∫ ∞

r
K

q̂
L1
(x)

ϵi|r− x|
dx+

∫ ∞

r
K

q̂
L2
(x)

ϵi

(
1

|r− x|
− 1

x

)
dx

+ Φ̂C0 + Φ̂C1(r) +O(u4), (2.17)

where the constant position-independent correction potential Φ̂C0 and the

position-dependent correction potential Φ̂C1(r) are defined as

Φ̂C0 =
q

ϵia

(
C0(u)− γ − δ̂1

σ̂1

)
, (2.18)

Φ̂C1(r) =
q

ϵia

(
C1(u)− γ − δ̂1

1 + σ̂1

− δ̂2
1− σ̂2

)(
r

r
K

)
cos θ, (2.19)

respectively. Here we denote

C0(u) =
ϵi − (1 + u)ϵo
(1 + u)ϵo

, (2.20)

C1(u) =
2(1 + u)ϵi − (2 + 2u+ u2)ϵo
(1 + u)ϵi + (2 + 2u+ u2)ϵo

. (2.21)

The point image charge q
K

and the two line image charges q̂
L1
(x) and q̂

L2
(x) are defined by

q
K
= γ

a

r
S

q, q̂
L1
(x) =

δ̂1q

a

(
x

r
K

)−σ̂1

, q̂
L2
(x) =

δ̂2q

a

(
x

r
K

)σ̂2

, r
K
≤ x,

respectively, where σ̂1, δ̂1, σ̂2, δ̂2 are defined in [12], and γ = (ϵi − ϵo)/(ϵi + ϵo).

Moreover, the accuracy of the fourth-order image approximation (2.17) can be further

improved by including another position-dependent correction potential, yielding the
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improved fourth-order image approximation [12]

ΦRF(r) =
q
K

ϵi|r− r
K
|
+

∫ ∞

r
K

q̂
L1
(x)

ϵi|r− x|
dx+

∫ ∞

r
K

q̂
L2
(x)

ϵi

(
1

|r− x|
− 1

x

)
dx

+ Φ̂C0 + Φ̂C1(r) + Φ̂C2(r) +O(u4), (2.22)

with the position-dependent correction potential Φ̂C2(r) defined by

Φ̂C2(r) =
q

ϵia

(
C2(u)− γ − δ̂1

2 + σ̂1

− δ̂2
2− σ̂2

)(
r

r
K

)2

P2(cos θ),

where

C2(u) =
3(3 + 3u+ u2)ϵi − (9 + 9u+ 4u2 + u3)ϵo
2(3 + 3u+ u2)ϵi + (9 + 9u+ 4u2 + u3)ϵo

. (2.23)

2.2.3 Formulation of the sixth-order image approximation

To construct a sixth-order image approximation for better accuracy, by using the Taylor

expansion

e−r = 1− r +
r2

2
− r3

6
+

r4

24
− r5

120
+O(r6),

and the truncation

n∑
k=0

(n+ k)!

k!(n− k)!

1

(2r)k
=

5∑
k=0

(2n− k)!

k!(n− k)!

1

(2r)n−k
+O

(
1

rn−6

)
, n ≥ 5,

one can arrive at the expansion of the modified spherical Hankel function in terms of 1/r

as follows

kn(r) = π
(2n− 4)!

(n− 2)!

[
4(2n− 1)(2n− 3)

(2r)n+1
− 2n− 3

2(2r)n−1
+

1

32(2r)n−3

]
+O

(
1

rn−5

)
, n ≥ 5.

(2.24)
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However, after expanding k4(r) directly in terms of 1/r, it turns out that (2.24) is also true

for n=4. Correspondingly, the derivative of the modified spherical Hankel function can be

expanded as

k′
n(r) =− π

(2n− 4)!

(n− 2)!

[
8(2n− 3)(2n− 1)(n+ 1)

(2r)n+2

−(2n− 3)(n− 1)

(2r)n
+

n− 3

16(2r)n−2

]
+O

(
1

rn−4

)
, n ≥ 4. (2.25)

Consequently, for n ≥ 4 we obtain

kn(r)

rk′
n(r)

= − r4 + 12r2 + 24− 8(r2 + 8)n+ 32n2

−3(r4 + 4r2 − 8) + (r4 + 20r2 − 40)n− 8(r2 + 4)n2 + 32n3
+O(r6).

Inserting this approximation into (2.7) leads to

An =
q

ϵia

1

rn
K

a1 + a2n+ a3n
2 + a4n

3

b1 + b2n+ b3n2 + b4n3
+O(u6), n ≥ 4,

where

a1 = 24(ϵi − ϵo) + 12ϵiu
2 + 12ϵou

2 + ϵiu
4 + 3ϵou

4,

a2 = −40(ϵi − ϵo) + 4ϵiu
2 − 20ϵou

2 + ϵiu
4 − ϵou

4,

a3 = −32(ϵi − ϵo)− 8ϵiu
2 + 8ϵou

2,

a4 = 32(ϵi − ϵo),

b1 = −3ϵo(u
4 + 4u2 − 8),

b2 = −64ϵo + 24(ϵi + ϵo) + 12ϵiu
2 + 20ϵou

2 + ϵiu
4 + ϵou

4,

b3 = −8(8ϵi + 4ϵo + (ϵi + ϵo)u
2),

b4 = 32(ϵi + ϵo).
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After some algebraic manipulations, the expansion coefficients An can be further

expressed as

An =
q

ϵia

1

rn
K

(
γ +

α1 + α2n+ α3n
2

β1 + β2n+ β3n2 + n3

)
+O(u6), n ≥ 4,

where

α1 =
a1
b4

− γβ1, β1 =
b1
b4
,

α2 =
a2
b4

− γβ2, β2 =
b2
b4
,

α3 =
a3
b4

− γβ3, β3 =
b3
b4
.

Now using the root-finding formula for a cubic equation [43], one can get the three roots

of the equation β1 + β2n+ β3n
2 + n3 = 0 as

n1 =
1

3

[
−β3 − A

1
2

(
cos
(φ
3

)
+
√
3 sin

(φ
3

))]
=

1

3

[
−β3 − 2A

1
2 sin

(π
6
+

φ

3

)]
,

n2 =
1

3

[
−β3 − A

1
2

(
cos
(φ
3

)
−

√
3 sin

(φ
3

))]
=

1

3

[
−β3 − 2A

1
2 sin

(π
6
− φ

3

)]
,

n3 =
1

3

[
−β3 + 2A

1
2 cos

(φ
3

)]
,

where

A = β2
3 − 3β2, B =

9β2β3 − 27β1 − 2β3
3

54
,

ρ =

√(
A

9

)3

, φ = arccos

(
B

ρ

)
.

Theorem 1. If 0 ≤ u ≤ 1, then the three roots n1, n2 and n3 of the cubic equation

β1 + β2n+ β3n
2 + n3 = 0 satisfy

−1 < n1 < 0 < n2 < 1 < n3 < 2.
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Proof: Let

f(n) = (b1 + b2n+ b3n
2 + b4n

3)/ϵo.

Then, we have

f(−1) = −4u4 − 40u2 − 20ϵru
2 − 120ϵr − ϵru

4,

f(0) = −3u4 + 24− 12u2,

f(1) = −2u4 − 16 + 4ϵru
2 − 8ϵr + ϵru

4,

f(2) = −u4 + 72− 4u2 − 8ϵru
2 + 48ϵr + 2ϵru

4,

where ϵr = ϵi/ϵo > 0. For 0 ≤ u ≤ 1, it can be seen that

f(−1) < 0, f(0) > 0, f(1) < 0, f(2) > 0,

indicating that the equation f(n) = 0 has exactly one root in each of the three open intervals

(−1, 0), (0, 1) and (1, 2).

On the other hand, note that for 0 ≤ φ ≤ π, we have

n1 ≤
1

3

(
−β3 − A

1
2

)
≤ n2 ≤

1

3

(
−β3 + A

1
2

)
≤ n3,

and that n1, n2 and n3 are also the three roots of the equation f(n) = 0. Therefore, we

must have

−1 < n1 < 0 < n2 < 1 < n3 < 2.

Then, using partial fractions gives us

An =
q

ϵia

1

rn
K

(
γ +

δ1
n+ σ1

+
δ2

n− σ2

+
δ3

n− σ3

)
+O(u6), n ≥ 4, (2.26)
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where σ1 = −n1, σ2 = n2, σ3 = n3, and

δ1 =
σ2
1α3 − σ1α2 + α1

(σ1 + σ2)(σ1 + σ3)
,

δ2 =
σ2
2α3 + σ2α2 + α1

(σ1 + σ2)(σ2 − σ3)
,

δ3 =
σ2
3α3 + σ3α2 + α1

(σ1 + σ3)(σ2 + σ3)
.

On the other hand, for n ≤ 3, directly applying the exact expressions of k0(r), k1(r),

k2(r) and k3(r), in fact we can arrive at

k0(r)

rk′
0(r)

= − 1

1 + r
,

k1(r)

rk′
1(r)

= − 1 + r

2 + 2r + r2
,

k2(r)

rk′
2(r)

= − 3 + 3r + r2

9 + 9r + 4r2 + r3
,

k3(r)

rk′
3(r)

= − 90 + 30r + 6r2 + r3

270 + 150r + 36r2 + 6r3 + r4
,

and accordingly, we have

Aj = Cj(u)
q

ϵia

(
1

rj
K

)
, j = 0, 1, 2, 3, (2.27)

where C0(u), C1(u) and C2(u) are given in (2.20), (2.21) and (2.23), respectively, and

C3(u) is defined below

C3(u) =
4(15 + 15u+ 6u2 + u3)ϵi − (60 + 60u+ 27u2 + 7u3 + u4)ϵo
3(15 + 15u+ 6u2 + u3)ϵi + (60 + 60u+ 27u2 + 7u3 + u4)ϵo

. (2.28)

Inserting now the approximation of An given by (2.26) into (2.6), the reaction field inside

the sphere can be expressed as

ΦRF(r) =
3∑

n=0

Anr
nPn(cos θ) + S1 + S2 + S3 + S4 +O(u6), (2.29)
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where S1, S2, S3 and S4 represent the following four series

S1 =
γq

ϵia

∞∑
n=4

(
r

r
K

)n

Pn(cos θ),

S2 =
δ1q

ϵia

∞∑
n=4

1

n+ σ1

(
r

r
K

)n

Pn(cos θ),

S3 =
δ2q

ϵia

∞∑
n=4

1

n− σ2

(
r

r
K

)n

Pn(cos θ),

S4 =
δ3q

ϵia

∞∑
n=4

1

n− σ3

(
r

r
K

)n

Pn(cos θ).

Now, the problem reduces to how to represent each of the above four series by a line

image charge. To this end, we recall that the Coulomb potential Φ
S
(r), the potential at r

due to a point charge q at r
S
, can be expanded in terms of the Legendre polynomials of

cos θ as follows [33].

Φ
S
(r) =

q

ϵi|r− r
S
|
=


q

ϵir

∞∑
n=0

(r
S

r

)n
Pn(cos θ), r

S
≤ r ≤ a,

q

ϵirS

∞∑
n=0

(
r

r
S

)n

Pn(cos θ), 0 ≤ r ≤ r
S
.

(2.30)

First, in order to obtain an image representation for the series S1, we note that it can be

written as

S1 =
γq

ϵirK

a

r
S

∞∑
n=0

(
r

r
K

)n

Pn(cos θ)−
γq

ϵia

3∑
n=0

(
r

r
K

)n

Pn(cos θ),

where the first part is exactly the expansion of the potential at r due to a point charge of

magnitude q
K

outside the sphere at the classical Kelvin image point r
K

=(r
K
, 0, 0).

Therefore, we have

S1 =
q
K

ϵi|r− r
K
|
− γq

ϵia

3∑
n=0

(
r

r
K

)n

Pn(cos θ). (2.31)
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Next, to find an image representation for the second series S2, we need the integral

identity which can be regarded as a Mellin transformation

1

n+ σ
= rn+σ

K

∫ ∞

r
K

1

xn+σ+1
dx, (2.32)

and is valid for all n ≥ 0 when σ > 0. Inserting (2.32) with σ=σ1 into S2 yields

S2 =

∫ ∞

r
K

[
q
L1
(x)

ϵix

∞∑
n=0

( r
x

)n
Pn(cos θ)

]
dx− δ1q

ϵia

3∑
n=0

1

n+ σ1

(
r

r
K

)n

Pn(cos θ),

where

q
L1
(x) =

δ1q

a

(
x

r
K

)−σ1

, r
K
≤ x. (2.33)

Note that the integrand in the above integral again becomes the expansion given by (2.30)

for a charge of magnitude q
L1
(x) outside the sphere at the point x=(x, 0, 0). Therefore,

q
L1
(x) can be regarded as a continuous line charge which stretches from the classical Kelvin

image point r
K

along the radial direction to infinity. Thus, the second series S2 becomes

S2 =

∫ ∞

r
K

q
L1
(x)

ϵi|r− x|
dx− δ1q

ϵia

3∑
n=0

1

n+ σ1

(
r

r
K

)n

Pn(cos θ). (2.34)

To find image representations for the series S3 and S4, we use a similar integral identity

1

n− σ
= rn−σ

K

∫ ∞

r
K

1

xn−σ+1
dx, (2.35)

which is valid for all n ≥ 1 when σ < 1 and valid for all n ≥ 2 when σ < 2. Inserting this

into S3 yields

S3 =

∫ ∞

r
K

q
L2
(x)

ϵi

[
∞∑
n=0

1

x

( r
x

)n
Pn(cos θ)−

3∑
n=0

1

x

( r
x

)n
Pn(cos θ)

]
dx,
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where

q
L2
(x) =

δ2q

a

(
x

r
K

)σ2

, r
K
≤ x. (2.36)

Then, applying the identity (Expansion (2.30) with r
S
=x, q=1 and ϵi=1)

1

|r− x|
=

∞∑
n=0

1

x

( r
x

)n
Pn(cos θ), r < x,

and noting that

∫ ∞

r
K

q
L2
(x)

ϵi

1

x

( r
x

)n
Pn(cos θ)dx =

δ2q

ϵia(n− σ2)

(
r

r
K

)n

Pn(cos θ), 1 ≤ n ≤ 3,

we obtain

S3 =

∫ ∞

r
K

q
L2
(x)

ϵi

(
1

|r− x|
− 1

x

)
dx− δ2q

ϵia

3∑
n=1

1

n− σ2

(
r

r
K

)n

Pn(cos θ). (2.37)

Similarly, we can obtain

S4 =

∫ ∞

r
K

q
L3
(x)

ϵi

(
1

|r− x|
− 1

x
− r

x2
cos θ

)
dx− δ3q

ϵia

3∑
n=2

1

n− σ3

(
r

r
K

)n

Pn(cos θ),

(2.38)

where

q
L3
(x) =

δ3q

a

(
x

r
K

)σ3

, r
K
≤ x. (2.39)

Finally, inserting (2.31), (2.34), (2.37) and (2.38) into (2.29) and then combining like

terms, we have the sixth-order line image approximation to the ionic solvent induced
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reaction potential

ΦRF(r) =
q
K

ϵi|r− r
K
|
+

∫ ∞

r
K

q
L1
(x)

ϵi|r− x|
dx+

∫ ∞

r
K

q
L2
(x)

ϵi

(
1

|r− x|
− 1

x

)
dx

+

∫ ∞

r
K

q
L3
(x)

ϵi

(
1

|r− x|
− 1

x
− r

x2
cos θ

)
dx

+ ΦC0 + ΦC1(r) + ΦC2(r) + ΦC3(r) +O(u6), (2.40)

where ΦC0 is a position-independent correction potential defined as

ΦC0 =
q

ϵia

(
C0(u)− γ − δ1

σ1

)
, (2.41)

and on the other hand, ΦC1(r), ΦC2(r), and ΦC3(r) are position-dependent correction

potentials given by

ΦC1(r) =
q

ϵia

(
C1(u)− γ − δ1

1 + σ1

− δ2
1− σ2

)(
r

r
K

)
cos θ,

ΦC2(r) =
q

ϵia

(
C2(u)− γ − δ1

2 + σ1

− δ2
2− σ2

− δ3
2− σ3

)(
r

r
K

)2

P2(cos θ),

ΦC3(r) =
q

ϵia

(
C3(u)− γ − δ1

3 + σ1

− δ2
3− σ2

− δ3
3− σ3

)(
r

r
K

)3

P3(cos θ).

For convenience, in terms of the Kronecker delta δ1n we define

cn =
1

ϵia

(
Cn(u)− γ − δ1

n+ σ1

− δ2
n− σ2

− (1− δ1n)δ3
n− σ3

)
, n = 1, 2, 3.

Then, we have

ΦCn(r) = qcn

(
r

r
K

)n

Pn(cos θ), n = 1, 2, 3. (2.42)
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2.2.4 Point image approximations to the reaction field

In this section, we will discuss how to approximate each line image charge involved in

the image approximation in the previous section by a set of point image charges. Without

loss of generality, we consider

I =

∫ ∞

r
K

f(x)

(
x

r
K

)−σ

dx, (2.43)

where σ > 0. First, by introducing the change of variables r
K
/x=((1− s)/2)τ with τ > 0,

we have

I = 2−τστ

∫ 1

−1

(1− s)α h(s, τ)ds, (2.44)

where α=τσ − 1 and

h(s, τ) =
2τr

K

(1− s)τ
f

(
2τr

K

(1− s)τ

)
. (2.45)

Next, a numerical quadrature will be employed to approximate the integral in (2.44).

Although in principle any numerical quadrature can be used, considering that s=−1

corresponds to the Kelvin image point x = r
K

and that α > −1 because σ > 0 and τ > 0,

the Jacobi-Gauss-Radau quadrature is particularly used in this paper. More precisely, let

sm, ωm,m=1, 2, · · · ,M , be the Jacobi-Gauss-Radau points and weights on the interval

[−1, 1] with α=τσ − 1 and β=0, which can be obtained with the program ORTHPOL [17].

Then, the numerical quadrature for the integral in (2.44) is

I =

∫ ∞

r
K

f(x)

(
x

r
K

)−σ

dx ≈ 2−τστ
M∑

m=1

ωmxmf(xm) (2.46)

where for m = 1, 2, · · · ,M ,

xm = r
K

(
2

1− sm

)τ

. (2.47)
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The parameter τ > 0 in the change of variables r
K
/x=((1− s)/2)τ can be used as a

parameter to control the accuracy of numerical approximations. When τ=1/σ we have

α=0, and in this case the quadrature given by (2.46) simply reduces to the usual Gauss-

Radau quadrature.

2.2.5 Discretization by point image charges at different locations

Note that

q
L1
(x)

ϵi|r− x|
=

δ1q

ϵia|r− x|

(
x

r
K

)−σ1

.

Recall that 0 < σ1 < 1. Then using (2.46) with σ=σ1 leads to

∫ ∞

r
K

q
L1
(x)

ϵi|r− x|
dx ≈

M∑
m=1

qL1m
ϵi|r− xL1

m |
, (2.48)

where for m=1, 2, · · · ,M ,

qL1m = 2−τσ1τδ1ω
L1
m

xL1
m

a
q, xL1

m = r
K

(
2

1− sL1m

)τ

. (2.49)

Here sL1m and ωL1
m are the quadrature points and weights with α=τσ1 − 1.

Similarly, note that

q
L2
(x)

ϵi

(
1

|r− x|
− 1

x

)
=

δ2q

ϵia

(
1

|r− x|
− 1

x

)(
x

r
K

)(
x

r
K

)−(1−σ2)

.

Recall that 0 < σ2 < 1. Then, applying (2.46) with σ=(1− σ2) > 0, we get

∫ ∞

r
K

q
L2
(x)

ϵi

(
1

|r− x|
− 1

x

)
dx ≈

M∑
m=1

qL2m
ϵi|r− xL2

m |
−

M∑
m=1

qL2m
ϵixL2

m

, (2.50)

where for m=1, 2, · · · ,M ,

qL2m = 2−τ(1−σ2)τδ2ω
L2
m

(
xL2
m

r
K

)
xL2
m

a
q, xL2

m = r
K

(
2

1− sL2m

)τ

. (2.51)
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Here sL2m and ωL2
m are the quadrature points and weights with α=τ(1− σ2)− 1.

Also, it can be noted that

q
L3
(x)

ϵi

(
1

|r− x|
− 1

x
− r

x2
cos θ

)
=

δ3q

ϵia

(
1

|r− x|
− 1

x
− r

x2
cos θ

)(
x

r
K

)2(
x

r
K

)−(2−σ3)

.

Recalling that 1 < σ3 < 2, and applying (2.46) with σ=(2− σ3) > 0, we get

∫ ∞

r
K

q
L3
(x)

ϵi

(
1

|r− x|
− 1

x
− r

x2
cos θ

)
dx ≈

M∑
m=1

qL3m
ϵi|r− xL3

m |
−

M∑
m=1

qL3m
ϵixL3

m

−
M∑

m=1

qL3m r cos θ

ϵi (xL3
m )2

,

(2.52)

where for m=1, 2, · · · ,M ,

qL3m = 2−τ(2−σ3)τδ3ω
L3
m

(
xL3
m

r
K

)2
xL3
m

a
q, xL3

m = r
K

(
2

1− sL3m

)τ

. (2.53)

Here sL3m and ωL3
m are the quadrature points and weights with α=τ(2− σ3)− 1.

Note that the second summation in the right-hand side of (2.50) and that in the right-hand

side of (2.52) are position-independent. Adding them to ΦC0 leaves us with a modified

position-independent correction potential

Φ̄C0 = ΦC0 −
M∑

m=1

qL2m
ϵixL2

m

−
M∑

m=1

qL3m
ϵixL3

m

. (2.54)

Likewise, adding the last summation in the right-hand side of (2.52) to ΦC1(r) gives us

a modified position-dependent correction potential

Φ̄C1(r) = ΦC1(r)−
M∑

m=1

qL3m r cos θ

ϵi (xL3
m )2

= qc̄1

(
r

r
K

)
cos θ, (2.55)

where

c̄1 = c1 −
1

ϵia

M∑
m=1

2−τ(2−σ3)τδ3ω
L3
m

(
2

1− sL3m

)τ

.
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2.2.6 Discretization by point image charges at the same locations

For computational efficiency, we can choose to discretize the three line image charges

q
L1
(x), q

L2
(x) and q

L3
(x) by point charges at the same locations. More specifically, one can

choose a common parameter σc > 0 to rewrite the line charge q
L1
(x) as

q
L1
(x) =

δ1q

a

(
x

r
K

)σc−σ1
(

x

r
K

)−σc

.

Then, for m=1, 2, · · · ,M , we have

qL1m = 2−τσcτδ1ωm

(
xm

r
K

)σc−σ1 xm

a
q. (2.56)

Here the quadrature points and weights are obtained using α=τσc − 1.

Similarly, the line image charges q
L2
(x) and q

L3
(x) are discretized into

qL2m = 2−τσcτδ2ωm

(
xm

r
K

)σc+σ2 xm

a
q, (2.57)

qL3m = 2−τσcτδ3ωm

(
xm

r
K

)σc+σ3 xm

a
q. (2.58)

The parameter σc > 0 is tunable for optimal computational efficiency. For example,

depending on the value of u=λa, any of the three natural choices σc=σ1, σc=1 − σ2 or

σc=2− σ3 could perform well.

Furthermore, since s1 = −1 and consequently x1 = r
K

, the classical Kelvin image

charge and the first discrete image charge of each image line charge can be combined. In

conclusion, in general we have the following multiple discrete image approximation to the

reaction potential inside the sphere in terms of the potentials of 3M − 2 point charges (or
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M charges if a common parameter σc is utilized) and some correction potentials.

ΦRF(r) ≈ 1

ϵi

[
q′
K

|r− r
K
|
+

M∑
m=2

(
qL1m

|r− xL1
m |

+
qL2m

|r− xL2
m |

+
qL3m

|r− xL3
m |

)]
+Φ̄C0 + Φ̄C1(r) + ΦC2(r) + ΦC3(r), (2.59)

where

q′
K
= q

K
+ qL11 + qL21 + qL31 .

For the sake of convenience, we simply write (2.59) as

ΦRF(r) ≈
Nim∑
m=1

qImm
ϵi|r− xm|

+ Φ̄C0 + Φ̄C1(r) + ΦC2(r) + ΦC3(r), (2.60)

where the summation over m includes the modified Kelvin image charge q′
K

at the

corresponding Kelvin image point r
K

and all discrete image point charges qL1m , qL2m , and

qL3m at xL1
m , xL2

m , and xL3
m , respectively, and Nim is the total number of all point image

charges.

2.3 O(N) implementation of the point image approximation

The main purpose for the discrete image approximation to the reaction field is to enable

us to apply existing fast algorithms, such as the pre-corrected FFT [37] or the fast multipole

method (FMM) [7,8,20–22], directly in calculating the electrostatic interactions among N

source point charges inside the spherical cavity in O(N logN) or even O(N) operations.

In particular, below we give a straightforward O(N) implementation of the discrete image

approximation with using the FMM.

For convenience, let rFi = (xF
i , y

F
i , z

F
i ), i = 1, 2, · · · , N , be N observation points and

rSj = (xS
j , y

S
j , z

S
j ), j = 1, 2, · · · , N , be the locations of N source charges with charge
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strengths q1, q2, · · · , qN . By linear superposition, the reaction field at an observation point

rFi , in the case that the sixth-order image approximation (2.60) is employed, becomes

ΦRF(r
F
i ) ≈

N∑
j=1

Nim∑
m=1

qImm,j

ϵi|rFi − xm,j|
+

N∑
j=1

(
Φ̄C0,j + Φ̄C1,j(r

F
i ) + ΦC2,j(r

F
i ) + ΦC3,j(r

F
i )
)
.

(2.61)

Here and in the sequel a quantity with a second subscript j designates a quantity associated

with the source charge rSj , such as

r
K,j

=
a2

rSj
, xm,j = r

K,j

(
2

1− sm

)τ

.

2.3.1 O(N) calculation of the correction potentials

Obviously, the position-independent correction potential

N∑
j=1

Φ̄C0,j =
N∑
j=1

[
qj
ϵia

(
C0(u)− γ − δ1

σ1

)
−

M∑
m=1

qL2m,j

ϵixL2
m,j

−
M∑

m=1

qL3m,j

ϵixL3
m,j

]

can be evaluated in O(N) operations. The evaluation of other correction potentials in O(N)

operations, however, needs some manipulations due to their position-dependence. First of

all, from (2.55) we have

N∑
j=1

Φ̄C1,j(r
F
i ) =

(
c̄1
a2

N∑
j=1

qjr
S
j

)
• rFi , (2.62)

which in component form can be written as

N∑
j=1

Φ̄C1,j(r
F
i ) = d1x

F
i + d2y

F
i + d3z

F
i , (2.63)

where

d1 =
c̄1
a2

N∑
j=1

qjx
S
j , d2 =

c̄1
a2

N∑
j=1

qjy
S
j , d3 =

c̄1
a2

N∑
j=1

qjz
S
j .
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Now it becomes clear that the second correction potential can be evaluated in O(N)

operations as well. Analogously, the third correction potential can also be evaluated in

O(N) operations. In fact, from (2.42) we have

N∑
j=1

ΦC2,j(r
F
i ) =

3c2
2a4

N∑
j=1

qj
(
rSj • rFi

)2 −( c2
2a4

N∑
j=1

qj
(
rSj
)2)(

rFi
)2

,

which can be written as

N∑
j=1

ΦC2,j(r
F
i ) = e0

(
rFi
)2

+
(
MrFi

)
• rFi , (2.64)

where

e0 = − c2
2a4

N∑
j=1

qj
(
rSj
)2

, M =
3c2
2a4

N∑
j=1

qjr
S
j ⊗ rSj ,

and ⊗ represents the outer product of two vectors.

In component form, (2.64) can be written as

N∑
j=1

ΦC2,j(r
F
i ) =e0

(
rFi
)2

+ e1
(
xF
i

)2
+ e2

(
yFi
)2

+ e3
(
zFi
)2

+ e4x
F
i y

F
i + e5x

F
i z

F
i + e6y

F
i z

F
i , (2.65)

where

e1 =
3c2
2a4

N∑
j=1

qj
(
xS
j

)2
, e2 =

3c2
2a4

N∑
j=1

qj
(
ySj
)2

, e3 =
3c2
2a4

N∑
j=1

qj
(
zSj
)2

,

e4 =
3c2
a4

N∑
j=1

qjx
S
j y

S
j , e5 =

3c2
a4

N∑
j=1

qjx
S
j z

S
j , e6 =

3c2
a4

N∑
j=1

qjy
S
j z

S
j .

Similarly, the fourth correction potential can be evaluated in O(N) operations as well.

By expressing the cosine of the angle θ between rFi and rSj in terms of their rectangular
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coordinates, from (2.42) one can arrive at

N∑
j=1

ΦC3,j(r
F
i ) =f1

(
xF
i

)3
+ f2

(
yFi
)3

+ f3
(
zFi
)3

+ f4
(
xF
i

)2
yFi + f5

(
xF
i

)2
zFi

+ f6x
F
i

(
yFi
)2

+ f7
(
yFi
)2

zFi + f8x
F
i

(
zFi
)2

+ f9y
F
i

(
zFi
)2

+ f10x
F
i y

F
i z

F
i + f11x

F
i

(
rFi
)2

+ f12y
F
i

(
rFi
)2

+ f13z
F
i

(
rFi
)2

, (2.66)

where

f1 =
5c3
2a6

N∑
j=1

qj
(
xS
j

)3
, f2 =

5c3
2a6

N∑
j=1

qj
(
ySj
)3

, f3 =
5c3
2a6

N∑
j=1

qj
(
zSj
)3

,

f4 =
15c3
2a6

N∑
j=1

qj
(
xS
j

)2
ySj , f5 =

15c3
2a6

N∑
j=1

qj
(
xS
j

)2
zSj , f6 =

15c3
2a6

N∑
j=1

qjx
S
j

(
ySj
)2

,

f7 =
15c3
2a6

N∑
j=1

qj
(
ySj
)2

zSj , f8 =
15c3
2a6

N∑
j=1

qjx
S
j

(
zSj
)2

, f9 =
15c3
2a6

N∑
j=1

qjy
S
j

(
zSj
)2

,

f10 =
15c3
a6

N∑
j=1

qjx
S
j y

S
j z

S
j , f11 = −3c3

2a6

N∑
j=1

qjx
S
j

(
rSj
)2

,

f12 = −3c3
2a6

N∑
j=1

qjy
S
j

(
rSj
)2

, f13 = −3c3
2a6

N∑
j=1

qjz
S
j

(
rSj
)2

.

2.3.2 O(N) calculation of the potentials of the image charges

The FMM is known to be extremely efficient in the evaluation of pairwise interactions

in large ensembles of particles, such as that included in (2.61)

N∑
j=1

Nim∑
m=1

qImm,j

ϵi|rFi − xm,j|
, i = 1, 2, · · · , N.

For instance, the adaptive FMM of [8] requires O(N) work and breaks even with the direct

calculation at about N=750 for three-digit precision, N=1500 for six-digit precision, and

N=2500 for nine-digit precision, respectively [23]. Using such an adaptive FMM with
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O(N) computational complexity, the calculation of the potentials of the discrete image

charges for all observation points can be evaluated in O(N) operations in a straightforward

way.

In the simplest implementation, such evaluation can be carried out with a single FMM

run by including all point image charges qImm,j into the FMM cube. In the case that the total

potential is to be calculated, all original source charges are also included in the FMM box.

All charges are taken as acting in a homogeneous medium of the dielectric constant ϵi.

2.3.3 Local expansions for potential calculations

The introduced discrete image charges outside the sphere will result in a large

computational domain and the image charges are highly nonuniformly distributed,

particularly because the image charges of those source charges close to the center of the

sphere are far away from the spherical boundary. Therefore, direct application of the

FMM by including all image charges in this large computational box is not efficient.

Instead, a simple but more efficient way would be to calculate the local expansion due to

the far field image charges directly inside the sphere. This way, one can achieve not only a

smaller FMM box but also a smaller number of total charges in the FMM box.

More specifically, in practice we could introduce a bigger cut-off sphere of radius κa

centered at the origin with κ > 1. The calculation of the potentials inside the original

dielectric sphere due to those image charges inside this cut-off sphere is still carried out by

the chosen fast method. For all image charges outside this cut-off sphere at

(ρl, αl, βl), l=1, 2 · · · , L, with charge strengths q̂l, l=1, 2, · · · , L, the calculation of the

potential at r=(r, θ, ϕ) inside the dielectric sphere generated by these image charges can
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be described by a local expansion

Φ(r) ≈
p∑

j=0

j∑
k=−j

Lk
j · Y k

j (θ, ϕ) · rj, (2.67)

where Y k
j (θ, ϕ) are the spherical harmonics, and Lk

j are the local expansion coefficients

given by

Lk
j =

L∑
l=1

q̂l ·
Y −k
j (αl, βl)

ρj+1
l

. (2.68)

Furthermore, for any p ≥ 1,∣∣∣∣∣Φ(r)−
p∑

j=0

j∑
k=−j

Lk
j · Y k

j (θ, ϕ) · rj
∣∣∣∣∣ ≤

(∑L
l=1 |q̂l|

κa− r

)( r

κa

)p+1

. (2.69)

2.3.4 O(N) calculation of the force field

In practice, most time in molecular dynamics simulations the electric force field needs to

be calculated. Although force equations are not difficult to derive, we would like to include

them here for completeness.

In general, electric forces are computed by taking gradients of electric potentials.

Therefore, the electric force exerted on Particle i at the position rFi is expressed as

f(rFi ) = −qi∇rΦ(r
F
i ).

In the case that the reaction potential field is approximated by the sixth-order image

approximation (2.60), the image approximation for the electric force field becomes (note

that −∇rΦ̄C0,j = 0)

f(rFi ) = qi

N∑
j=1

Nim∑
m=1

qImm,j(r
F
i − xm,j)

ϵi|rFi − xm,j|3
− qi∇r

N∑
j=1

(
Φ̄C1,j(r

F
i ) + ΦC2,j(r

F
i ) + ΦC3,j(r

F
i )
)
.
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First of all, O(N) calculation of the gradients of the correction potentials can be derived

directly from the O(N) calculation of the corresponding correction potentials. For

examples, from (2.62) and (2.64) we can obtain

−∇r

N∑
j=1

Φ̄C1,j(r
F
i ) = − c̄1

a2

N∑
j=1

qjr
S
j ,

and

−∇r

N∑
j=1

ΦC2,j(r
F
i ) = −2(e0I +M)rFi = −


2(e0 + e1) e4 e5

e4 2(e0 + e2) e6

e5 e6 2(e0 + e3)

 rFi .

On the other hand, the FMM can be used to calculate

qi

N∑
j=1

Nim∑
m=1

qImm,j(r
F
i − xm,j)

ϵi|rFi − xm,j|3
, i = 1, 2, · · · , N

in O(N) complexity.

Moreover, the force field inside the sphere due to the far field image charges can also be

described in local expansions. Local expansion for force calculations in the FMM can be

found in [14, 32]. When using the local expansion (2.67) to calculate the far-field electric

potential due to all image charges outside the cut-off sphere, the corresponding far-field

force f(r) exerted on a particle q at r = (r, θ, ϕ) inside the dielectric sphere can also be

described by local expansions. Passing the details, we have

fx(r) = −q
∂

∂x
Φ(r) = −q · Re (H2 −H3) , (2.70)

fy(r) = −q
∂

∂y
Φ(r) = −q · Im (H2 +H3) , (2.71)

fz(r) = −q
∂

∂z
Φ(r) = −q · (H0 + 2Re(H1)) , (2.72)
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where Re(. . .) and Im(. . .) represent the real and the imaginary parts of a complex number,

respectively, and

H0 =

p∑
j=1

jL0
jPj−1(cos θ)r

j−1,

H1 =

p∑
j=1

j−1∑
k=1

(j + k)Ck
j · Lk

j e
ikϕP k

j−1(cos θ)r
j−1,

H2 =

p∑
j=1

L0
je

iϕP 1
j−1(cos θ)r

j−1 +

p∑
j=1

j∑
k=1

Ck
j L

k
j e

i(k+1)ϕP k+1
j−1 (cos θ)r

j−1,

H3 =

p∑
j=1

C−1
j L1

jPj−1(cos θ)r
j−1 +

p∑
j=1

j∑
k=2

Bk
jC

k
j L

k
j e

i(k−1)ϕP k−1
j−1 (cos θ)r

j−1,

and

Bk
j = (j + k)(j + k − 1), Ck

j =

√
(j − k)!

(j + k)!
.

2.4 Numerical examples

For illustration purpose, a unit dielectric sphere is used. The dielectric constants of

the sphere and its surrounding medium are assumed to be ϵi=2 (normally 1, 2 or 4) and

ϵo=80 (the dielectric constant of water), respectively. Unless otherwise specified, the results

obtained by the direct series expansion with 400 terms are treated as the exact reaction fields

to calculate the errors of the sixth-order image approximation.

2.4.1 Accuracy vs the ionic strength

We begin by considering a single point charge located on the x-axis inside the sphere at

a distance r
S
=0.5 or r

S
=0.95 from the center of the sphere. Different σ values are used in

discretizing the underlying image line charges, but for simplicity, we always choose

τ=1/σ and M=40 so that the same Gauss-Radau quadrature points and weights sm and
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ωm are involved. For each selected value of u=λa, we calculate the relative error of the

image approximation in the reaction field, respectively, at 10, 000 observation points

uniformly distributed (under the polar coordinates) within the unit disk in the plane y = 0.

The maximal relative error ∥ E ∥ at these observation points for various u values and the

corresponding order of convergence are shown in Tables 2.1 and 2.2. For sake of

comparison, the results obtained using the improved fourth-order image approximation

are also included. As can be observed, the results clearly demonstrate the O(u6)

convergence rate of the sixth-order image approximation.

Table 2.1: Convergence rate of the proposed image approximation (r
S
= 0.5).

Impr. 4th-order 6th-order
u ∥ E ∥ Order ∥ E ∥ Order

0.8 2.13E-5 2.22E-7
0.4 1.42E-6 3.91 3.46E-9 6.00
0.2 9.08E-8 3.97 5.61E-11 5.94
0.1 5.68E-9 4.00 4.20E-11

Table 2.2: Convergence rate of the proposed image approximation (r
S
= 0.95).

Impr. 4th-order 6th-order
u ∥ E ∥ Order ∥ E ∥ Order

0.8 1.68e-4 3.25e-6
0.4 1.12e-5 3.90 5.30e-8 5.94
0.2 7.20e-7 3.96 7.16e-10 6.21
0.1 4.64e-8 3.96 9.03e-11

2.4.2 Accuracy vs the number of discrete image charges

One natural concern with the proposed discrete image approximation is the final number

of point image charges required to achieve certain order of degree of accuracy. For a desired

accuracy, this number depends on the locations of the source charge and the observation
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point. It should be small if compared to the number of terms needed to achieve the same

degree of accuracy in the direct series expansion to make the image approximation useful

in practice.

In this test, the source location is fixed at r
S
= 0.95. For each selected value of u = λa

ranging from 0.05 to 0.9, we approximate the reaction fields at the same 10,000 points

within the sphere by the sixth-order image approximation with several different numbers

of point image charges. Figure 2.2 shows the maximum relative errors of the point image

approximation using M = 2, M = 6 and M = 10, without a common σ being used. For

the sake of comparison, the corresponding error analysis results for the improved fourth-

order image approximation are also plotted.
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Figure 2.2: Maximum relative errors in the ionic solvent induced reaction field due to a
source charge inside the unit sphere at distance r

S
= 0.95 from the spherical center. No

common σ is used.

As can be seen, when M = 2, the sixth-order multiple discrete image approximation

can achieve 10−3 accuracy. However, as M is small, the accuracy of the sixth-order image
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approximation is no better than that of the improved fourth-order image approximation.

This is because when M is small, the numerical error stemming from the approximation

of the line image charges by point image charges dominates. Nevertheless, when M is

relatively large, the advantage of the sixth-order image approximation becomes evident in

the sense of accuracy. For example, as shown in Figure 2.2, the sixth-order image

approximation is clearly shown to be more accurate than the fourth-order one when

M = 10 is used, particularly for cases with large u values. It should be pointed out that,

since different line images are discretized by point images at different locations, the

number of total point images in the sixth-order method is 3M − 2, while that in the

fourth-order method is only 2M − 1 in this particular test.

Similar error analysis results with a common σ being used are displayed in Figure 2.3.

Note that in this case the sixth-order and the fourth-order methods both use M point images

for a given M value. As shown in Figure 2.3, for low accuracy (such as 10−2), for all u

values in the range of [0.05, 0.9], both the sixth-order and the fourth-order methods need

2 point images and thus the same computational cost to achieve the required accuracy.

For high accuracy (such as 10−5), on the one hand, when the u value is small, the two

methods still have comparable performance, namely, they need to use the same number of

point images to achieve the same accuracy. On the other hand, when the u value is large

such as 0.9, the error of the sixth-order method using 10 point images can be less than

4 × 10−5, but that of the fourth-order method using the same number of point images is

around 2 × 10−4, implying that if it is possible for the the fourth-order method to realize

the same 4 × 10−5 accuracy, it must use more than 10 image charges and consequently

more computational cost. Actually, as shown by Figure 2.4, the best accuracy the fourth-
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order method can achieve is around 1.2 × 10−3 for u = 0.9 and 1.5 × 10−4 for u = 0.5,

respectively. Therefore, when the u value is large, high-accuracy can only be accomplished

by using the sixth-order method.
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Figure 2.3: Maximum relative errors in the ionic solvent induced reaction field due to a
source charge inside the unit sphere at distance r

S
= 0.95 from the spherical center. A

common σ is used.

2.4.3 Computational complexity of the point image approximation

To demonstrate the O(N) computational complexity of the O(N) implementation of

the point image approximation as described in Sections 2.3 and 2.3.4, the sixth-order

image approximation has been implemented with using the free software KIFMM,

developed by L. Ying using a so-called kernel-independent adaptive fast multipole

method [40]. The experiments are carried out on a Linux-based Dell OptiPlex 745

workstation with a CPU clock rate of 3GHz and a memory of 4GB, using GNU Fortran

3.4.6 and C++ 4.1.2 compilers. In Tables 2.3 and 2.4, timing results of the potential and

the force evaluations are reported and compared with those obtained without using the
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Figure 2.4: Maximum relative errors in the ionic solvent induced reaction field due to a
source charge inside the unit sphere at distance r

S
= 0.95 from the spherical center. A

common σ is used.

FMM. The Gauss-Radau quadrature with M=2 and a common parameter σc=σ2 are used

to construct discrete image charges, so for each source charge, there are two discrete

image charges. As can be seen, the timing scales as O(N2) without using the FMM, and

linearly with using the FMM. In the tables, N denotes the number of total source charges,

either uniformly or non-uniformly distributed inside the unit sphere, and NC the number

of total point charges included in the FMM box, respectively.

Table 2.3: Timing results for potential calculation.

N NC FMM/uniform FMM/non-uniform Pairwise

1,000 3,000 0.175 0.173 0.134
2,000 6,000 0.329 0.325 0.535
4,000 12,000 0.751 0.745 2.144
8,000 24,000 1.435 1.355 8.564

16,000 48,000 2.701 2.665 34.274
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Table 2.4: Timing results for force calculation.

N NC FMM/uniform FMM/non-uniform Pairwise

1,000 3,000 0.386 0.384 0.319
2,000 6,000 0.534 0.529 1.276
4,000 12,000 1.004 0.990 5.099
8,000 24,000 2.141 2.132 20.365

16,000 48,000 3.707 3.555 81.556

2.4.4 A simple application of the method

Finally, the proposed sixth-order method is tested through calculation of solvation

effects. A spherical cavity of radius 15 Åcontains 333 TIP3P water molecules and is

immersed in an ionic solvent. To calculate the total solvation energy of these water

molecules, ϵi = 1 and ϵo = 80 are used in this test. Here the solvation energy of a

collection of N charges qi located at ri, i = 1, 2, · · · , N , is defined as

Usol =
1

2

N∑
i=1

qiΦRF(ri).

Figure 2.5 shows the relative error in the solvation energy obtained with the the fourth-

order and the sixth-order image approximations by using M = 6 and M = 10 point image

charges, respectively, where the exact solvation energy is calculated by the series solution

with 400 terms. As can be seen, the sixth-order accuracy of the present method has a

noticeable effect on the solvation energy.
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Figure 2.5: Relative error in the solvation energy calculation of water molecules in ionic
solvents by two image approximation methods.



CHAPTER 3: AN IMAGE-BASED REACTION FIELD METHOD FOR
ELECTROSTATIC INTERACTIONS IN MOLECULAR DYNAMICS SIMULATION

OF IONIC SOLUTIONS

3.1 Theory of molecular dynamics simulation and Poisson-Boltzman equation

In Section 1.1, we introduced the Poisson equation as the one of the basic theories of

molecular dynamics (MD) simulation. In this section, we will discuss in detail its derivation

and applications to the MD simulation in this section, providing in-depth background to our

proposed simulation model.

3.1.1 Basics of molecular dynamics simulation

To discuss the molecular dynamic as well as PB equation in more detail and to give a

full derivation of the equation from a few assumptions, we first introduce the fundamental

problem of classical mechanics which is the n-Body Problem [27]:

Given n particles of mass mi acted upon by forces fi with initial particle

positions ri(0) = (xi0, yi0, zi0) and velocities vi(0) = ṙ(0), describe the

positions of the particles, ri(t), over time.

The function ri(t) : R 7→ R3 represents the motion of the ith particle over time, for i =

1, 2, . . . , n. The configuration space of the n-particle system is simply the space RN = R3×

. . .×R3 where N = 3n. Then the mapping r(t) = (r1(t)
T , . . . , rn(t)

T )T which represents

the motion of the n-particle system over time is defined by r : R 7→ RN , mapping time into

configuration space. The force mapping is defined as f(r, ṙ, t) : RN × RN × R 7→ RN .
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Now, we can formulate the problem described above by Newton’s second law of

motion, f = Ma, where M = diag(m1,m1,m1,m2,m2,m2, . . . ,mn,mn,mn) is an

N × N diagonal matrix with the masses mi repeated along the diagonal. Utilizing a = r̈,

it yields a system of ordinary differential equations for the system configurations r at time

t, given by

M r̈ = f , r(0) = r0, ṙ(0) = v0. (3.1)

If assuming that the total force on the particles f is conservative (irrotational and time-

independent), then the force can be expressed in terms of the potential function as

f = −∇Φ(r),

where Φ : RN 7→ R, and the gradient operator is defined as ∇ = (∂Φ/∂r1, . . . , ∂Φ/∂rn).

Then the system can be rewritten as:

M r̈ = −∇Φ, r(0) = r0, ṙ(0) = v0. (3.2)

Solving this system of equations analytically is not practically possible in most cases, so

numerical methods must be employed. In any numerical procedure, the focus is to evaluate

the force function f from the potential function Φ which is generally the sum of three

distinct potential functions, namely,

Φ = Φ1 + Φ2 + Φ3, (3.3)

where Φ1 is the short-ranged field which may include the van der Waals (vdW) potential,

or the Lennard-Jones potential, while Φ2 is the external field which could include the

externally applied fields. The long-ranged field Φ3 would include the electrostatic
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potential. While the short-ranged field, by definition, exhibits rapid decay (for example,

the Lennard-Jones 6-12 power potential of noble gases decays as |r|−6), the long-ranged

field decays much more slowly (for example, the electrostatic potential decays only as

|r|−1). Therefore, to approximate each field for a N -particle system to a high accuracy, the

complexity of the computation is clear:

Φ1: short-ranged, rapid decay, only local interactions considered, O(N);

Φ2: external field, independent of all the other particles, O(N);

Φ3: long-ranged, slow decay, all pair-wise interactions, O(N2).

A more detailed empirical potential energy function is given by [41]

E =
∑
bonds

kb(b− b0)
2 +

∑
angles

kθ(θ − θ0)
2 +

∑
torsions

kω[cos(nω + γ) + 1]

+
∑

atom pairs

[(
Aij

r12ij
− Bij

r6ij

)
+

qiqj
rij

]
,

(3.4)

where the first three summations are contributions due to, respectively, deviations of bond

lengths b from their equilibrim values b0, deviations of valence angles θ from their

equilibrium values θ0, and torsional potentials from bond rotations (dihedral angles ω with

phase shifts γ of the n-fold term). The fourth summation is composed of the van der

Waals (vdW) interactions represented by Lennard-Jones 6-12 potentials, and the Coulomb

electrostatic interactions [41].

As the first three terms and the vdW potential in the fourth summation in (3.4) are all

short-ranged interactions which are negligible when inter-particle distances are great

enough, computation of the long-ranged field potential shows the most challenges in

practical numerical computations. Furthermore, as the biomolecules always occur in

solvents such as ionic water solutions, the large numbers of ions, together with the
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difficulty in far field computation, makes this approach infeasible for large biomolecules.

The continuum model mentioned in Section 1.1, in which some portion of problem (3.2)

is treated as a dielectric continuum governed by partial differential equations instead of

the system of ODEs, provides an alternative way in many cases where only the

macro-properties of the system are important. The Debye-Hückel theory, discussed more

fully later, is a continuum approach which may be particularly suitable for molecular

dynamics when the electrostatic interaction is the dominant force in determining the

behavior of the simulation system.

3.1.2 Debye-Hückel theory and Poisson-Boltzman equation

In this sub-section, starting from Equation (1.1) in Section 1.1, we provide a

comprehensive derivation of the Poisson-Boltzman (PB) equation based on the

Debye-Hückels potential of mean force (PMF) approximation for electrostatic interactions

for biomolecules in ionic solvent. More in-depth topics in Poisson-Boltzman electrostatics

and analytical approximations are discussed in [5].

Recall that the macroscopic potential Φ(r) is governed by the Poisson equation (1.1)

and two interface conditions (1.3), where ni(r) is the density of i-type ions at the position r

which needs to be derived based on Debye-Hückel theory for homogeneous electrolytes of

various ions. In this theory, an ion-cloud model is adopted to compute the electric potential

of an overall neutral system, where one single ion is randomly selected as the reference

point of the system while the rest of the ions in the solvent will be modeled as a cloud

made of continuous charge density distribution [4]. This selected single ion (called a j-ion)

is considered non-polarizable by other ions or external charges and can be represented by a
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spherical cavity of radius a with total charge at its center ezj . In the ion-cloud model, all the

other ions except the j-ion is described by a continuous charge number distribution nj
i (r)

per unit volume, centering around the j-ion, though all types of ions are of finite size [18].

Then the potential Φj(r) resulting from the j-ion satisfies the Poisson equation below [26]:

−ϵ∇2Φj(r) =


ezjδ(r), if r < a,

e
∑
i

zin
j
i (r), if r > a,

(3.5)

where nj
i (r) is the number concentration per unit volume of the i-type ions around the

selected j-ion and is given by the following equation in terms of a radial distribution

function (RDF) between two types of ions gij(r) [5]:

nj
i (r) = n0

i gij(r), (3.6)

where n0
i is the number density of the i-type ions in the bulk and the RDF gij(r) tends to

1 as r tends to infinity. The fact that nj
i is a function of the distance r is only due to the

fact that the system is homogeneous. The RDF gij(r) can also be expressed in terms of a

Gibbs average over all other ions and charge configurations. For example, by a Boltzman

factor weighted integration over all other ions and charge positions in the phase space [26],

gij(r)is given by

gij(r) = gij(ri, rj) = N(N − 1)

∫
e−U/kBTdΓ

′

Z
, (3.7)

where dΓ
′
= dr1 . . . drN/dridrj , and U(r1, . . . , rN) is the interaction potential among all

N particles including ions, solvent molecules, etc., while Z is the partition function given
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by

Z =

∫
e−U/kBTdr1 · · · drN . (3.8)

Rewriting (3.7) yields the following form

gij(ri, rj) = e−ω(ri,rj)/kBT = e−ωij/kBT , (3.9)

in which the physical meaning of gij(ri, rj) is shown. And we have

−ωij = kBT ln

∫
e−U/kBTdΓ

′
+ C, (3.10)

where C is a constant. Now differentiating wij with respect to either of the two particles,

say, ri, we have

−∇iωij =

∫
e−U/kT (−∇iU)dΓ

′∫
e−U/kTdΓ′ ≡

∫
e−U/kT fidΓ

′∫
e−U/kTdΓ′ ≡< fi >mean, (3.11)

where fi = −∇iU is the force acting on the particle i for any given configuration of other

N−1 particles in the system, while < fi >mean is the mean force on the particle i averaging

from all possible configurations of other N−1 particles. ωij is therefore called the potential

of mean force (PMF).

One of the important assumptions in the Debye-Hückel theory is that the mean force

applied on the i-type ions is the electrostatic force only, ignoring all nonelectrostatic

potentials such as short range van der Waals (vdW) potentials [10]. This assumption

means, in terms of the potentials, that the PMF is given by

ωij = eziΦj(r). (3.12)

Now by substituting (3.9) and (3.12) into (3.6), we have the distribution of the i-type
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ions given by

ni(r) = n0
i exp

(
−eziΦj

kBT

)
. (3.13)

Dropping the subscript j and combining (3.13) and (1.1), we obtain the equation for

electrostatic potential Φ:

−∇ · ϵ(r)∇Φ(r) = ρ(r) +
∑
i

ezin
0
i exp

(
−eziΦ

kBT

)
. (3.14)

(3.14) is referred to as the nonlinear Poisson-Boltzman equation governing the electrostatic

potential Φ in all regions in the system. If using the first two terms in the Taylor series

e−x = 1−x+ x2

2!
+ . . . as an approximation to e−x, a linearization of (3.14) is obtained [26]:

−∇ · ϵ(r)∇Φ(r) = ρ(r) +
∑
i

ezin
0
i

(
1− eziΦ

kBT

)
, (3.15)

provided that

eziΦ

kBT
≪ 1. (3.16)

Due to the neutrality of the solution, we have
∑

i ezin
0
i = 0, with which (3.15) can be

further simplified to

∇2Φ(r)− λ2Φ(r) = −1

ϵ
ρ(r), (3.17)

where λ is the inverse Debye-Hückel screening length given by

λ2 =
e

ϵkBT

∑
i

en0
i z

2
i =

2e

ϵkBT
I, (3.18)

and I is the ionic strength defined as

I =
1

2

∑
i

en0
i z

2
i . (3.19)

Although the validation of (3.16) is not justified in some cases of the biological
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simulation system, the solution of nonlinearized Poisson-Boltzman is usually

approximated by solving the linearized form (3.17). Analytical solutions to both the

nonlinear and linearized poisson-Boltzman equations are complex, even in some simple

situations for which they exist. To simplify the notations, we combine the Poisson

equation in the solute region and the Poisson-Boltzman equation in the solvent region into

a single equation given by

−∇ · ϵ(r)∇Φ(r) + κ2Φ(r) = ρ(r), r ∈ Ωi or r ∈ Ωo, (3.20)

with the interface condition (1.3) and a decaying condition at infinity, namely,

lim
r→∞

Φ(r) = 0, (3.21)

where

ϵ(r) =


ϵi, if r ∈ Ωi,

ϵo, if r ∈ Ωo,
κ2 =


ϵiλ

2
i , if r ∈ Ωi,

ϵoλ
2
o, if r ∈ Ωo.

(3.22)

Note that the dielectric constant ϵ(r) and ionic density are assumed to be piecewise

constants at Ωi and Ωe. At Ωi, κ = 0 is results from λi = 0 because the interior solute

region is modeled by the Poisson equation.

3.2 2nd order image charge approximation with arbitrary ionic strength

As discussed in Section 2.1.1, the point charge in the dielectric cavity polarizes the

surrounding dielectric medium, which in turn generates a reaction field to the electric field

throughout the cavity. This reaction field, which dominates the computational cost for

calculating the electric field inside the cavity, can be efficiently taken care of by the image

charge methods.
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For an ionic solvent, various order accurate multiple image charge approximations were

developed, provided that u = λa < 1, where λ is the inverse Debye screening length and

a is the spherical radius. In some hybrid explicit/implicit solvent models of biomolecular

simulations, λ2 is proportional to the ionic strength I , and a is the radius of the sphere

which is often used to enclose biomolecules of irregular shapes (e.g. ions, proteins, etc.). In

practice, the requirement u = λa < 1 is hard to meet due to the high ionic strength or large

size of the biomolecule that often occurs. A new image charge approximation was proposed

recently for the reaction field for solvents with no restriction on u imposed [42]. In this

section, we give a review of this new development of image charge approximations of

reaction fields for a charge inside a dielectric spherical cavity immersed in an ionic solvent

with arbitrary ionic strength and cavity size. This method extends our applicability of the

image charge approximations of the reaction field in computer simulations of biomolecular

solvation.

3.2.1 Reaction field of a point charge

As discussed in Section 3.1.2, the electrostatic potential Φ is given by (3.20) in the

Poisson-Boltzman theory. Writing this equation in the interior and exterior regions of the

sphere separately, we have

∇ · (ϵi∇Φ(r)) = −
∑
k

qkδ(r− rk), r ∈ Ωi, (3.23)

∇2Φ(r)− λ2Φ(r) = 0, r ∈ Ωe, (3.24)

and the two interface conditions for the continuities of the potentials and the fluxes along

the normal direction hold as in (1.3).
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By the principle of linear superposition, the reaction field due to a single point charge q

located at rs=(rs, 0, 0) inside a spherical cavity of radius a centered at the origin only needs

to be considered.

The solution Φ(r) inside and outside the sphere for the Poisson-Boltzmann system can

be written in the following form of the Kirkwood series expansion [25, 39],

Φ(r) =



∞∑
n=0

[
q

4πϵirs

(
r

rs

)n

+ Anr
n

]
Pn(cos θ), when 0 ≤ r ≤ rs,

∞∑
n=0

[
q

4πϵir

(rs
r

)n
+ Anr

n

]
Pn(cos θ), when rs ≤ r ≤ a,

∞∑
n=0

Bnkn(λr)Pn(cos θ), when r ≥ a,

(3.25)

in which

ΦRF(r) =
∞∑
n=0

Anr
nPn(cos θ) (3.26)

defines the reaction field inside the dielectric cavity. Here, Pn(x) are the Legendre

polynomials, and kn(r) are the modified spherical Hankel functions of order n defined by

kn(r) =
πe−r

2r

n∑
k=0

(n+ k)!

k!(n− k)!

1

(2r)k
. (3.27)

The expansion coefficients An and Bn are determined by the boundary conditions (1.3) as

An =
q

4πϵia

1

rnK

ϵ(n+ 1)kn(u) + uk′
n(u)

ϵnkn(u)− uk′
n(u)

, (3.28)

Bn =
q

4πϵia

(rs
a

)n ϵ(2n+ 1)

ϵnkn(u)− uk′
n(u)

, (3.29)

where ϵ=ϵi/ϵo, and rK=a2/rs with rK=(rK, 0, 0) being the conventional Kelvin image point.
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3.2.2 Image charge approximation for solvents with high ionic strength

In a solution with low ionic strength, the key idea in the development of the image charge

methods is to approximate Sn(u) = kn(u)
uk′n(u)

with simple rational functions of n when u is

small. In the case of high ionic strength when u is large, however, we approximate Sn(u)

in terms of O (1/um). In particular, we have

Sn(u) = − 1

n+ 1 + u
+O

(
1

u2

)
, for n ≥ 0, (3.30)

which is a second-order approximation for large u. In addition, when u tends to zero, we

have

Sn(u) = − 1

n+ 1 + u
+O (u) , for n ≥ 0. (3.31)

The order of convergence can be easily proved as following:

As u → ∞, since kn(u)/k′
n(u) = −1+O(1/u) and Sn(u) = −1/u+O(1/u2), we have

Sn(u) +
1

n+ 1 + u
= − n+ 1

u(n+ 1 + u)
+O

(
1

u2

)
= O

(
1

u2

)
.

On the other hand, as u → 0, due to Sn(u) = −1/(n+ 1) +O(u2) and

1

n+ 1
− 1

n+ 1 + u
=

u

(n+ 1)(n+ 1 + u)
= O(u),

we have

Sn(u) = − 1

n+ 1 + u
+O (u) .

Applying (3.31) to (3.28) leads to an approximation of the expansion coefficient An as

An =
q

4πϵia

1

rnK

(
γ +

δA
n+ σA

)
, (3.32)
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where

σA =
1 + u

1 + ϵ
, δA = γ (1− σA)−

u

1 + ϵ
.

Since

1

n+ σA

= rn+σA
K

∫ ∞

rK

1

xn+σA+1
dx, (3.33)

and the expansion of the reciprocal distance

1

|r− x|
=

1

x

∞∑
n=0

( r
x

)n
Pn(cos θ), when 0 ≤ r < x, (3.34)

we obtain the following line image approximation for the reaction field

ΦRF(r) ≈
qK

4πϵi|r− rK|
+

∫ ∞

rK

qlineA (x)

4πϵi|r− x|
dx, (3.35)

where the line image charge is now

qlineA (x) = q
δA
a

(
x

rK

)−σA

, for rK ≤ x. (3.36)

Note that when n = 0, the approximation of S0(u) equals exactly −1/(1 + u), so no

correction term is required for the reaction field.

3.2.3 Line image charge approximation

We can improve the accuracy of the line image approximation (3.35) by modifying the

asymptotical formula of Sn(u) to

Sn(u) = − 1

(n+ 1) + u2

1+u

+O

(
1

u2

)
. (3.37)

The second-order accuracy can be analyzed in the same way as u tends to infinity. In

addition, when u tends to zero, the approximation is at an order of O(u2); therefore, this
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new image charge approximation can cover the low ionic strength as well as the high ionic

strength case [11]. The approximation (3.37) is analytical for n = 1, and we need to add

a position-independent correction term for n = 0. By performing a similar deduction, we

obtain an approximation to the reaction field

ΦRF(r) ≈
qK

4πϵi|r− rK|
+

∫ ∞

rK

qlineB (x)

4πϵi|r− x|
dx+ Φcor

B , (3.38)

with the line image charge

qlineB (x) = q
δB
a

(
x

rK

)−σB

, for rK ≤ x, (3.39)

and

σB =
1 + ũ

1 + ϵ
, δB = γ (1− σB)−

ũ

1 + ϵ
, ũ =

u2

1 + u
.

Here, the correction term is

Φcor
B =

q

4πϵia

(
ϵ

1 + u
− 1− γ − δB

σB

)
=

q

4πϵia

(
ϵ

1 + u
− ϵ

1 + ũ

)
. (3.40)

3.2.4 Discrete multiple image approximation

To obtain multiple image charge approximations to the reaction field, each line image

charge introduced in Equations (3.35) and (3.53) is approximated by a set of discrete point

image charges, i.e., ∫ ∞

rK

qlineX (x)

4πϵi|r− x|
dx ≈

M∑
m=1

qXm
4πϵi|r− xX

m|
, (3.41)

where xX
m = (xX

m, 0, 0), and for m = 1, 2, · · · ,M ,

qXm =
δX
2σX

wmx
X
m

a
q, xX

m = rK

(
2

1− sm

)1/σX

,
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and sm, wm,m = 1, 2, · · · ,M , are Jacobi-Gauss quadrature points and weights on the

interval [−1, 1]. The label X represents “A” or “B”.

3.3 The hybrid solvation model and its theory

3.3.1 Introduction to the Image-Charge Solvation Model (ICSM)

In Section 1.2, we discussed three major categories of the approaches which are widely

used to treat electrostatic interactions over the past decades: implicit, explicit and hybrid.

In this section, we will focus on the hybrid models and in particular, introduce a new

hybrid explicit/implicit model based on the image charge methods mentioned in

Chapter 1.2. Our method, termed Image-Charge Solvation Model (ICSM) was first

proposed in a paper by Lin et al. [30] and was tested for pure liquid water. As one of the

advanced hybrid models, the ICSM combines the strengths of both implicit and explicit

representations of the solvent. In our model, solute molecules and some solvent molecules

within a central spherical cavity are treated explicitly, thus, removing the continuum

approximation near the solute. Reaction fields acting on the explicit part are generated by

a continuum dielectric medium surrounding the cavity. The reaction fields are computed

efficiently by employing the image-charge method and the fast multipole expansion

technique. The rest of the this chapter will be devoted to giving a detailed discussion of

the mathematical theory and description of the model. Test results to validate our model

will be also presented in Section 3.4.2.

3.3.2 Calculation of the reaction field with the multiple-image charges approach

This sub-section covers the mathematical theory and formulas which are utilized to

compute reaction fields. Our model, proposed in this work, is based on the spherical
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Figure 3.1: An illustration of how the multiple-image method is applied to compute the
reaction field in a spherical cavity Vin embedded in the solvent bath Vout.

geometry of the solute. Consider a local volume Γ of spherical cavity and with dielectric

permittivity ϵi embedded in an infinite solvent with dielectric permittivity ϵo, as shown in

Figure 3.1. According to the Debye-Hückel Poission-Boltzmann theory discussed in

Section 3.1.2, the total electrostatic potential Φ(r) in this scheme is given by the

Poisson-Boltzmann equation:

ϵi∇2Φ(r) = −ρin(r), r ∈ Vin, (3.42a)

[
∇2 − λ2

]
Φ(r) = 0, r ∈ Vout, (3.42b)

where Vin is the interior region of the spherical cavity containing all explicit charges of the

solute and solvent molecules; ρin is the charge distribution at Vin which is given by

ρin(r) =
∑
i

qiδ(r− ri); (3.43)

and λ is the inverse Debye-Hückel screening length. In a pure solvent like water, λ = 0.

While in solutions with nonzero ionic strength which are modeled in this work, λ ̸= 0. On

the surface of the cavity, two boundary conditions for the continuities of the potentials and
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the fluxes along the normal direction hold, i.e.

Φin = Φout and ϵi
∂Φin

∂n
= ϵo

∂Φout

∂n
, (3.44)

where Φin and Φout are the values of the potential inside and outside the cavity respectively,

and n is the unit outward vector normal to the surface of the cavity.

Due to the principle of linear superposition, we only need to focus our discussion, in

this subsection, on a single point charge q located at rs = (rs, 0, 0) inside the cavity. As

discussed in Section 3.1.2, the total potential, which is the solution of (3.42) and (3.44)

at position r inside the cavity Vin, can be expressed as the sum of the primary field ΦS

which results from the source charge and the reaction field ΦRF which is created by the

source-induced polarization of the solvent in the outside region of the cavity Vout, namely

Φ = ΦS + ΦRF . (3.45)

For the case of a spherical cavity with radius a, ΦRF inside the cavity is given by the

Kirkwood expansion, which in the ionic solution case λ ̸= 0 is

ΦRF(r) =
∞∑
n=0

Anr
nPn(cos θ), (3.46)

An =
q

4πϵia

1

rnK

ϵ(n+ 1)kn(u) + uk′
n(u)

ϵnkn(u)− uk′
n(u)

, (3.47)

kn(r) =
πe−r

2r

n∑
k=0

(n+ k)!

k!(n− k)!

1

(2r)k
. (3.48)

where ϵ=ϵi/ϵo, and rK=a2/rs.

To employ the Kelvin image charge, rK represents the location of the classic Kevin image

charge with charge qk = γaq/rs, where γ = (ϵi − ϵo)/(ϵi + ϵo). Then the potential of the
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Kevin image charge is given by

V (qK , rK ; r) =
qK

4πϵi |r− rK |
. (3.49)

Using a second-order accuracy approximation discussed in Section 3.2, the reaction field

inside the cavity ΦRF is given by the sum

ΦRF (r) ≈ V (qK , rK ; r) +

∫ ∞

rK

V (qline(x),x; r)dx+ Φcor, (3.50)

where qline is the line image charge given by

qline(x) =
δq

a

(
x

rK

)−σ

, rK ≤ x, (3.51)

and

σ =
1 + ũ

1 + ϵ
, δ = γ (1− σC)−

ũ

1 + ϵ
, ũ =

u2

1 + u
,

Φcor =
q

4πϵia

(
ϵ

1 + u
− 1− γ − δ

σ

)
=

q

4πϵia

(
ϵ

1 + u
− ϵ

1 + ũ

)
. (3.52)

Next, to obtain multiple discrete image charge approximations to the integral in (3.50),

a set of discrete point image charges are employed through Gauss integration quadratures,

yielding

ΦRF(r) ≈
qK

4πϵi|r− rK|
+

Ni∑
m=1

q′m
4πϵi|r− rm|

+ Φcor, (3.53)

where the magnitude and the location of all discrete image charges are defined as

q′m =
δ

2σ

wmrm
a

q, rm = rK

(
2

1− sm

)1/σ

,

and sm, wm, m = 1, 2, . . . , Ni, are Jacobi-Gauss quadrature points and weights on interval

[−1, 1].
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Remarks:

1. This approach is based on the work of Neuman and is general enough for

computation of ΦRF with arbitrary accuracy at any point r inside the cavity. The

accuracy of the approximation is controlled by the number of image charges

employed Ni only; thus, it is not affected by the ratio of the solute and solvent

dielectric permittivities ϵi/ϵo. Although the greater the number Ni is, the better the

approximation is, large Ni increases the computational cost of the problem.

2. One of the main objectives to formulate discrete image charge approximations is to

apply the treatment by fast multipole methods (FMM). It is discussed previously that

combining the FMM and the image charge method can achieve an O(N) complexity

in the calculating the electrostatic interactions among N charges inside a dielectric

sphere.

3. As the correction term in (3.53) is a constant for given ionic strength and cavity

radius, the gradient of Φcor is zero; thus, it does not contribute to the force between

charges/atoms in the simulation system.

3.3.3 Description of the hybrid image charge solvation model with ionic solvents

1) Buffer layer between explicit and implicit solvents

As shown in (3.49), the reaction field computed at the boundary between explicit and

implicit solvents r = a diverges. To remove the mathematical singularity at r = a and to

prevent the electrostatic forces from growing too high when particles approach the

boundary, we consider a mathematical model that utilizes two different radii for one
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spherical cavity. This is illustrated in Figure 3.2. The central cavity with a radius Rc is

separated from the dielectric continuum with permittivity ϵo by a buffer layer of thickness

τ . The radius a used for the calculation of reaction field in (3.53) is a = Rc + τ , which is

slightly larger than Rc.

The central cavity as well as the buffer layer are filled with solvent. The reaction field

is generated by charges within the bigger sphere with the radius r but it acts only on the

charges within the central cavity with radius Rc. Adopting this buffer layer in our model is

also a means to reduce the surface effect which is a intrinsic property of models involving

a sharp transition between two dielectric media. Charges inside the central cavity with

radius Rc will not feel the presence of the surface if the thickness of the buffer layer τ is

large enough.

Figure 3.2: Cartoon illustrating the buffer layer filled with solvent.

2) Boundary conditions

While the dielectric boundary is treated by the buffer layer, the boundary conditions

as they apply to other potentials, primarily dispersion forces between solvent molecules

and their surroundings, are discussed in detail here. To overcome the limitation of the
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droplet models and the moving boundary reaction field method, an advanced strategy was

proposed which combines the PBC in the simulation cell with the fixed boundary in the

spherical cavity [3]. This approach allows nonhomogeneous systems to be simulated with

minimal surface effects and also avoids the coexistence problem of two different regions

of water in one simulation box. As shown in Figure 3.3, the radius of the central spherical

cavity Rc reaches the furthest point in the simulation box from the center of the sphere.

As the central cavity encloses the entire simulation box, all particles are treated by the

same electrostatics method. For illustrative purposes, a cubic simulation box is shown

in the demonstration Figure 3.3. We will discuss the simulation box type in detail later.

Due to the application of PBC and the difference in the geometry between a sphere and

a cube, some particles within the Rc radius are not unique but periodic images from the

nearest copies of the simulation box. How two periodic images are created is illustrated by

the dark-shaded areas in Figure 3.3, while the light-shaded areas display all imaged parts

within the simulation box. The central part shaded in lightest color, is the area where the

charges are not imaged and this area serves as the “productive” region of the simulation

box. A solute molecule placed in this “productive” region avoids electrostatic interactions

with its periodic image copies.

3) Simulation box type

As shown in Figure 3.3, our mathematical model will accurately represent a solute

molecule embedded in an infinite bath of solvent, if the central “productive” region is

large enough to also include the nearest solvation shell. Thus, when considering the

simulation box type, our goal is to maximize the area of this “productive” region whose

size is determined by the difference in the distance between the furthest and nearest points
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Figure 3.3: Cartoon showing the spherical cavity integrated with a cubic simulation box
under PBCs.

Figure 3.4: Cartoon representing the model used in this work to treat electrostatic
interactions of solute molecules embedded in solvent under PBCs.
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in the simulation box to the center. In this work, we focus on the truncated octahedron

(TO) geometry which is proved in a previous paper by Lin et al. to be among the best in

terms of maximizing the size of the productive region [30].

Our TO box Λ is created from a cube of length L by cutting all the eight corners at a

distance (1/4
√
2)L from the center of its sides. Thus, this TO box has 14 faces (including

8 regular hexagonal faces and 6 square faces) and 24 vertices. Distances from the origin

to the square face, to the hexagonal faces and to the corners are (1/2)/L, (
√
3/4)/L and

(
√
5/4)/L, respectively. Since the distance from the origin to the furthest point in this

geometry is (
√
5/4)/L, the radius of the central sphere is Rc = (

√
5/4)/L. Figure 3.4

shows the cross section of the TO box in the XZ plane with its center at the origin, in

which three regions are displayed:

Region I: The inner-most sphere area inside the broken line, where charges are not

periodically imaged, is the “productive” region of the simulation box. As discussed

previously, a solute molecule in this region may be solvated without experiencing any

artificial electrostatic solute-solute interactions. The size of Region I varies among

simulation box geometries. In the case of TO box, the radius of this region is

d = L(
√
3−

√
5
2
)− 2τ = 0.61L− 2τ . If we compare this to the same quantity for a cubic

simulation box d = L(2 −
√
3) − 2τ = 0.27L − 2τ , the advantage of using the TO

geometry is obvious.

Region II: All the remaining area in the TO box Λ excluding the central Region I.

Particles in Region II have image copies in the larger sphere cavity Γ of radius Rc + τ .

Region III: Particles in the 14 nearest neighbors around the central simulation box which

are at a distance less than Rc+ τ from the origin form a buffer layer, which is shown as the
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hatched area.

All charges in the larger cavity Γ, including Region I, II and III, generate a reaction field

computed by the image-charge method and acts on the charges in the simulation box Λ.

Therefore, the electrostatic forces acting on charges in the main simulation box are least

affected by the periodicity artifacts. To compute other nonbonded interactions, such as

dispersion forces, standard PBCs with the nearest-image convention are employed. In the

simulation of this work, the solvent, consisted of sodium chloride paired ions and water

molecules, move freely in all Regions I, II and III.

In summary, the electrostatic force field calculation in the ICSM involves the following

three successive steps [2]:

1. Locate periodic images in Region III for those solvent particles in Region II of the

main simulation box;

2. Find image charges of reaction field for all charges inside the spherical cavity Γ,

including all real charges inside the main simulation box Λ and all periodic images

in Region III;

3. Calculate the electrostatic force inside the main simulation box Λ exerted by all

charges, including all real charges inside the main simulation box Λ, all periodic

images in Region III, and all image charges of reaction fields outside the spherical

cavity Γ.
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3.4 Numerical results and discussion

3.4.1 Computational details

In this work, the TIP3P all-atom model is used to characterize properties of bulk water

because of its simplicity and computational efficiency. All molecular dynamics simulations

by the image charge method as well as the trajectory analysis were performed by an in-

house software which was developed specially for this project by our research group. To

evaluate the electrostatic forces within the simulation box Λ, we adopt a free software

KIFFMM developed by Ying et al. which uses a kernel-independent adaptive FMM.

The positions and velocities of particles were generated according to an implementation

of the velocity Verlet algorithm by Jang and Voth, coupled with the Nosé-Hoover

thermostat. The expression for the update of the positions, based on the old positions and

velocities, is given by [15]

r(t+∆t) = r(t) + ∆tv(t+∆t/2), (3.54)

and the velocities are updated by

v(t+∆t/2) = v(t−∆t/2) + ∆t
f(t)

m
. (3.55)

The dielectric constants of the internal and external fields were set to 1 and 80 respectively.

The van der Waals interactions were modeled by the Lennard-Jones potential with the

truncated distance at 10 Å. The integration time step was set to 2 fs. The temperature of

the simulation system was controlled at a constant T = 300K and the thermostats coupling

constant was set to 0.05 ps. The trajectories were recorded at every 0.2 ps for subsequent

analysis.
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Table 3.1: Parameters for generating the initial coordinates by GROMACS.

Parameters Value
Weak coupling to
an external heat bath

coupling time constant τT 0.1 ps
target temperature T0 300 K

Weak coupling barostat
time constant τP 0.5 ps

isothermal compressibility β 4.5× 10−5atm−1

target pressure P0 1 atm

The initial coordinates of the water molecules were generated by the GROMACS

program package, from an equilibrium 200 ps simulation in NPT ensemble. A weak

coupling to an external heat bath and a weak coupling barostat were applied with

parameters shown in Table 3.1. Covalent bonds of TIP3P water molecules were

constrained using SHAKE procedure with a relative tolerance of 10−4. Once equilibrium

was reached, the system was cut to the desired TO box size. This was followed by

randomly replacing the desired number of water molecules by ions (e.g. one pair of

sodium chloride ions took the place of two water molecules). The systems were then

equilibrated again.

In this work, 15 systems with the same box size but different numbers of sodium chloride

pairs were simulated, with the numbers of ions and water molecules listed in Table 3.2.

The box side length of the cube from which the TO box was built was 45 Å. Two different

buffer layer thicknesses 6 Å and 8 Å were used to test the buffer layer effects with each of

the 15 systems. In total, 30 different simulations were performed in this study. The total

simulation time was 9 ns for each of the MD simulation. All trajectories were analyzed

between 3 ns and 9 ns, leaving the first 3 ns as equilibrium time.

For reference purposes, 15 PME simulations were carried out for 9 ns with a cubic box of

side length 45 Å using the GROMACS program package. The number of water molecules
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and ions in these simulations are summarized in Table 3.2. As with the simulations with

image charge method, all of the PME simulations were 9 ns long, and the last 6 ns were

used for the analysis.

Table 3.2: Total number of solvent water molecules in image charge method and PME
method.

Number of NaCl Pairs Total number of water molecules
Image charge method PME

1 1405 3015
2 1402 3013
3 1401 3011
4 1398 3009
5 1396 3007
6 1393 3005
7 1390 3003
8 1389 3001
9 1388 2999

10 1387 2997
11 1384 2995
12 1383 2993
13 1381 2991
14 1382 2989
15 1380 2987

3.4.2 Results and discussion

To validate our solvation model, we focus our analysis on a few observables known to

be sensitive to the treatment of long-range electrostatics. Some of our results are compared

to those of PME, as a reference electrostatics method.

(1) Radial distribution function (RDF)

We evaluated the effect on the structure by the radius distribution functions (RDF) from

which the macroscopic thermodynamic quantities can usually be determined. For each

case, four pairs of distribution functions were computed over the entire simulation box:
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chloride-hydrogen (Cl-H), chloride-oxygen (Cl-O), sodium-hydrogen (Na-H), and sodium-

oxygen (Na-O). The general formula to calculate the distribution function of atomA-atomB

is given by

gAB(r) =
1

4πρr2dr

1

N
×

⟨
N∑
α

N∑
r<rαβ(τ)≤r+dr,β ̸=α

1

⟩
τ

, gAB(0) = 0, (3.56)

where ρ is the number density, N is the total number of molecules, and dr is the window

size which equals to 0.8 Å here. rαβ(τ) represents the minimum image atomA-to-atomB

distance between molecules α and β at time τ , and < · >τ denotes averaging over all

trajectory frames.

We compared the RDFs between two different thicknesses of the buffer layers, τ = 6 Å

and τ = 8 Å. The PME results are also plot as a reference. As shown in Figure 3.5 - 3.8, the

difference between the two curves of our models τ = 6 Å and τ = 8 Å is unnoticeable, and

overall, both of our models agree well with the results obtained in the PME calculations.

The most important features of the RDFs are the locations and magnitudes of the first

three density peaks and the first two minima. A close look at the first two minima and

the second peak of the RDFs using a higher resolution is shown in the insets of Figure 3.5

- 3.8. Those insets reveal that our models’ results slightly differ from the PME results only

at the magnitudes of the first peak and minimum in a limited number of cases. Our data

numerically show that RDF are not very sensitive to the ionic strength, as can be seen in

Figure 3.5 - 3.8. These figures also indicate that our model with buffer layer τ = 6 Å

performs as well as that with τ = 8 Å in terms of reproducing the structure of liquid ionic

solution correctly.
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Figure 3.5: RDF computed in this work (1 NaCl pair): (a) Cl-H, (b) Cl-O, (c) Na-H, (d)
Na-O.

(2) Density:

(a) Water density

One of the key elements of our model, the sharp boundary between the explicit and

implicit solvents, may induce surface effects. As the real bulk water is homogenously

distributed, a successful electrostatics model should minimize this surface effect to an

acceptable level. To exam the homogeneity of the solvent water in the entire simulated

system, relative particle density of the water ρr was measured as a function of the position

in the simulation box. Due to the symmetry of geometry, it is sufficient for us to look at

the density along a line that connects two opposite vertexes of the TO box. To evaluate the
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Figure 3.6: RDF computed in this work (5 NaCl pairs): (a) Cl-H, (b) Cl-O, (c) Na-H, (d)
Na-O.
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Figure 3.7: RDF computed in this work (10 NaCl pairs): (a) Cl-H, (b) Cl-O, (c) Na-H, (d)
Na-O.
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Figure 3.8: RDF computed in this work (15 NaCl pairs): (a) Cl-H, (b) Cl-O, (c) Na-H, (d)
Na-O.
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local density of the water molecules, a small sphere of radius r = 5 Å is drawn around

each of the 11 equispaced positions along this line. Using each position as the origin,

more specifically, we counted the number of oxygen atoms within each small sphere then

converted it to the particle density ρi. Normalized with the number density of the whole

simulation box, this particle density ρi was converted to the relative density ρr.

Previous study showed that in aqueous solutions a buffer layer of at least 6 Å is required

to yield uniform density of water, and neither the size of the simulation box L nor the

number of image charges Ni is important for the density, as long as Ni > 0. The relative

densities of water along the diagonal of the TO box by our model are shown in Figure 3.9

- 3.12. As can be seen, results of τ = 6 Å and τ = 8 Å are in close agreement with each

other, all leading to a uniform water density distribution with some statistical variations.

A quantitative summary of the water density deviations along the diagonal is presented in

Table 3.3. It is evident that a buffer layer τ = 6 Å works sufficiently well for reducing

the surface effects. Increasing the size of the buffer to 8 Å does not lead to a significant

improvement in the water density thus τ = 6 Å is good enough to correctly represent

homogeneous liquid water.

Table 3.3: Comparison of the standard deviations of relative densities along the diagonal
of TO box simulations.

τ = 6 Å τ = 8 Å

1 NaCl 0.0018 0.0011
5 NaCl 0.0036 0.0011

10 NaCl 0.0021 0.0014
15 NaCl 0.0027 0.0009

(b) Ion density
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Figure 3.9: Relative density of water along the diagonal of TO box with different τ ’s (1
NaCl pair).
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Figure 3.10: Relative density of water along the diagonal of TO box with different τ ’s (5
NaCl pairs).
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Figure 3.11: Relative density of water along the diagonal of TO box with different τ ’s (10
NaCl pairs).
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Figure 3.12: Relative density of water along the diagonal of TO box with different τ ’s (15
NaCl pairs).

Table 3.4: Count of the ion visits within the inscribed sphere of TO box (1 NaCl pair,
τ = 6 Å).

Shell no. (from
the innermost)

Radius of the
Shell (nm)

Areas Total of
the shellArea 1 Area 2 Area 3 Area 4

shell 1 1.22751409 3712 4483 2793 4481 15469
shell 2 1.54657084 3738 3702 2759 2752 12951
shell 3 1.77038167 3470 3410 2093 2387 11360
shell 4 1.94855716 2710 2734 1895 1916 9255

To test the homogeneity of the ion distribution, our idea was to divide the test region into

sub-areas with equal volume. In each of these sub-areas, the number of visits of ions was

counted and compared.

i) Within the TO box

An inscribed sphere of the TO box was drawn, followed by dividing this sphere into four

shells with equal volumes (radii are shown in the second columns of Table 3.4 - 3.11). Each

of the shells was then further divided into 4 sub-regions with equal volumes, resulting in 16

sub-regions in total. The number of ion visits in each of these sub-regions is summarized

in Table 3.4 - 3.11 and Figure 3.13 - 3.16 (a) and (b) for all the cases of 1, 5, 10, 15 pairs of

NaCl respectively.
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Table 3.5: Count of the ion visits within the inscribed sphere of TO box (1 NaCl pair,
τ = 8 Å).

Shell no. (from
the innermost)

Radius of the
Shell (nm)

Areas Total of
the shellArea 1 Area 2 Area 3 Area 4

shell 1 1.22751409 3646 2907 3877 3339 13869
shell 2 1.54657084 2893 2791 1567 2412 9663
shell 3 1.77038167 2555 3187 1928 2193 9863
shell 4 1.94855716 1976 3415 2371 1838 9600

Table 3.6: Count of the ion visits within the inscribed sphere of TO box (5 NaCl pairs,
τ = 6 Å).

Shell no. (from
the innermost)

Radius of the
Shell (nm)

Areas Total of
the shellArea 1 Area 2 Area 3 Area 4

shell 1 1.22751409 12044 17364 13465 15458 58331
shell 2 1.54657084 15365 19738 13350 15058 63511
shell 3 1.77038167 13973 16240 10646 13648 54507
shell 4 1.94855716 11847 14928 10116 12798 49689

Table 3.7: Count of the ion visits within the inscribed sphere of TO box (5 NaCl pairs,
τ = 8 Å).

Shell no. (from
the innermost)

Radius of the
Shell (nm)

Areas Total of
the shellArea 1 Area 2 Area 3 Area 4

shell 1 1.22751409 14894 18618 17587 12771 63870
shell 2 1.54657084 13962 16459 13331 14476 58228
shell 3 1.77038167 13295 13599 10898 14063 51855
shell 4 1.94855716 10819 12714 10361 12393 46287

Table 3.8: Count of the ion visits within the inscribed sphere of TO box (10 NaCl pairs,
τ = 6 Å).

Shell no. (from
the innermost)

Radius of the
Shell (nm)

Areas Total of
the shellArea 1 Area 2 Area 3 Area 4

shell 1 1.22751409 30316 28904 28995 24546 112761
shell 2 1.54657084 30208 29827 28547 25498 114080
shell 3 1.77038167 25122 28401 27366 25024 105913
shell 4 1.94855716 25515 27265 26230 24705 103715
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Table 3.9: Count of the ion visits within the inscribed sphere of TO box (10 NaCl pairs,
τ = 8 Å).

Shell no. (from
the innermost)

Radius of the
Shell (nm)

Areas Total of
the shellArea 1 Area 2 Area 3 Area 4

shell 1 1.22751409 32458 26253 25933 25490 110134
shell 2 1.54657084 27642 27139 25405 24620 104806
shell 3 1.77038167 26572 26732 24990 24956 103250
shell 4 1.94855716 25831 27560 25397 24728 103516

Table 3.10: Count of the ion visits within the inscribed sphere of TO box (15 NaCl pairs,
τ = 6 Å).

Shell no. (from
the innermost)

Radius of the
Shell (nm)

Areas Total of
the shellArea 1 Area 2 Area 3 Area 4

shell 1 1.22751409 41783 47564 38580 41059 168986
shell 2 1.54657084 41372 43756 39837 36698 161663
shell 3 1.77038167 36843 43717 38829 36315 155704
shell 4 1.94855716 36699 39245 38504 36618 151066

Table 3.11: Count of the ion visits within the inscribed sphere of TO box (15 NaCl pairs,
τ = 8 Å).

Shell no. (from
the innermost)

Radius of the
Shell (nm)

Areas Total of
the shellArea 1 Area 2 Area 3 Area 4

shell 1 1.22751409 37710 41797 44038 44168 167713
shell 2 1.54657084 37675 42054 38438 39158 157325
shell 3 1.77038167 36704 38656 37097 41096 153553
shell 4 1.94855716 36592 37403 37093 40079 151167
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Table 3.12: Count of ion visits within the “productive” area (1 NaCl pair, τ = 6 Å).

Shell no. (from
the innermost)

Radius of the
Shell (nm)

Areas Total of
the shellArea 1 Area 2 Area 3 Area 4

shell 1 0.360652395 150 97 95 92 434
shell 2 0.454393544 107 116 70 131 424
shell 3 0.520150761 133 136 66 149 484
shell 4 0.572499990 111 172 57 170 510

Table 3.13: Count of ion visits within the “productive” area (1 NaCl pair, τ = 8 Å).

Shell no. (from
the innermost)

Radius of the
Shell (nm)

Areas Total of
the shellArea 1 Area 2 Area 3 Area 4

shell 1 0.360652395 168 137 88 54 447
shell 2 0.454393544 67 53 81 68 269
shell 3 0.520150761 73 80 132 61 346
shell 4 0.572499990 53 92 160 62 367

ii) Within the “productive” region

Our test region here is the “productive” region. Similar to what we did for the TO box,

we divided the “productive” region into a total of 16 sub-regions and recorded the numbers

of ion visits in each sub-region. Radius of shells and counts of ion visits are shown in

Table 3.12 - 3.19 and Figure 3.13 - 3.16 (c) and (d).

Our results indicate that the ion densities within both the TO box and the “productive”

area are not shown uniformly distributed when the number of sodium chloride (NaCl) ion

pairs is small, especially for the case of one NaCl pair. This is physically true because

a smaller number of ions need a longer time to create their homogeneous ‘appearance’

Table 3.14: Count of ion visits within the “productive” area (5 NaCl pairs, τ = 6 Å).

Shell no. (from
the innermost)

Radius of the
Shell (nm)

Areas Total of
the shellArea 1 Area 2 Area 3 Area 4

shell 1 0.360652395 266 437 477 361 1541
shell 2 0.454393544 276 475 394 376 1521
shell 3 0.520150761 209 421 387 387 1404
shell 4 0.572499990 220 373 397 395 1385
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Table 3.15: Count of ion visits within the “productive” area (5 NaCl pairs, τ = 8 Å).

Shell no. (from
the innermost)

Radius of the
Shell (nm)

Areas Total of
the shellArea 1 Area 2 Area 3 Area 4

shell 1 0.360652395 331 464 315 256 1366
shell 2 0.454393544 452 490 453 239 1634
shell 3 0.520150761 490 499 431 209 1629
shell 4 0.572499990 445 423 470 200 1538

Table 3.16: Count of ion visits within the “productive” area (10 NaCl pairs, τ = 6 Å).

Shell no. (from
the innermost)

Radius of the
Shell (nm)

Areas Total of
the shellArea 1 Area 2 Area 3 Area 4

shell 1 0.360652395 453 567 725 552 2297
shell 2 0.454393544 514 565 742 646 2467
shell 3 0.520150761 623 599 767 650 2639
shell 4 0.572499990 675 639 697 601 2612

Table 3.17: Count of ion visits within the “productive” area (10 NaCl pairs, τ = 8 Å).

Shell no. (from
the innermost)

Radius of the
Shell (nm)

Areas Total of
the shellArea 1 Area 2 Area 3 Area 4

shell 1 0.360652395 727 820 591 538 2676
shell 2 0.454393544 900 724 595 552 2771
shell 3 0.520150761 863 581 516 615 2575
shell 4 0.572499990 913 583 514 571 2581

Table 3.18: Count of ion visits within the “productive” area (15 NaCl pairs, τ = 6 Å).

Shell no. (from
the innermost)

Radius of the
Shell (nm)

Areas Total of
the shellArea 1 Area 2 Area 3 Area 4

shell 1 0.360652395 933 954 924 905 3716
shell 2 0.454393544 992 1064 1127 1070 4253
shell 3 0.520150761 958 1226 941 926 4051
shell 4 0.572499990 950 1290 983 917 4140

Table 3.19: Count of ion visits within the “productive” area (15 NaCl pairs, τ = 8 Å).

Shell no. (from
the innermost)

Radius of the
Shell (nm)

Areas Total of
the shellArea 1 Area 2 Area 3 Area 4

shell 1 0.360652395 1065 1058 1042 1095 4260
shell 2 0.454393544 1039 1066 1207 1085 4397
shell 3 0.520150761 1077 1080 1231 1083 4471
shell 4 0.572499990 1001 1022 1240 1111 4374
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Figure 3.13: Ion density for 1 NaCl pair (a)Within TO box (τ = 6 Å), (b)Within TO box
(τ = 8 Å), (c) Within “productive” area (τ = 6 Å), (d) Within “productive” area (τ = 8 Å).
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Figure 3.16: Ion density for 15 NaCl pairs (a)Within TO box (τ = 6 Å), (b)Within TO box
(τ = 8 Å), (c) Within “productive” area (τ = 6 Å), (d) Within “productive” area (τ = 8 Å).
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within the entire area that they can reach. With the increase of the number of NaCl pairs to

be added, the ion density becomes more and more uniform. As shown in Table 3.18 - 3.19

and Figure 3.16(c)(d), for the case of 15 NaCl pairs, the ion density data demonstrates the

capability of our model for simulating a homogeneous ionic solvent within the “productive”

area.

(3) Diffusion coefficient

In addition to the structural properties, the dynamical properties were also tested as an

assessment of our electrostatics model. We choose to evaluate the self-diffusion of water

molecules by calculating the diffusion coefficients from the mean square displacement

(MSD) of all oxygen atoms using the Einstein relation below:

lim
t→∞

⟨
|r (t′ + t)− r (t′)|2

⟩
= 6Dt, (3.57)

where r(t) is the position of the oxygen atom of the water molecule at time t, D is the

self-diffusion coefficient and < · > donates averaging over all water molecules and time at

origins t′.

The diffusion coefficients calculated by our two models (τ = 6 Å and τ = 8 Å) as well

as the results of PME are summarized in Table 3.20. Comparing the two buffer layers, the

thickness of the buffer layer τ has no noticeable effect on D, at least for the simulation

box L = 45 Å. This indicates that τ = 6 Å performs as well as τ = 8 Å in terms of

reproducing the dynamics of water molecules. For this system, as shown in Figure 3.17,

the diffusion coefficients D, from both the imaged charge methods and PME, decrease

with statistical errors when the number of sodium chloride pairs increases. This makes

sense since as the number of sodium and chloride ions increases, the oxygen atoms in
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Table 3.20: Diffusion coefficients with standard deviation (unit of D = 10−9m2s−1).

# of Nacl pairs

ICSM method
PME
(L = 45Å cubic box)

(Ni = 1, L = 45Å TO box)

τ = 6 Å τ = 8 Å

1 6.18(±0.06) 6.16(±0.04) 6.02(±0.02)
2 6.16(±0.05) 6.15(±0.06) 6.00(±0.01)
3 6.14(±0.05) 6.12(±0.06) 5.77(±0.08)
4 6.13(±0.06) 6.11(±0.05) 6.06(±0.28)
5 6.12(±0.06) 6.10(±0.05) 5.73(±0.06)
6 6.11(±0.06) 6.08(±0.06) 5.74(±0.08)
7 6.07(±0.05) 6.06(±0.05) 5.67(±0.05)
8 6.07(±0.06) 6.06(±0.05) 5.66(±0.24)
9 6.02(±0.05) 6.00(±0.05) 5.78(±0.03)

10 6.01(±0.07) 5.98(±0.06) 5.73(±0.24)
11 5.99(±0.06) 5.96(±0.06) 5.53(±0.06)
12 5.95(±0.06) 5.92(±0.06) 5.58(±0.14)
13 5.94(±0.09) 5.92(±0.06) 5.69(±0.07)
14 5.90(±0.07) 5.90(±0.07) 5.75(±0.37)
15 5.91(±0.08) 5.85(±0.08) 5.57(±0.07)

water diffuse more slowly; thus, D goes down. Importantly, the diffusion coefficients D

computed for increasing thickness of the buffer layer agree progressively better with those

obtained in the PME calculations, although their difference is very small.
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CHAPTER 4: CONCLUSIONS AND FUTURE WORK

4.1 Conclusions

In this thesis, we have first presented a sixth-order image approximation to the reaction

field due to a point charge inside a dielectric sphere immersed in an ionic solvent for small

values of u = λa (λ - the inverse Debye screening length of the ionic solvent, a - the radius

of the dielectric sphere). O(N) implementations of the image approximation in the

electric potential and force field evaluations have been described. Numerical results have

demonstrated the sixth-order convergence rate of the image approximation as well as the

O(N) complexity of the O(N) implementations of the image approximation. Numerical

results have also demonstrated that, compared to the previous fourth-order image

approximation, the proposed sixth-order image approximation is more accurate for cases

with large u values when a relatively large M value is used.

To apply the image approximation methodology to the molecular simulation to treat

electrostatic interactions, we developed the Image Charge Solvation Model (ICSM) which

was first introduced in [30] and further tested its performance in simulations of ionic

solvent. The ICSM model is a hybrid electrostatic approach that combines the strengths of

both explicit and implicit representations of the solvent. A major advantage of the ICSM

over the lattice-sum methods, such as PME, is that the solute molecule does not

experience electrostatic interactions with its own periodic images. We validated our model
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using the ionic solvent as a test system which consisted of water molecules and sodium

chloride paired ions. As a result of an extensive investigation, we find that our method is

fairly consistent with the PME simulations in reproducing several known physical

properties of the ionic solvent. The homogeneity test of water molecules as well as that of

ions both demonstrate the capability of our model in simulating a homogeneous system.

By a comparison between the two thicknesses of buffer layers, we found that τ = 6 Å

performs as well as τ = 8 Å, at least for a TO simulation box with size of L = 45 Å.

4.2 Future work

Our model is eventually designed for inhomogeneous systems, and it is free of periodic

artifacts in electrostatic interactions,and thus, can be applied in areas where PME is not

suitable. One of our future works is to apply the ICSM as a general tool to more

complicated molecules such as proteins and viruses which may be bigger in size and vary

in geometries. In order for us to do it, we will need to integrate ICSM into the TINKER

Molecular Modeling package, which is a complete and general package for molecular

mechanics and dynamics with some special features for biopolymers. To avoid drifting

outside of the main simulation box, proteins or other big solute in the model will have to

be restrained to lie close to the center of, and better within, the “productive area” so that a

buffer layer with sufficient thickness to the implicit boundary is affordable. In a recent

paper by Baker et al., ICSM was integrated into the molecular dynamics portion of the

TINKER package and this integrated package is validated through test simulations of

liquid water [2]. We intend to extend and test this integration further in the simulations of

ionic solvent in the future.
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In existing hybrid solvation models, the spherical geometry is often employed because

the reaction field can be solved analytically in such geometry. Moreover, when the image

approximation methods are applied, the image charges can be easily found in this case.

However, this treatment may become inefficient in applications involving non-spherical

solutes such as certain globular proteins and other elongated biopolymers like actin and

DNA. For solutes of irregular shapes, using a non-spherical cavity to incorporate only a

few layers of solvent molecules adjacent to the solutes would make the simulated system

much smaller. However, how to efficiently obtain an accurate reaction field for such cases

remains a great challenge. In particular, to employ solvation shells with irregular shapes,

the Poisson equations need to be solved either directly by the numerical methods or by

using the approximation theory at every simulation time step, which, depending on the

system size, may become more computationally expensive than standard explicit all-atom

solvent models. Therefore, for studying a biomolecule of irregular shape, it may be more

appropriate to adopt a non-spherical but still regular-shaped cavity that can conform

closely to the irregular shape of the biomolecule. Employing a regular-shaped cavity (but

“less regular” than a sphere) may make it still possible to find some simple but accurate

enough image approximations for the corresponding reaction field, thus avoiding the

solution of the Poisson equation at every simulation time step. In a recent paper by Deng

et al., the hybrid ICSM has been extended to use prolate spheroidal or more general

triaxial ellipsoidal cavities for the case of pure water solvent [13]. Extending this

generalized ICSM further for the ionic solvent will be a focus of our future work.
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