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ABSTRACT. We consider the discrete Schrödinger operators with potentials whose values are
read along the orbits of a shift of finite type. We study a certain subset of the collection of ener-
gies at which the Lyapunov exponent is zero and prove monotonicity of this set with respect to
the shift embeddings. Then we introduce a certain function J (A,µ) determined by the position
of these zeros and prove monotonicity of J (A,µ) with respect to embeddings.

In this short paper, we study the discrete Schrödinger operators Hω defined on ℓ2(Z) by[
Hωu

]
(n) = u(n+ 1) + u(n− 1) + V (T nω)u(n), ω ∈ Ω.

Here Ω is a compact metric space whose elements are infinite sequences {ωn}n∈Z such that
ωn ∈ {1, . . . , ℓ} = A for each n. There are sequences in AZ that are not allowed to be in Ω and
we assume that forbidden words are of length 2. The metric d(·, ·) on Ω is defined by

d(ω, ω′) = e−N(ω,ω′),

where N(ω, ω′) is the largest nonnegative integer such that ωn = ω′
n for all |n| < N(ω, ω′).

The mapping T : Ω → Ω is assumed to be a subshift of finite type defined by(
Tω

)
n
= ωn+1, ∀n ∈ Z.

Finally, the function V is assumed to be locally constant on Ω in the sense of the following
definition.

Definition. A function V : Ω → R is said to be locally constant, if there is an ϵ > 0 such that

V (ω′) = V (ω) whenever d(ω′, ω) < ϵ.

Spectral properties of Hω are related to the behavior of solutions to the equation

(0.1) u(n+ 1) + u(n− 1) + V (T nω)u(n) = Eu(n), n ∈ Z,

for E ∈ R.

On the other hand, all solutions to (0.1) can be described in terms of the Schrödinger cocycles
(T,AE) with A = AE : Ω → SL(2,R) defined by

AE(ω) =

(
E − V (ω) −1

1 0

)
1
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Namely, u is a solution of (0.1) if and only if(
u(n)

u(n− 1)

)
= An(ω) ·

(
u(0)
u(−1)

)
, ∀n ∈ Z,

where

An(ω) =


A(T n−1ω) · · ·A(ω) if n ≥ 1;

[A−n(T
nω)]−1 if n ≤ −1;

Id if n = 0.

Since Ω is a metric space, we can talk about the Borel σ-algebra of subsets of Ω and consider
probability measures on Ω. Let µ be a T -ergodic probability measure on Ω. The Lyapunov
exponent for A and µ is defined by

L(A, µ) = lim
n→∞

1

n

∫
ln(∥An(ω)∥)dµ(ω).

By Kingman’s subaddive ergodic theorem,
1

n
ln(∥An(ω)∥) converges to L(A, µ) as n→ ∞,

for µ-almost every ω ∈ Ω. For simplisity, we write L(E) = L(A, µ).

One of the main theorems of the paper [1] gives sufficient conditions guaranteeing that the
set

(0.2) L(A, µ) =
{
E ∈ R : L(A, µ) = 0

}
is finite. One of these conditions is that µ has a local product structure.

Let us now give a formal definition of a measure having this property. We first define the
spaces of semi-infinite sequences

Ω+ = {{ωn}n≥0 : ω ∈ Ω} and Ω− = {{ωn}n≤0 : ω ∈ Ω}.
Then using the natural projection π± from Ω onto Ω±, we define µ± = (π±)∗µ on Ω± to be the
pushforward measures of µ. After that, for each 1 ≤ j ≤ ℓ, we introduce the cylinder sets

[0; j] = {ω ∈ Ω : ω0 = j} and [0; j]± = {ω ∈ Ω± : ω0 = j}.
A local product structure is a relation between the measures µj = µ

∣∣
[0;j]

and the measures
µ±
j = µ±

∣∣
[0;j]

. To describe this relation, we need to consider the natural homeomorphisms

Pj : [0; j] → [0; j]− × [0; j]+

defined by
Pj(ω) =

(
π−ω, π+ω

)
, ∀ω ∈ Ω.

Definition. We say that µ has a local product structure if there is a positive ψ : Ω → (0,∞)
such that for each 1 ≤ j ≤ ℓ, the function ψ ◦ P−1

j belongs to L1
(
[0; j]− × [0; j]+, µ

−
j × µ+

j

)
and (

Pj

)
∗dµj = ψ ◦ P−1

j d(µ−
j × µ+

j ).
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We will shortly divide points of the set (0.2) into two groups: removable and unremovable
points. We will show that unremovable points in L(A, µ) do not disappear in the process of
passing from Ω to a subshift Ω̃ ⊂ Ω with an ergodic measure µ̃ on it.

A point p ∈ Ω is said to be periodic for T provided there is a positive integer np for which
T np p = p. If p ∈ Ω is periodic, then V (T np) is a periodic function of n, because V (T np+np) =
V (T np) for every n ∈ Z. For a periodic point p of period np, define ∆p(E) to be the trace of
the monodromy matrix Anp(p)

∆p(E) = Tr(Anp(p)).

By Per(T ), we denoted the collection of all periodic points of T .

Definition. A point E ∈ L(A, µ) is said to be unremovable from L(A, µ) provided

either 1) there exists a T - periodic point p ∈ Ω for which 0 < |∆p(E)| < 2,

or 2) |∆p(E)| ∈ {0, 2} for all p ∈ Per(T ).

The collection of unremovable from L(A, µ) points will be denoted by U(A, µ).

Theorem 1. Let T : Ω → Ω be a subshift of finite type. Assume that µ is a T -ergodic measure
on Ω that has a local product structure and the property supp(µ) = Ω. Let V be a real-valued
locally constant function on Ω. Then for any subshift T̃ : Ω̃ → Ω̃ of T and any T̃ -ergodic
measure µ̃ on Ω̃ ⊂ Ω,

(0.3) U(A, µ) ⊆ U(Ã, µ̃),

where Ã is the restriction of A to Ω̃.

Corollary 2. Let T : Ω → Ω be a subshift of finite type. Assume that µ and µ̃ are T -ergodic
measures on Ω that have a local product structure and have the property supp(µ) = supp(µ̃) =
Ω. Let V be a real-valued locally constant function on Ω. Then

(0.4) U(A, µ) = U(A, µ̃).

Remark. For any removable pointE that belongs to the set L(A, µ)\U(A, µ), there is a subshift
T̃ : Ω̃ → Ω̃ of T and a T̃ -ergodic measure µ̃ on Ω̃ ⊂ Ω for which E /∈ L(Ã, µ̃). To see that,
we find a periodic point p ∈ Ω for which |∆p(E)| > 2 and then we define µ̃ to be the ergodic
probability measure supported on the union of the shifts T np of the point p.

The following result is a consequence of our methods:
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Theorem 3. Let T : Ω → Ω be a subshift of finite type. Assume that µ is a T -ergodic measure
on Ω that has a local product structure and the property supp(µ) = Ω. Let V be a real-valued
locally constant function on Ω. Then

U(A, µ) =
⋂

p∈Per(T )

σ(p),

where σ(p) denotes the spectrum of the Schrödinger operator Hp with the potential V (T np).

Proof. Indeed, let Ω̃ be the subshift consisting of the orbit of a periodic point p. Then σ(p)
coincides with the set U(Ã, µ̃). Thus, by Theorem 1, the spectrum σ(p) contains U(A, µ).
Therefore,

U(A, µ) ⊆
⋂

p∈Per(T )

σ(p).

Conversely, let E ∈
⋂

p∈Per(T ) σ(p). Then L(AE, µ) = 0 by Proposition 8 stated in Section 2.
Consequently, E belongs to U(A, µ). □

Several definitions below ivolve the set

S(T, µ) =
⋃

p∈Per(T )

{
E ∈ R : ∆p(E) ∈ (−2, 0) ∪ (0, 2)

}
.

This set may only become smaller when one passes from T to T̃ ,

S(T̃ , µ̃) ⊆ S(T, µ),

while U(A, µ) may only increase due to the property (0.3). This observation allows one to
construct a real-valued function J (A, µ) that decreases when either S(T, µ) becomes smaller,
or U(A, µ) becomes larger. For this purpose, we recall that if T has a fixed point, then there
are at most finitely many points in the set U(A, µ) (see Theorem 1.2 in [1]). Thus U(A, µ) =
{E1, E2, . . . , El} whereE1 < E2 < · · · < El. We first enlarge the collection U(A, µ) by adding
the two pointsE0 = −5/2−∥V ∥∞ andEl+1 = 5/2+∥V ∥∞. Then, for each interval (Ej, Ej+1)
whose intersection with S(T, µ) is not empty, we define Nj by

Nj = the integer part of
[ 2|El+1 − E0|
|(Ej, Ej+1) ∩S(T, µ)

∣∣].
Here, |X| in the denominator denotes the Lebesgue measure of a Borel set X ⊂ R. If
(Ej, Ej+1) ∩S(T, µ) = ∅, then we define Nj to be equal to 2. Finally, after setting

N(A, µ) = max
0≤j≤l

Nj,

we define the function

J (A, µ) =
l∑

j=0

Ej(A, µ),
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where

Ej(A, µ) =
∣∣(Ej, Ej+1) ∩S(T, µ)

∣∣
λ

ln
(∣∣(Ej, Ej+1) ∩S(T, µ)

∣∣
λ

)
+

+

∣∣(E0, El+1) \S(T, µ)
∣∣

λ · (l + 1)
ln
(∣∣(E0, El+1) \S(T, µ)

∣∣
N(A, µ) · λ

)
and λ = |El+1 − E0|. The next result establishes monotonicity of the function J (A, µ) with
respect to embeddings of the subshifts.

Theorem 4. Let T : Ω → Ω be a subshift of finite type. Assume that µ is a T -ergodic measure
on Ω that has a local product structure and the property supp(µ) = Ω. Let V be a real-valued
locally constant function on Ω. Suppose T̃ : Ω̃ → Ω̃ is a further subshift of T and µ̃ is a
T̃ -ergodic measure on Ω̃ ⊂ Ω for which the set U(Ã, µ̃) is finite (by Ã, we denote the restriction
of A to Ω̃). Then

J (A, µ) ≥ J (Ã, µ̃).

1. BEGINING OF THE PROOF OF THEOREM 1. MAIN INGREDIENTS

Note that a Schrödinger cocycle A = AE with a locally constant potential V : Ω → R is also
locally constant. Put differently, there is an ϵ > 0 such that

A(ω′) = A(ω) whenever d(ω′, ω) < ϵ.

Definition . Let T : Ω → Ω be a subshift of finite type. The local stable set of a point ω ∈ Ω
is defined by

W s(ω) = {ω′ ∈ Ω : ω′
n = ωn for n ≥ 0}

and the local unstable set of ω is defined by

W u(ω) = {ω′ ∈ Ω : ω′
n = ωn for n ≤ 0}.

For ω′ ∈ W s(ω), define Hs,n
ω′,ω to be

Hs,n
ω,ω′ =

[
An(ω

′)
]−1

An(ω).

Since d(T jω′, T jω) ≤ e−j tends to 0 as j → ∞, there is an index n0 for which

Hs,n
ω,ω′ = Hs,n0

ω,ω′ for n ≥ n0.

In this case, we define the stable holonomy Hs
ω,ω′ by

Hs
ω,ω′ = Hs,n0

ω,ω′ .

The unstable holonomy Hu
ω,ω′ for ω′ ∈ W u(ω) is defined similarly by

Hu
ω,ω′ =

[
An(ω

′)
]−1

An(ω) for all n ≤ −n0.
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The general theory of dynamical systems tells us that the cocycle

(T,A) : Ω× RP1 → RP1

defined by
(T,A)(ω, ξ) = (Tω,A(ω)ξ)

has an invariant probability measure m on Ω× RP1. We say that such a measure m projects to
µ if m(∆×RP1) = µ(∆) for all Borel subsets ∆ of Ω. Given any T -invariant measure µ on Ω,
one can find a (T,A)-ivariant measure m that projects to µ by applying the Krylov-Bogolyubov
trick.

Definition. Suppose m is a (T,A)-invariant probability measure on Ω× RP1 that projects to
µ. A disintegration of m is a measurable family {mω : ω ∈ Ω} of probability measures on
RP1 having the property

m(D) =

∫
Ω

mω({ξ ∈ RP1 : (ω, ξ) ∈ D})dµ(ω)

for each measurable set D ⊂ Ω× RP1.

Existence of such a disintegration is guaranteed by Rokhlin’s theorem. Moreover, {m̃ω :
ω ∈ Ω} is another disintegration of m then mω = m̃ω for µ-almost every ω ∈ Ω. It is easy to
see that m is (T,A)-invariant if and only if A(ω)∗mω = mTω for µ-almost every ω ∈ Ω.

Definition. A (T,A)-invariant measure m on Ω × RP1 that projects to µ is said to be an
su-state for A provided it has a disintegration {mω : ω ∈ Ω} such that for µ-almost every
ω ∈ Ω,

1)
A(ω)∗mω = mTω,

2) (
Hs

ω,ω′

)
∗mω = mω′ for every ω′ ∈ W s(ω).

3) (
Hu

ω,ω′

)
∗mω = mω′ for every ω′ ∈ W u(ω)

The following statement was proved in [1] (Proposition 4.7) for a significantly larger class of
functions A.

Proposition 5. Let A be locally constant. Suppose µ has a local product structure and
L(A, µ) = 0. If the support of the measure µ coincides with all of Ω, then there exists an
su-state for A.

We apply the following method to extend mω to a continuous function of ω on all of Ω. For
each 1 ≤ j ≤ ℓ, we select a point ω(j) in [0; j]∩Ω0 for which the measure mω(j) is well defined.
Then we set

(1.5) mω =
(
Hu

ω∧ω(ω0),ω
Hs

ω(ω0),ω∧ω(ω0)

)
∗
mω(ω0) .
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Obviously mω depends continuously on ω.

Observe that RP1 may be aslo viewed as R ∪ {∞}, because any vector of the form (ξ, 1) ∈
RP1 is uniquily characterized by ξ ∈ R ∪ {∞}. Aslo, CP1 may be aslo viewed as C ∪ {∞}
because there is a 1:1 mapping of one set onto another. The part of CP1 that is mapped onto the
extended upper half-plane C+ ∪ {∞} will be denoted by C+P1.

Now we will state Proposition 4.9 from [1] in the following more convenient form:

Proposition 6. For each probability measure ν on RP1 containing no atom of mass ≥ 1/2,
there is an unique point B(ν) ∈ C+P, called the conformal barycenter of ν, such that

B(P∗ν) = P ·B(ν)

for each P ∈ SL(2,R).

Let m be an su-state with a continuous disintegration mω. If mω does not have an atom of
mass ≥ 1/2, then we set Z(ω) ⊂ C+P to be {B(mω)}. Otherwise Z(ω) is defined to be the
collection of points ξ at whichmω({ξ}) ≥ 1/2. Sincemω is a probability measure, the set Z(ω)
can contain at most two points. The following theorem is a consequence of Proposition 6.

Theorem 7. Let A be locally constant. Suppose µ has a local product structure and L(A, µ) =
0. Then

A(ω)Z(ω) = Z(Tω) for each ω ∈ Ω.

If ω′, ω are two points in Ω such that ω′
0 = ω0, then

(1.6) Z(ω) =
(
Hu

ω∧ω′,ωH
s
ω′,ω∧ω′

)
Z(ω′).

In particular, the number of the points in Z(ω) does not depend on ω. Moreover, if Z(ω) is real
for one ω, then it is real for all ω ∈ Ω.

The last two lines of the theorem follow from the fact that for any two points ω and ω′ in Ω,
there is a real matrix P ∈ SL(2,R) for which Z(ω) = P · Z(ω′). Indeed, if ω′

0 = ω0, then this
property is guaranteed by (1.6). On the other hand, since T is transitive, for any two points ω′

and ω, there is an index n and a point ω̃ such that (T nω̃
)
0
= ω′

0 while ω̃0 = ω0. Therefore

Z(T nω̃) = An(ω̃)Z(ω̃) =
(
Hu

Tnω̃∧ω′,Tnω̃H
s
ω′,Tnω̃∧ω′

)
Z(ω′),

which implies that

Z(ω̃) = [An(ω̃)]
−1
(
Hu

Tnω̃∧ω′,Tnω̃H
s
ω′,Tnω̃∧ω′

)
Z(ω′).

It remains to note that

Z(ω) =
(
Hu

ω∧ω̃,ωH
s
ω̃,ω∧ω̃

)
Z(ω̃).
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2. END OF THE PROOF OF THEOREM 1

Let E ∈ U(A, µ). We must show that E ∈ U(Ã, µ̃).

Assume first that 0 < |∆p(E)| < 2 for some T - periodic point p ∈ Ω. By the symbol np, we
denote the period of p. We also set

L(A, p) = lim
n→∞

1

n
ln
(
∥An(p)∥

)
.

It is easy to see that Z(p), viewed as a set of complex numbers, is not real. In fact, Z(p) consists
of one point (a+ i

√
4− (∆p(E))2)/b, where a and b ̸= 0 are the two elements of the first row

of the matrix Anp(p). Since, for any periodic point q ∈ Ω, the set Z(q) is the image of Z(p)
under an SL(2,R) transformation, Z(q) is not real and consists of one point. Therefore, for any
periodic point q ∈ Ω, the matrix Anq(q) has two complex eigenvalues that belong to the unit
circle. The latter observation leads to the conclusion that E ∈ σ(Hq) and

(2.7) L(A, q) = 0 for all periodic points q ∈ Ω.

In particular, L(A, q) = L(Ã, q) = 0 for all periodic points that belong to Ω̃.

Now we use the following result proved in a much more general setting by Kalinin (see
Theorem 1.4 in [12]).

Proposition 8. Let A be locally constant on Ω̃. Then for each δ > 0 there is a periodic point
q ∈ Ω̃ such that |L(Ã, q)− L(Ã, µ̃)| < δ.

Combining Proposition 8 with the equality (2.7), we obtain that

L(Ã, µ̃) = 0.

Thus, E ∈ U(Ã, µ̃).

Now assume that |∆p(E)| ∈ {0, 2} for all p ∈ Per(T ). Then |∆p(E)| ∈ {0, 2} for all
p ∈ Per(T̃ ). In particular, this implies that all eigenvalues of Anp belong to the unit circle and,
hence, L(Ã, p) = 0 for any periodic p ∈ Ω̃. Thus, we infer from Proposition 8 that L(Ã, µ̃) = 0.

The proof is complete. □

Corollary 9. A point E ∈ L(A, µ) is unremovable from L(A, µ) if and only if the point E
belongs to the spectrum of Hp for each p ∈ Per(T ).

The zeros of the Lyapunov exponent that belong to the set

S(T, µ) =
⋃

p∈Per(T )

{
E ∈ R : ∆p(E) ∈ (−2, 0) ∪ (0, 2)

}
have simple and interesting properties described in the following statement.
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Corollary 10. Let V be a real-valued locally constant function on Ω. Let T : Ω → Ω be a
subshift of finite type. Assume that µ is a T -ergodic measure on Ω that has a local product
structure and the property supp(µ) = Ω. Then for any subshift T̃ : Ω̃ → Ω̃ of T and any
T̃ -ergodic measure µ̃ on Ω̃ ⊂ Ω,

S(T, µ) ∩ L(A, µ) ⊆ S(T, µ) ∩ L(Ã, µ̃),

where Ã is the restriction of A to Ω̃.

3. PROOF OF THEOREM 4

Observe that under the assumptions of Theorem 4,

N(Ã, µ̃) ≥ N(A, µ).

First consider the case where U(A, µ) = U(Ã, µ̃) while S(T̃ , µ̃) ⊂ S(T, µ) is a proper
inclusion. Then the inequality

(3.8) J (Ã, µ̃) ≤ J (A, µ)

may be established by the means of Calculus. Indeed, since N(Ã, µ̃) ≥ N(A, µ), we only
need to show that the derivative of J (A, µ) with respect to x = |(Ej0 , Ej0+1) ∩ S(T, µ)| is
positive, provided |(E0, El+1) ∩ S(T, µ)| is viewed as the linear function τ − x, where τ =
Ej0+1 −Ej0 +

∑
j ̸=j0

|(Ej, Ej+1) ∩S(T, µ)|. Put differently, we must show that the derivative
of

ψ(x) =
x

λ
ln
(x
λ

)
+
τ − x

λ
ln
( τ − x

N(A, µ) · λ

)
is positive.

The direct computation shows that

ψ′(x) =
1

λ
ln
(N(A, µ) · x

τ − x

)
.

Thus, we infer that ψ′(x) > 0 from the finequality (N(A, µ) + 1)x > τ .

It remains to prove (3.8) in the case where U(A, µ) ⊂ U(Ã, µ̃) is a proper inclusion. In
the case U(A, µ) = U(Ã, µ̃), the quantity J (A, µ) was an increasing function of S(T, µ).
Therefore, it is enough to consider the case where S(T, µ) = S(T̃ , µ̃).

Suppose U(Ã, µ̃) consists of the points Ẽ1 < Ẽ2 < · · · < Ẽr. Define Ẽ0 = E0 and Ẽr+1 =
El+1. Then each interval [Ej, Ej+1) is the union of a finite collection of intervals [Ẽk, Ẽk+1):

[Ej, Ej+1) =

k̃(j)⋃
k=k0(j)

[Ẽk, Ẽk+1).
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Therefore,

|[Ej, Ej+1) ∩S(T, µ)| ln
(
|[Ej, Ej+1) ∩S(T, µ)|

)
≥

k̃(j)∑
k=k0(j)

|[Ek, Ek+1) ∩S(T, µ)| ln
(
|[Ek, Ek+1) ∩S(T, µ)|

)
,

which implies (3.8).

4. THE MONOTONICITY IS NOT STRICT

Here we give an example of a subshift for which Ω is a proper subset of AZ, and yet
U(A, µ) = ∅.

Assume that V depends only on the zero-coordinate ω0 of ω. Then all stable and unstable
holonomies are identity operators. Consequently, if mω is a continuous disintegration of an
su-state, then

mω = mω′ whenever ω0 = ω′
0.

But then the equality
A(ω)mω = mTω

implies that mTω′ = mTω whenever ω0 = ω′
0.

Let us now give a condition that makes the latter equality impossible. For each j0 ∈ A, define
the set

(4.9) Dj0 = {j ∈ A : ∃ω ∈ Ω such that ω0 = j0, ω1 = j}.

Suppose that for each pair of symbols j and j′ in A, there is an ordered collection of letters
j1, j2, . . . , jk, such that j ∈ Dj1 and j′ ∈ Djk , while Djn ∩ Djn+1 ̸= ∅ for all 1 ≤ n ≤ k − 1.
Then mω is constant on Ω. This would imply that Z(ω) is constant on Ω, which would turn the
relation AE(ω) · Z(ω) = Z(Tω) into the equality

AE(ω) · Z(ω) = Z(ω).

This cannot be true in the case where V (ω) takes at least two different values. The obtained con-
tradiction shows that there is no su-state for the cocycle AE , which implies that the Lyapunov
exponent is positive for every E ∈ R.

Theorem 11. Assume that V depends only on the zero-coordinate ω0 of ω and takes at least
two different values on Ω. Let the sets Dj0 be defined by (4.9). Suppose that for each pair of
symbols j and j′ in A, there is an ordered collection of letters j1, j2, . . . , jk, such that j ∈ Dj1

and j′ ∈ Djk , while Djn ∩ Djn+1 ̸= ∅ for all 1 ≤ n ≤ k − 1. Finally, assume that µ is a
T -ergodic measure on Ω that has a local product structure and the property supp(µ) = Ω.Then
the Lyapunov exponent is positive for each E ∈ R:

L(AE, µ) > 0.
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