
STRATIFIED SEMIPARAMETRIC REGRESSION ANALYSIS OF PARTLY INTERVAL
CENSORED FAILURE TIME DATA WITH MISSING AND MIS-MEASURED

LONGITUDINAL COVARIATES

by

Gang Cheng

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Applied Mathematics

Charlotte

2024

Approved by:

Dr. Yanqing Sun and Dr. Qingning Zhou

Dr. Yinghao Pan

Dr. Asis Nasipuri



ii

©2024
Gang Cheng

ALL RIGHTS RESERVED



iii

ABSTRACT

GANG CHENG. Stratified Semiparametric Regression Analysis of Partly Interval Censored Failure
Time Data with Missing and Mis-Measured Longitudinal Covariates. (Under the direction of DR.

YANQING SUN AND DR. QINGNING ZHOU)

Survival analysis has important applications across various fields, including medicine, finance,

actuarial science, and social studies. In the modeling process, we often encounter challenges related

to censored data, where the exact event times are not directly observable. Instead, we only know

that the events occurred within specific time intervals. Also, the covariates in the model may subject

to missingness and mis-measurement. In this dissertation, we investigate (partly) interval censored

data with missing and mis-measured covariates under semi-parametric models.

In the first project, we proposed an inverse probability weighting (IPW) estimator for transfor-

mation models with interval-censored data and missing covariates. To estimate the model parame-

ters, we developed a combined approach that integrates the EM algorithm with inverse probability

weighting. Additionally, we introduced a variance estimation procedure using weighted bootstrap.

We demonstrated that the proposed estimator is consistent and asymptotically normal through the-

oretical justification and numerical simulations. Finally, we applied our approach to data from the

HVTN 703/704 HIV clinical trial.

In the second project, we extended the approach from the first project to accommodate covariates

subject to both missing data and measurement error. We employed a measurement error induced

hazard approach to construct the baseline hazard function. To estimate the true covariates from

the mis-measured covariates, we utilized a linear mixed-effects model. For model estimation, we

applied a method similar to that used in the first project. Extensive simulations demonstrated that

the resulting estimator is consistent and asymptotically normal. Finally, we applied the developed

method to data from the HVTN 703/704 HIV clinical trial, accounting for measurement error in the

covariate log(VRC).
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CHAPTER 1: INTRODUCTION

Survival analysis is a statistical method employed to analyze time-to-event data, commonly used

in medical, epidemiological, and social sciences research. It revolves around understanding the

duration until a particular event of interest occurs, such as death, failure of a machine, or relapse of

a disease. Unlike traditional statistical methods that focus solely on observing if an event occurs,

survival analysis also considers the time it takes for an event to happen, accommodating censoring

(where some individuals do not experience the event within the study period).

1.1 Survival Data and Examples

Survival data, also known as failure time data, refers to observations that track the time until a

particular event of interest occurs, such as machine failure, disease relapse, or death. However, due

to various factors such as loss to follow-up or study termination, complete observations of survival

time are not always feasible. These incomplete observations, termed censored failure times, pose a

significant challenge in survival analysis, where the precise event occurrence is not fully known for all

participants. Censored failure data includes left censoring, right censoring, and interval censoring,

representing situations where the precise event time is only partially known. Left censoring pertains

to events occurring before the study commencement with unknown exact times, as observed in cancer

studies where some patients decease prior to the study’s initiation. Interval censoring is observed

when the event time falls within a specific range, and it is a common scenario in HIV antibody trials.

In such trials, antibody concentrations are measured periodically, and instances of HIV occurrences

are known to happen between these scheduled examinations. Right censoring indicates that the

event time occurs after a certain observation period due to reasons like the study’s conclusion or

participant dropout before the study’s end. Left truncation in survival analysis refers to a scenario

where individuals with event times earlier than the start of the study are excluded from analysis. This

exclusion occurs because the observation of events is limited to those occurring after the study has
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commenced. Left truncation can lead to biased estimates of survival probabilities since individuals

who have already experienced the event of interest before the study began are not included, resulting

in an underestimation of the true survival probabilities. Effectively handling censorship or truncation

in are crucial for accurate data analysis and meaningful statistical interpretation, particularly in the

context of survival analysis.

1.2 Hazard Functions and Survival Models

We usually study survival times through survival function and hazard function. Let T be the

survival time. The survival function S(t) represents the unconditional probability that the event time

occurs after a specified time t. On the other hand, the hazard function λ(t) models the instantaneous

rate at which the event occurs at time t, provided that the individual has survived up to time t.

The hazard function λ(t) is modeled as

λ(t) = lim
∆t→0

1

∆t
P (t ≤ T ≤ t+∆t|T ≥ t)

Survival analysis is widely applied across numerous fields, including medical research, epidemiology,

biostatistics, engineering, social sciences, and market research. In medical research, it’s instru-

mental in investigating patient outcomes, disease progression, and treatment effectiveness. The

purpose of many survival analysis are studying effects of covariates on the hazard function. Let

Z = (Z1, Z2, ..., Zp) be the p−dimensional covariates. We define the conditional hazard function of

T at t given covariate Z = z defined as:

λ(t|Z = z) = lim
∆t→0

1

∆t
P (t ≤ T ≤ t+∆t|T ≥ t, Z = z)

An established and fundamental tool in survival analysis is the Cox Proportional Hazards Model

(Cox (1972)), with a regression model given by

λ(t|Z) = λ0(t) exp(β
⊤Z) (1.1)

where β is a p−dimensional vector of regression parameters, and λ0(t) represents an arbitrary

and unspecified baseline hazard function. The Cox model assumes proportional hazards across
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individuals over time, and a consistent estimator of β can be obtained by maximizing the partial

likelihood (Cox (1972)). Another framework for analyzing failure time data is the transformation

model Zeng and Lin (2006), Zeng et al. (2016), Zhou et al. (2021) which applies transformation

function to the cumulative hazard function. It takes the form

Λj(t|X(·), Z) = G

[ ∫ t

0

exp{β⊤X(s) + γ⊤Z}dΛj(s)

]
(1.2)

where β, γ are p, q dimension unknown regression parameters, Λ(t) =
∫ t

0
λ(s)ds is an increasing

function with Λ(0) = 0. G(·) is a pre-specified transformation function that is strictly increasing

and three times continuously differentiable with G(0) = 0, G
′
(0) > 0 and G(∞) = ∞. For the

choices of G, the class of frailty-induced transformation models which take the form:

G(x) = − log

∫ ∞

0

exp(−xξ)f(ξ)dξ (1.3)

where f(ξ) is the density function of a non-negative random variable ξ with support [0,∞). If

ξ follows gamma distribution with mean equals to one and variance equals to r, then G(x) =

log(1+rx)
r (r ≥ 0) with G(x) = x corresponds to r = 0. By treating ξ as missing, the frailty induced

transformation is extremely useful in developing EM algorithm (Zeng and Lin (2006), Zeng et al.

(2016), Zhou et al. (2021)). The class of Box-Cox transformations G(x) = (1+x)ρ−1
ρ can be obtained

from the positive stable distribution with parameter 0 < ρ < 1. The function G(x) = log(1 + x)

can be considered as a member of the Box-Cox transformations with ρ = 0. Transformation models

have several advantages which include: (i) flexible to handle non-linear relationships between the

covariates and the failure time; (ii) can include time varying covariates and handle non-proportional

hazards. Furthermore, when X is time independent, the equation (1.2) can take the form

log Λ(t) = −(β⊤X + γ⊤Z) + logG−1[− log ϵ0]

where ϵ0 follows a uniform distribution (Zeng and Lin (2006)). Specifically, G(x) = x yield propor-

tional hazards model and G(x) = x yield proportional odds model. Besides the usual transformation

model, we proposed a stratified transformation model, which further flexes the traditional transfor-

mation model by allowing different baseline cumulative hazard for different stratum. It takes the
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form:

Λj(t|X(·), Z) = G

[ ∫ t

0

exp{β⊤X(s) + γ⊤Z}dΛj(s)

]
(1.4)

where j = 1, · · · , J and J represents number of stratums in the data.

1.3 Missing Data and Measurement Errors

In many scenarios, obtaining complete covariates information for all study subjects is not feasi-

ble, which results in missing data. Missing data problems are common in the survival data analysis

which includes missing covariates, missing failure causes. One straightforward approach of handling

missing data problem is complete-case (CC) analysis, which use only observations with full informa-

tion. Complete-case analysis (CC) may lead to biased or misleading results when the missingness of

data depends on observed data, but not on unobserved data (termed as missing at random (MAR),

Rubin (1976)). An example is when we estimating proportional hazards model (1.1), the estimator

of β will be biased if we simply use complete case analysis. In order to get reliable estimator of β,

we need to adjust bias from complete case analysis. One approach of handling the MAR problem

is weighting complete cases by the inverse probability weight Horvitz and Thompson (1952), which

is commonly used to correct the bias introduced by missing at random Rubin (1976). By applying

the inverse probability weighting, the complete cases are enlarged to represent the missing data.

Besides for missing data, the covariates measured with error is another issue when we do model

estimating. In the AIDS Clinical Trial Group (ACGT) 175 clinical trial on HIV-infected patients

(Hammer et al. (1996)), the effects of baseline CD4 cell (zidovudine alone, zidovudine + didano-

sine, zidovudine + zalcitabine, didanosine alone) on time to the incidence of AIDS are of interest.

Measurements of the baseline CD4 counts are subject to measurement error because of instrumental

contamination and biological variation Song and Ma (2008). Using the contaminated covariates

directly, termed as naive method, will lead to biased estimation results (Sun et al. (2023), Tsiatis

and Davidian (2001)).

This dissertation addresses the challenge posed by the interplay between the semi-parametric

transformation model and missing covariates and covariates subject to measurement error. We pro-

pose a flexible method capable of accommodating the semi-parametric transformation model and
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various missing data patterns and covariate measurement errors. The effectiveness of the model is

validated through extensive simulations and theoretical justification. Subsequently, this method is

applied in pertinent research on HIV prevention. This dissertation is organized as follows. Chapter

2 introduces stratified transformation models with missing covariates (covariates measured accu-

rately). Chapter 3 describes stratified transformation models with missing covariates and covariates

measurement errors. Tables, lists, figures and theorem proofs are relegate in chapter 4, 5.



CHAPTER 2: THE STRATIFIED SEMIPARAMETRIC TRANSFORMATION MODELS WITH
MISSING COVARIATES

2.1 Introduction and Literature Review

Epidemiological and biomedical studies frequently yield failure time data subject to various forms

of censoring. For instance, in clinical trials for AIDS among HIV-infected individuals, researchers

typically track the time until onset of AIDS. The onset of AIDS is usually determined at periodic

scheduled clinic visits. Consequently, the exact time of AIDS onset is known only within an interval

defined by the last visit without AIDS criteria and the first visit where AIDS-defining conditions

are observed, resulting in interval-censored failure time data. Left-censored observations arise if a

subject presents with AIDS-defining conditions at their initial clinic visit, while right-censored ob-

servations occur if a subject never develops AIDS-defining conditions up to their final visit. Many

studies follow a similar data structure, where blood tests are conducted during regular visits, and the

event of interest occurs between the last negative test and the first positive one. We analyze failure

time data encompassing a mixture of exact and censored observations, including left, interval, and/or

right-censored data. Such datasets are commonly referred to as partly interval-censored data in sci-

entific literature. Our research is inspired by the HVTN-703/HVTN-704 trials, a randomized trial

comparing HIV-infected individuals across four regions (Corey et al. (2021)). Participants in these

trials underwent regular measurements of HIV antibody VRC concentration every 4 weeks and were

monitored for AIDS infection occurrence over an 86-week period. The study aims to investigate the

association between age, time-varying HIV antibody VRC concentrations, and HIV infection onset.

However, the data present challenges: left-censored observations occur if HIV infection predates the

study, interval-censored observations arise when infection occurs between consecutive examinations,

and right-censored observations signify cases where infection hasn’t occurred by the study’s end.

Additionally, complicating matters, only a portion of participants have VRC measurements avail-
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able, introducing potential estimation bias due to missing data. Thus, the analysis must address the

complexities of both censored observations and missing covariate data, posing significant analytical

challenges.

Extensive research has been conducted on interval censored and partly interval-censored data across

various models. Among these, the simplest and most studied type is referred to as case-1 or current-

status data, involving only one monitoring time per subject. When there are either two or k moni-

toring times per subject, the resulting data are termed as case-2 or case-k interval censoring (Huang

and Wellner (1997). Schick and Yu (2000)) proposed mixed-case interval censoring, accommodating

varying numbers of monitoring times among subjects. Finkelstein (1986), Huang (1996) studied

maximum likelihood estimator (MLE) for the proportional hazards model with interval censored

data. Zeng et al. (2016) proposed an efficient algorithm using Expectation-Maximization (EM) for

estimating transformation models with interval-censored data. utilized an EM algorithm to esti-

mate semiparametric transformation models in the presence of interval-censored data and missing

covariates. Zhang et al. (2010) introduced a spline based sieve semiparametric maximum likelihood

method to estimate the proportional hazards with interval censored data. Kim (2003) studied the

maximum likelihood estimation for the proportional hazards model with partly interval censored

data using generalized Gauss-Seidel algorithm with midpoint imputation for the interval censored

data. Gao et al. (2017) studied generalized Buckley-James estimator for partly interval censored data

with failure time under accelerate failure time model. Gao et al. (2019) proposed an EM algorithm

for the partly interval censored data under the asymptomatic disease and symptomatic disease and

random effects. There are also extensive literature about missing covariate with censored data. Chen

(2001) used a local averaging of the observed covariates approach to provide an effective and unified

approach to analysis a class of sampling designs with proportional hazards model. Qi et al. (2005)

studied the weighted estimators for proportional hazards model with missing using IPW and AIPW

for the right censored data. Breslow and Wellner (2007), Saegusa and Wellner (2013) developed the

asymptotic properties of weighted likelihood estimators under two phase sampling design. However,

methodologies for fitting transformation models to (partly) interval data with missing covariates,
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along with corresponding asymptotic properties, remain relatively unexplored. This chapter presents

a comprehensive class of transformation models that integrate multi-baseline hazard functions and

time-varying coefficients. These models provide significant flexibility and encompass special cases,

including those discussed in previous works such as Zeng et al. (2016) and Zhou et al. (2021). To

mitigate bias introduced by missing data under the Missing at Random (MAR) assumption, we

employ inverse probability weighting.

The rest of this chapter is organized as follows: Section 2.2 introduces the data structure, mod-

els, and model assumptions. Section 2.3 presents the weighted EM algorithm for partly interval

censored failure times data with liear transformation function. Section 2.4 introduces a weighted

bootstrap variance estimating procedure. The proposed methods’ finite-sample performance is as-

sessed through simulation studies in Section 2.6. In Section 2.7, we present the results of applying

our proposed model to the HVTN-703/704 data. Finally, Section 2.8 provides concluding remarks

for chapter 2.

2.2 Data, Model and Assumption

Let Tji denote the failure time of interest for the i-th subject in the j-th stratum, where i =

1, . . . , nj and j = 1, . . . , J . Here, J represents the total number of strata, and nj is the number of

subjects in the j-th stratum. Let Xji(·) and Zji(·) be vectors of possibly time-dependent covariates

for the i-th subject in the j-th stratum. We consider partly interval-censored failure time data,

which include exact, left-, interval-, and/or right-censored observations. Let ∆1ji indicate whether

the failure time Tji is observed exactly: ∆1ji = 1 if Tji is observed exactly, and ∆1ji = 0 otherwise.

Let ∆2ji indicate whether the observation is strictly interval-censored or left-censored. Let (Lji, Rji]

denote the smallest observed interval that includes Tji, where Lji is the last monitoring time at which

the failure has not yet occurred, and Rji is the first monitoring time at which the failure has occurred.

If Lji < Rji <∞, then ∆2ji = 1 and Tji ∈ (Lji, Rji]. If Rji = ∞, then ∆1ji = ∆2ji = 0. In addition

to the partly interval-censored data, we consider a study design where covariates are collected in

two phases. In the first phase, covariates Zji(·) are collected for all study subjects. In the second

phase, covariates Xji(·) are collected only for a subset of the study group. Let ηji be the selection
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indicator for the second-phase covariates: ηji = 1 if the observation is selected into the second phase

(i.e., both Xji(·) and Zji(·) are available), and ηji = 0 otherwise (i.e., Xji(·) is not available). We

assume that the missing data mechanism depends only on the first-phase data Zji(·), ∆1ji, ∆2ji,

Lji, Rji, and Tji, but not on the missing variable Xji(·). This is termed the missing-at-random

(MAR) assumption Rubin (1976), which can be expressed as:

Xji(·) |= ηji | Zji(·),∆1ji,∆2ji, Lji, Rji, Tji.

The failure times that are left/interval-censored and/or exactly observed are considered as the cases.

Our data have the following structure, let

Oji = (∆1ji,∆2ji,∆1jiTji, (1−∆1ji)Lji, (1−∆1ji)Rji, ηji, ηjiXji(·), Zji(·)) (2.1)

be the observed data for the i-th subject in the j-th stratum, where i = 1, ..., nj and j = 1, ..., J .

Under the stratified semiparametric transformation model, we assume that the cumulative hazard

function for Tji conditional on Xji(·) and Zji(·) takes the form

Λj(t|Xji(·), Zji(·)) = G

(∫ t

0

exp{β⊤Xji(s) + γ⊤Zji(s)}dΛj(s)

)
(2.2)

where β and γ are vectors of unknown regression coefficients and Λj(·) is an unknown increasing

function. G(·) is a pre-specified transformation function that is strictly increasing and three times

continuously differentiable with G(0) = 0, G
′
(0) > 0 and G(∞) = ∞ (Zeng and Lin (2006)). G

′
(x)

denotes dG(x)
dx . The choice of G(x) = x yield the proportional hazards model while G(x) = log(1+x)

yield the proportional odds model. In order to investigate interval censored data, Zeng et al. (2016)

considered taking frailty induced hazard transformation model

G(x) = − log

∫ ∞

0

exp(−xξ)f(ξ)dξ (2.3)

where f(ξ) is the density function of a non-negative random variable ξ with support [0,∞). The

gamma density of ξ with unit mean and variance r yields the logarithmic transformations G(x) =

log(1+rx)
r (r ≥ 0) with r = 0 corresponding to G(x) = x and r = 1 corresponding to G(x) = log(1+x).

Zeng and Lin (2006), Zeng et al. (2016), Zeng et al. (2017) devised EM-type algorithms using frailty
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induced transformations by treating ξ as missing.

Suppose the event time Tji is monitored at a sequence of positive time-points Uji,1 < · · · < Uji,Mji
,

we assume that {Ujik : j = 1, · · · , J ; i = 1, · · ·nj ; k = 1, · · ·Mji} are independent of {Tji : j =

1, · · · J, i = 1, · · · Ji}. Let (Lji, Rji] be the shortest time interval that contain Tji which means Lji =

max{Ujik : Ujik < Tji, k = 0, · · · ,Mji} and Rji = min{Ujik : Ujik ≥ Tji, k = 1, · · · ,Mji + 1} where

Uji0 = 0 and Uji,mji
+1 = ∞. Then the full data likelihood function for (β, γ) and Λ = (Λ1, · · · ,ΛJ)

is

Ln(β, γ,Λ) =

J∏
j=1

nj∏
i=1

[
Λj{Tji}eβ

⊤Xji(Tji)+γ⊤Zji(Tji)G
′
(∫ Tji

0

eβ
⊤Xji(s)+γ⊤Zji(s)dΛj(s)

)

exp

{
−G

(∫ Tji

0

eβ
⊤Xji(s)+γ⊤Zji(s)dΛj(s)

)}]∆1ji

[
exp

{
−G

(∫ Lji

0

eβ
⊤X(s)+γ⊤Z(s)dΛj(s)

)}
− exp

{
−G

(∫ Rji

0

eβ
⊤X(s)+γ⊤Z(s)dΛj(s)

)}]∆2ji

[
exp

{
−G

(∫ Lji

0

eβ
⊤X(s)+γ⊤Z(s)dΛj(s)

)}]1−∆1ji−∆2ji

(2.4)

2.3 Model Estimation

We consider the non-parametric maximum likelihood estimation of β, γ,Λ. Let 0 = tj0 <

tj1 < · · · < tjmj
< ∞ be the ordered unique values of {∆1jiTji,∆2jiLji,∆2jiRji, (1 − ∆1ji −

∆2ji)LjiI(Rji = ∞)}. For the selection of the subcohort, we consider independent Bernoulli sam-

pling with selection probability q1, q2, q3 ∈ (0, 1), where q1, q2, q3 denote the selection probability of

X for exact observation, interval censored observation and right censored observation. Thus, under

our design, the probability that we observe the covariate Xji is

P (ηji = 1|Zji) = ∆1jiq1(Zji) + ∆2jiq2(Zji) + (1−∆1ji −∆2ji)q3(Zji) (2.5)

for i = 1, · · · , nj , J = 1, · · · , J . For simplicity, we let the selection probability depend on the baseline

phase one covariates, such that q1(Zji) = q1(Zji(0)), q2(Zji) = q2(Zji(0)) and q3(Zji) = q3(Zji(0)).

We employ inverse probability weighting to construct the likelihood function. The inverse probability
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weight is defined as

ωji =
ηji

P (ηji = 1|Zji)
=

ηji
∆1jiq1j(Zji) + ∆2jiq2j(Zji) + (1−∆1ji −∆2ji)q3j(Zji)

We treat Λj as a step function with non-negative jumps at the t′jks. Let λjk be the jump size of the

estimator for Λj at tjk for k = 1, · · · ,mj and define λ0 = 0. Then the likelihood function in (2.4)

can be written as

Ln(β, γ,Λ) =

J∏
j=1

nj∏
i=1

[
Λj(Tji)e

β⊤Xji(Tji)+γ⊤Zji(Tji)G
′
( ∑

tjk≤Tji

λjke
β⊤Xjik+γ⊤Zjik

)

exp

{
−G

( ∑
tjk≤Tji

λjke
β⊤Xjik+γ⊤Zjik

)}]∆1jiωji

[
exp

{
−G

( ∑
tjk≤Rji

λjke
β⊤Xjik+γ⊤Zjik

)}
− exp

{
−G

( ∑
tjk≤Lji

λjke
β⊤Xjik+γ⊤Zjik

)}]∆2jiωji

[
exp

{
−G

( ∑
tjk≤Lji

λjke
β⊤Xjik+γ⊤Zjik

)}](1−∆1ji−∆2ji)ωji

(2.6)

where Xjik = Xji(tk) and Λj{Tji} denotes the jump size of Λj at Tji. We introduce a latent

variable ξji and density f(ξji) as in (2.3), By the properties exp{−G(x)} =
∫∞
0

exp(−xξ)f(ξ)dξ and

G
′
(x) exp{−G(x)} =

∫∞
0
ξ exp(−xξ)f(ξ)dξ. The likelihood function (2.6) can be written as below

Ln(β, γ,Λ) =

J∏
j=1

nj∏
i=1

{[∫
ξji

exp

(
− ξji

∑
tjk<Tji

λjke
β⊤Xjik+γ⊤Zjik

)
ξjiΛj(Tji)e

β⊤Xji(Tji)+γ⊤Zji(Tji)

exp

(
− ξjiΛj(Tji)e

β⊤Xji(Tji)+γ⊤Zji(Tji)

)
f(ξji)dξji

]∆1jiωji

[ ∫
ξji

exp

(
− ξji

∑
tjk≤Li

λjke
β⊤Xjik+γ⊤Zjik

)
{
1− exp

(
− ξji

∑
Lji<tjk≤Ri

λjke
β⊤Xjik+γ⊤Zjik

)}I(Rji<∞)

f(ξji)dξji

]∆2jiωji

[ ∫
ξji

exp

(
− ξji

∑
tjk≤Li

λjke
β⊤Xjik+γ⊤Zjik

)
f(ξji)dξji

](1−∆1ji−∆2ji)ωji

(2.7)

Zeng et al. (2016) and Zhou et al. (2021) developed an EM algorithm for maximum likelihood estima-

tion. We show in Lemma 4.1 that an EM-algorithm can be used to maximize the weighted likelihood.

In particular, we introduce the latent variables Wjik(j = 1, · · · , J ; i = 1, · · · , nj ; k = 1, · · · ,mj),
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which conditional on ξji, are independent Poisson random variables with means ξjiλjk exp(β
⊤Xjik+

γ⊤Zjik), i.e.

Wjik|ξji ∼ Pois

(
ξjiλjk exp(β

⊤Xjik + γ⊤Zjik)

)
and let 

Aji = ∆1ji

∑
tjk<Tji

Wjik

Bji = ∆1ji

∑
tjk=Tji

Wjik

Cji = ∆2ji

∑
tjk≤Lji

Wjik

Dji = ∆2ji

∑
Lji<tjk≤Rji

Wjik

Eji = (1−∆1ji −∆2ji)
∑

tjk≤Lji
Wjik

for j = 1, · · · J ; i = 1, . . . , nj . Then the observed data consist of
(Tji, ηjiXji, Zji, Aji = 0, Bji = 1) if ∆1ji = 1

(Lji, Rji, ηjiXji, Zji, Cji = 0, Dji > 0) if ∆2ji = 1

(Lji, ηjiXji, Zji, Eji = 0) if 1−∆1ji −∆2ji = 1

(2.8)

The equation (2.6) can be re-written as

Ln(β, γ,Λ) =

J∏
j=1

nj∏
i=1

{[∫
ξji

P (
∑

tjk<Tji

Wjik = 0|ξji)P (I(tjk = Tji)Wjik = 1|ξji)f(ξji)dξji
]∆1jiωji

[ ∫
ξji

P (
∑

tjk≤Lji

Wjik = 0|ξji)P (
∑

Lji<tjk≤Rji

Wjik > 0|ξji)I(Rji<∞)f(ξji)dξji

]∆2jiωji

[ ∫
ξji

P (
∑

tjk≤Lji

Wjik = 0|ξji)f(ξji)dξji
](1−∆1ji−∆2ji)ωji

}

=

J∏
j=1

nj∏
i=1

{[∫
ξji

P (Aji = 0|ξji)P (Bji = 1|ξji)f(ξji)dξji
]∆1jiωji

[ ∫
ξji

P (Cji = 0|ξji)P (Dji > 0|ξji)f(ξji)dξji
]∆2jiωji

[ ∫
ξji

P (Eji = 0|ξji)f(ξji)dξji
](1−∆1ji−∆2ji)ωji

}
(2.9)

We maximize the equation (2.9) through an EM algorithm by treating ξji and Wjik as missing data.
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The corresponding weighted log-likelihood function based on the complete data is given by

lωn(β,Λ) =

J∑
j=1

nj∑
i=1

ωji

( mj∑
k=1

I(tjk ≤ R∗
ji)[Wjik log{ξjiλjkeβ

⊤Xjik+γ⊤Zjik}

−ξjiλjkeβ
⊤Xjik+γ⊤Zjik − log(Wjik!)] + log f(ξji)

) (2.10)

where R∗
ji = ∆1jiTji +∆2jiRji + (1−∆1ji −∆2ji)Lji; In the M-step, we calculate

λjk =

∑nj

i=1 ωjiI(tjk ≤ R∗
ji)ÊWjik∑nj

i=1 ωjiI(tjk ≤ R∗
ji)Ê(ξji)eβ

⊤Xjik+γ⊤Zjik

(k = 1, 2, ...,mj , j = 1, ..., J) (2.11)

where Ê(·) denotes the posterior mean given the observed data. Then plug in λjk (2.11) into the

equation (2.10) and get the update of β, γ by solving the following equations:

∂Êlωn(β, λ)
∂β

=

J∑
j=1

nj∑
i=1

ωji

( mj∑
k=1

I(tjk ≤ R∗
ji)Ê(Wjik)

[
Xjik −

∑nj

i=l ωjlI(tjk ≤ R∗
jl)Ê(ξjl)eβ

⊤Xjlk+γ⊤ZjlkXjlk∑nj

l=1 ωjlI(tjk ≤ R∗
jl)Ê(ξjl)eβ

⊤Xjlk+γ⊤Zjlk

])
∂Êlωn(β, λ)

∂γ
=

J∑
j=1

nj∑
i=1

ωji

( mj∑
k=1

I(tjk ≤ R∗
ji)Ê(Wjik)

[
Zjik −

∑nj

l=1 ωjlI(tjk ≤ R∗
jl)Ê(ξjl)eβ

⊤Xjlk+γ⊤ZjlkZjlk∑nj

l=1 ωjlI(tjk ≤ R∗
jl)Ê(ξjl)eβ

⊤Xjlk+γ⊤Zjlk

])

In E-step, we calculate the posterior means Ê(Wjik) and Ê(ξji). Define SjiT = ∆1ji

∑
tjk≤Tji λjke

β⊤Xjik+γZjik ,

SjiL = (1−∆j1i)
∑

tjk≤Lji
λjke

β⊤Xjik+γZjik and SjiR = (1−∆1ji)
∑

tjk≤Rji
λjke

β⊤Xjik+γZjik . For

∆1ji = 1, we have

Ê(ξji) = E(ξji|Aji = 0, Bji = 1)

=

∫
ξji

ξjiP (ξji|Aji = 0, Bji = 1)dξji

= G
′
(SjiT )−

G
′′
(SjiT )

G′(SjiT )

and

Ê(Wjik) = E(Wjik|Aji = 0, Bji = 1)

=


1, tjk = Tji

0, tjk < Tji
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For ∆2ji = 1, we have

Ê(ξji) =
∫
ξji

ξjif(ξji|Cji = 0, Dji > 0)dξji

=

∫
ξji

ξji
(exp{−ξjiSjiL} − exp{−ξjiSjiR})f(ξji)

exp{−G(SjiL)} − exp{−G(SjiR)}
dξji

=
G

′
(SjiL) exp{−G(SjiL)} −G

′
(SjiR) exp{−G(SjiR)}

exp{−G(SjiL)} − exp{−G(SjiR)}

and for Ê(Wjik), when tjk ≤ Lji, we have

Ê(Wjik) = 0

and Lji < tjk ≤ Rji,

Ê(Wjik) = Eξji{E(Wjik|ξji, Cji = 0, Dji > 0)|Cji = 0, Dji > 0}

= Eξji{
ξjiλjke

β⊤Xjik

1− exp{−ξji(SjiR − SjiL)}
|Cji = 0, Dji > 0}

=
λjk exp{β⊤Xjik}

exp{−G(SjiL)} − exp{−G(SjiR)}
G

′
(SjiL) exp{−G(SjiL)}

For right censored observation, ∆1ji = ∆2ji = 0, we have

Ê(ξji) = E(ξji|Oji)

=

∫
ξji

ξjif(ξji|Oji)dξji

= G
′
(SjiL)

The conditional expectation of Wjik is

Ê(Wjik) = Eξji{E(Wjik|Oji, ξji)|Oji}

= 0

We iterate between the E- and M-steps until convergence, for example, stopping when the maximum

of the absolute differences of the estimates at two successive iterations is less than 10−4. Denote

the final estimator of regression coefficients as (β̂, γ̂). The final estimator of baseline hazard for the

j-th stratum is obtained as Λ̂j(t) =
∑mj

k=1 I(t ≤ tjk)λ̂jk where λ̂jk is the final estimates of λjk. The
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high dimensional parameter λjk are calculated explicitly in the M-step. We proved the weighted

log-likelihood our weighted EM is non-decreasing from Lemma 4.1 in Appendix.

2.4 Variance Estimation

Our variance estimator is derived from a weighted bootstrap approach. Unlike the conventional

bootstrap method, which involves resampling the data with replacement, the weighted bootstrap

technique applies different weights to the log-likelihood function without actual resampling of the

data. Typically, these weights are generated from a random sample with a mean and variance

equal to 1. However, the conventional weighted bootstrap method often fails to provide accurate

results because it overlooks negative between-subject correlations induced by sampling, resulting

in an inflated variance estimator (Cai and Zheng (2013), Payne et al. (2016)). Particularly, if the

missingness of covariate depends on parameters, the weights are not independent, meaning the

weight of one observation influences others. In such cases, the usual weighted bootstrap method

proves ineffective. To obtain a valid variance estimator, we address this issue by perturbing both

the inverse probability weights and the log-likelihood function. As outlined in Cai et al., this allows

us to recover the effect of correlation on the variance by estimating the selection probabilities for

each perturbed sample. The procedure is described as follows:

• Generate a sequence IID random variables uji from Exp(1) and let U = {uji, j = 1 · · · J, i =

1 · · ·nj}

• Use U to obtain perturbed weights ω∗
ji =

ηji

q̂∗ji
where q̂∗ji is obtained from the following proce-

dures:

– Fit a logistic regression model using the weighted log-likelihood with weight {uj1, uj2, . . . , ujnj
}.

Let π̂j = (π̂0j , π̂1j) be the coefficients of the fitted logistic regression model, i.e.

π̂j = argmax
πj

nj∑
i=1

uji

{
ηji(π0j + π1jzji)− log[1 + exp(π0j + π1jzji)]

}

– Then q̂∗ji =
exp(π̂0j+π̂1jzji)

1+exp(π̂0j+π̂1jzji)
(Notice that when the missingness of X does not depend on

Z, then q̂∗ji =
exp(π̂0j)

1+exp(π̂0j)
=

∑nj
i=1 ujiηji∑nj

i=1 uji
)
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• With the perturbed inverse probability weight, we can set up our weighted complete data

log-likelihood (perturbed)

l∗n(β,Λ) =

J∑
j=1

nj∑
i=1

ujiω
∗
ji

( mj∑
k=1

I(tjk ≤ R∗
ji)[Wjik log{ξjiλjkeβ

⊤Xjik+γZik}

− ξjiλjke
β⊤Xjik+γZjik − log(Wjik!)] + log f(ξji)

)

where R∗
ji = ∆1jiTji +∆2jiRji + (1−∆1ji −∆2ji)Lji

• Use the EM procedure introduced before with

λ∗jk =

∑nj

i=1 ujiω
∗
jiI(tjk ≤ R∗

ji)Ê(Wjik)∑nj

i=1 ujiω
∗
jiI(tjk ≤ R∗

ji)Ê(ξji)eβ
TXjik+γZjik

•

J∑
j=1

nj∑
i=1

ujiω
∗
ji

( mj∑
k=1

I(tjk ≤ R∗
ji)Ê(Wjik)[Xjik −

∑nj

l=1 ujlω
∗
jlI(tjk ≤ R∗

jl)Ê(ξjl)eβ
⊤Xjlk+γZjlkXjlk∑nj

l=1 ujlω
∗
jlI(tjk ≤ R∗

jl)Ê(ξjl)eβ
⊤Xjlk+γZjlk

]

)
∆
= 0

J∑
j=1

nj∑
i=1

ujiω
∗
ji

( mj∑
k=1

I(tjk ≤ R∗
ji)Ê(Wjik)[Zjik −

∑nj

l=1 ujlω
∗
jlI(tjk ≤ R∗

jl)Ê(ξjl)eβ
⊤Xjlk+γZjlkZjlk∑nj

l=1 ujlω
∗
jlI(tjk ≤ R∗

jl)Ê(ξjl)eβ
⊤Xjlk+γZjlk

]

)
∆
= 0

(2.12)

• Repeat the above procedure B times to get an B different β̂∗, γ̂∗, Λ̂∗s.

– The standard error estimator of β̂, γ̂ are the sample standard deviation of those B β̂∗, γ̂∗s.

– In each iteration of the procedure, the function Λ̂∗ is interpolated over the interval [0, τ ]

with a spacing of 0.01. This results in a sequence of time points 0 = t1, t2, . . . , tM = τ ,

where the difference between two consecutive time points is 0.01. This interpolation

process yields a new function, denoted as Λ̂∗′
. The standard error estimator for Λ̂ is then

calculated as the sample standard deviation of these B sets of Λ̂∗′
values at the specified

time points t1, t2, . . . , tM .

2.5 Asymptotic Results

Without of losing generality, we prove the situation with J = 1 which means single baseline.

Define ϑ = (β, γ), θ = (ϑ,Λ). We establish the asymptotic properties of θ̂ = (ϑ̂, Λ̂) under the

following regularity conditions.
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1. The true value of ϑ, denoted by ϑ0, lies in the interior of a known compact set B in Rd, and the

true value of Λ(·), denoted by Λ0(·), is continuously with positive derivatives in [ζ, τ ], where

[ζ, τ ] is the union of the supports of {∆1T, (1−∆1)L, (1−∆1)R, (1−∆1 −∆2)L}.

2. The vector X(t), Z(t) are uniformly bounded with uniformly bounded total variation over

[ζ, τ ], and its left limit exists for any t. (|X(t)| ≤ Kx, |Z(t)| ≤ Kz with 0 < Kx,Kz < ∞)

In addition, for any continuously differentiable function g(·), the expectations E[g{X(j)(t)}]

for j = 1, 2 are continuously differentiable in [ζ, τ ], where X(1)(t) and X(2)(t) are increasing

functions in the decomposition X(t) = X(1)(t)−X(2)(t).

3. if h(t) + β⊤X(t) = 0 for all t ∈ [ζ, τ ] with positive probability, then h(t) = 0 for t ∈ [ζ, τ ] and

β = 0.

4. 0 < P (∆ = 0) < 1, P (L = τ,R = ∞|∆ = 0, X̄) ≥ c and P (R− L > η0|δ = 0, X̄) = 1 for some

positive constants c and η0. The conditional density of (L,R) given X̄, denoted by g(u, v), has

continuous second-order partial derivatives with respect to u and v when v − u > η0 and are

continuously differentiable with respect to X̄.

5. The transformation function G is three times continuously differentiable on [0,∞) with G(0) =

0, G
′
(x) > 0 and G(∞) = ∞.

6. The sampling probabilities q1, q2, q3 are assumed strictly positive which means there exists a

constant σ such that 0 < σ < qi ≤ 1 for i = 1, 2, 3.

Theorem 1. Assume Condition (1)-(6) hold. Then ||ϑ̂ωα̂n − ϑ0||d
a.s.−−→ 0 and supt∈[ζ,τ ] |Λ̂(t) −

Λ0(t)|
a.s.−−→ 0 as n→ ∞, where || · ||d is the Euclidean norm.

Theorem 2. Under conditions (1) - (6), Then n1/2(β̂ωα̂n − β0, γ̂
ωα̂n − γ0, Λ̂

ωα̂n
0 −Λ0(t)) converges

in distribution to a mean zero Gaussian process for t ∈ [ζ, τ ].

Theorem 3. Under conditions (1)-(6), the conditional distribution of
√
n(θ̃ωα̃n − θ̂ωα̂n ) given the

data converges weakly to the asymptotic distribution of
√
n(θ̂ωα̂n − θ0).
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2.6 Simulation Studies

In our simulation study, we considered two strata, each with its own unique baseline hazard

function. The population was divided into these two strata, with the sizes of each stratum being

approximately equal. Stratum membership was determined using a Bernoulli sampling process,

ensuring an equal probability of assignment to either stratum.The simulations are conducted for the

following scenarios:

1. X = U1+2U3 and Z = −U1+2U2 where U1, U2, U3 are independent U(0, 1). β = 0.5, γ = −0.5,

Λ1(t) = log(1+ t
2 ), Λ2(t) = 0.2t. For noncase: η ∼ Ber(0.3), means each observation has 30%

chance to be selected. The missing rate for noncase is 70%; For case, η ∼ Ber(0.9), each

observation has 90% chance to be selected. The overall missing rate is about 29% for r = 0,

32% for r = 0.5 and 36% for r = 1. Regression coefficient estimations results shown in Table

4.1 and baseline estimation results shown in Figures [4.1-4.9].

2. X = U1 + 2U2 and Z ∼ Ber(0.5) where U1, U2 are independent U(0, 1). β = −0.5, γ = 0.5,

Λ1(t) = log(1 + t
2 ), Λ2(t) = 0.2t. For noncase, the selection probability for the first stratum

is defined as q1(η = 1|Z) = exp(0.1−Z)
1+exp(0.1−Z) and for the second stratum, the selection probability

defined as q2(η = 1|Z) = exp(0.3−1.2Z)
1+exp(0.3−1.2Z) . Approximately 60% percent missing for noncase

observations. For case, η ∼ Ber(0.9), each observation has 90% chance to be selected. There

are approximately 40% observations in stratum 1 and 60% observations in stratum 2. The

overall missing rate is 31% for r = 0, 35% for r = 0.5 and 38% for r = 1. Regression coefficient

estimations results shown in Table 4.2 and baseline estimation results shown in Figures [4.10-

4.18].

3. X(t) = A + Bt and Z ∼ U(0, 1) where A ∼ U(3, 5) and B ∼ (−0.5,−1). β = −0.5, γ =

0.5, Λ1(t) = 1.5t, Λ2(t) = t. For noncase, the selection probability is defined as q(η =

1|Z) = exp(0.3−2Z)
1+exp(0.3−2Z) . Approximately 65% missing for noncase. For case, η ∼ Ber(0.9), each

observation has 90% chance to be selected. The overall missing rate is around 28% for r = 0,

32% for r = 0.5 and 35% for r = 1. Regression coefficient estimations results shown in Table
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4.3 and baseline estimation results shown in Figures [4.19-4.27].

We simulate partly interval-censored failure time data which encompassing a combination of exact

observations, left-censored, interval-censored, and right-censored data. Specifically, for each study

participant, we first generate the number of examination times K ∼ Ber(0.8) + 1. If K = 1, we

generated a single examination time U1 ∼ Unif(0, 3τ/4), where (L,R] intervals were defined as

(0, U1] if T ≤ U1 and (U1,∞) if T > U1. For K = 2, we generated two examination times U1 and

U2, with U2 being min{0.1+U1+exp(1)τ/2, τ}. The corresponding intervals were defined as (0, U1],

(U1, U2], and (U2,∞) for the respective ranges of T . When generating exact observations, where ∆1

was set to 0 when R = ∞, and ∆1 was generated from a Bernoulli distribution with probabilities

pt = 0, 0.2, 0.5, 1 when R < ∞. In cases where ∆1 = 1, the failure time T was assumed to be

precisely observed. We conducted these simulations with varying proportions of exact observations

(pt) and sample sizes of n = 800 or 1200, while maintaining a fixed study duration of τ = 5 for

all scenarios, resulting in 30% missing rate. All our findings and results are based on 500 replicate

simulations. In the table 4.1, 4.2, 4.3, “Bias” is the average point estimate from 500 replicates

minus the true parameter value, “SSD” is the sample standard deviation of the point estimates,

“ESE” is the average of estimated standard errors, and “CP” is the coverage proportion of 95%

confidence intervals. The results presented in Tables 4.1 to 4.3 demonstrate the following findings

across all simulation setups: (i) The proposed estimators show virtually no bias; (ii) The weighted

bootstrap method provides standard error estimates that reliably represent the true variability of

the estimators; (iii) The empirical coverage rates of the 95% confidence intervals, constructed using

the normal approximation, are close to the nominal 95% level; (iv) As the sample size grows, both

the bias and variability of the estimators diminish; (v) An increase in the proportion of exact

observations pt leads to a reduction in the standard deviation of the estimators, consistent with

theoretical predictions.

2.7 Real Data Application

In real-world applications, we applied our proposed model to two randomized HIV trials: the

HIV Vaccine Trials Network HVTN-704 (HPTN-085) and HVTN-703 (HPTN -081) (Corey et al.
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(2021)). These trials were designed to evaluate the efficacy of a broadly neutralizing antibody, VRC,

in preventing the acquisition of human immunodeficiency virus type 1 (HIV-1). HVTN 704/HPTN

085 enrolled and monitored approximately 2,700 men and transgender individuals across North

America, South America, and Switzerland. In parallel, HVTN 703/HPTN 081 followed around

1,900 adult women in sub-Saharan Africa. Among the participants, 196 received VRC antibody

injections, with antibody concentrations measured monthly from enrollment through 80 weeks. The

primary efficacy endpoint was the diagnosis of HIV-1 infection by the week 80 trial visit, with HIV-

1 testing conducted at 4-week intervals following enrollment. Due to the nature of the data, the

exact timing of HIV-1 infection was not always observable; instead, only the interval during which

HIV-1 seroconversion occurred was recorded. Participants who acquired HIV-1 between two visits

contributed interval-censored cases, while those who did not acquire HIV-1 by the study’s end con-

tributed right-censored observations. Among the 104 participants who acquired HIV-1 across both

trials, all had received VRC antibody injections. In our analysis, we applied mid-point imputation

to smooth VRC concentration measurements at each time point. This approach involved calculating

the average of two consecutive concentration measurements at the midpoint of their respective time

intervals. By incorporating this technique, we achieved a more refined and stable representation of

VRC concentration dynamics over time, improving data smoothness and mitigating the influence

of extreme values. For participants who acquired HIV-1 infection, diagnosis dates were determined

using adjudicated diagnosis dates based on validated assays (Corey et al. (2021)). Participant follow-

up was right-censored at the earlier of their last negative HIV-1 sample collection date or τ = 86

weeks. Among the 4,611 participants in HVTN-704/HPTN-085 and HVTN-703/HPTN-081 trials,

1,413 were in the USA or Switzerland, 1,274 in Brazil or Peru, 1,019 in South Africa, and 805 in

sub-Saharan Africa (including Tanzania, Malawi, Zimbabwe, Botswana, Kenya, and Mozambique).

Across both trials, there were 174 HIV-1 infections. Participants were categorized into three age

groups: < 20, [20, 30], and > 30, with 328, 2,903, and 1,380 members, respectively. In HVTN-704,

77 VRC concentration measurements were recorded among 846 participants in Brazil and Peru,

while only 27 measurements were observed among 943 participants in the USA and Switzerland
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(Table 4.4). This disparity underscores regional variations in VRC concentration data availability.

Given the distinct social, economic, and health conditions across the four regions (USA/Switzerland,

Brazil/Peru, South Africa, and sub-Saharan Africa), we considered employing region-specific base-

line hazard functions in our analysis.

2.7.1 Model Fitting

We formulated a semiparametric transformation model of the cumulative hazard function of T

given X(·), Z for each subgroup as:

Λj(t|X(·), Z) = G

(∫ t

0

exp{β⊤X(s) + γ⊤Z(s)}dΛj(s)

)
(2.13)

where β and γ are unknown regression coefficients, Λj(·) is an unknown unique baseline function for

the j-th stratum, and G(·) is a specified transformation function. In the first scenario, we evaluate

the risk of contracting HIV over time with the time-dependent covariate X = log(VRC) and the

time-independent covariates Z = (High Dose,Age). The covariate ’High Dose’ indicates whether the

observation belongs to the high dose group, where High Dose = 1 denotes inclusion in the high dose

group, and High Dose = 0 denotes otherwise. Let the first stratum be region USA/Switzerland,

second stratum be region Brazil/Peru, third stratum be region South Africa and fourth stratum

be region sub-Saharan Africa. To explore the differences in VRC concentration availability across

different regions, we performed a logistic regression analysis to evaluate the potential relationship

between VRC availability and region. The fitted logistic regression is represented by the equation

(2.14):

log
Pr(η = 1)

1− Pr(η = 1)
= −0.335− 0.9086I(USAS) + 0.1353I(BP) + 0.1243I(SA) (2.14)

Detailed information about this model is summarized in Table 4.5. The results indicate a statisti-

cally significant association between VRC availability and region, with a p-value of 0.00117 for the

USA/Switzerland comparison. Then we apply the inverse probability weighting based on the fitted

logistic regression (2.14) to fit the model (2.13). The standard errors of the model coefficients are

estimated using a weighted bootstrap with 500 repetitions. Specifically, they are computed as the

standard deviation of the results from 500 estimations with different weights, as described in Section
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2.4.

We find log(VRC) concentration is negatively related to the risk of contracting HIV and elder people

(age older than 20) are less likely to contract HIV. However, we find people in High Dose VRC group

are more like to contract HIV compared with people in Low Dose group, which is counter-intuitive.

We look at the log(VRC) plot (Fig. 2.1) over time with high/low dose group. The high-dose group

Table 2.1: Analysis results for HIV data with High Dose Indicator

Proportional hazards Proportional odds Transformation model (r = 0.5)
Trials Covariates Est. SE P.value Est. SE P.value Est. SE P.value

log(VRC) -0.534 0.137 < 0.001 -0.573 0.228 0.012 -0.557 0.208 0.007
Combined High Dose 0.027 0.388 0.945 0.012 0.428 0.978 0.049 0.416 0.906

Age 20 − 30 -0.883 0.532 0.097 -0.914 0.544 0.093 -0.902 0.540 0.095
Age > 30 -1.923 0.620 0.0019 -1.964 0.644 0.002 -1.947 0.640 0.002
log(VRC) -0.200 0.443 0.652 -0.213 0.456 0.640 -0.207 0.450 0.646

HVTN-703 High Dose -0.187 0.783 0.811 -0.180 0.785 0.819 -0.184 0.784 0.814
Age 20 − 30 0.029 1.024 0.977 0.023 1.031 0.982 0.026 1.027 0.980
Age > 30 0.110 0.985 0.911 0.105 1.002 0.917 0.107 0.993 0.914
log(VRC) -0.564 0.146 < 0.001 -0.707 0.304 0.020 -0.640 0.253 0.011

HVTN-704 High Dose -0.046 0.493 0.926 0.097 0.602 0.872 0.030 0.560 0.957
Age 20 − 30 -1.104 0.626 0.078 -1.195 0.650 0.066 -1.153 0.640 0.072
Age > 30 -2.994 0.813 < 0.001 -3.109 0.847 < 0.001 -3.055 0.832 < 0.001

consistently exhibits higher log(VRC) concentrations compared to the low-dose group, as illus-

trated in the log(VRC) versus dose group comparison, where the high-dose group (red) consistently

shows elevated log(VRC) levels. This indicates the confounding between the high-dose indicator

and log(VRC) concentrations. Next, we consider the interaction between high-dose indicator and

log(VRC) concentrations. In this scenario, X = (log (VRC), log (VRC) ∗ High Dose). We apply

the same inverse probability weighting as from (2.14). The fitted results listed in Table 2.2. We

find the interaction term of high dose group and log(VRC) are negative meaning high dose group

and log(VRC) are negatively correlated. However, from p.values, they are not significant and large.

Other covariates exhibit similar effects as the first scenario (2.1). The estimated survival curves are

presented in Figure 4.28. Across all regions, individuals with higher log(VRC) levels consistently

show a greater likelihood of remaining HIV-free. Across all time points, in the USAS region, individ-

uals at the 75th percentile of log(VRC) show a higher probability of remaining HIV-free compared

to those at the 25th percentile within the same region. Furthermore, in the high-dose group, individ-

uals at the 75th percentile of log(VRC) have a higher probability of remaining HIV-free compared

to the low-dose group. This phenomenon is also evident in the relative hazard plot (Fig 2.2), where
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for log(VRC) values above the median, the high-dose group shows a lower risk of contracting HIV

compared to the low-dose group. We also find the cumulative baseline hazards function for those

four regions in Figure 4.30. We can tell that the region USA/Switzerland have lowest baseline hazard

of getting HIV-1 while the region Brazil/Peru have the highest baseline hazard.

Table 2.2: Analysis results for HIV data with High Dose Indicator and Interaction

Proportional hazards Proportional odds Transformation model (r = 0.5)
Trials Covariates Est. SE P.value Est. SE P.value Est. SE P.value

logVRC -0.320 0.396 0.418 -0.356 0.40 0.374 -0.340 0.397 0.393
logVRC×High Dose -0.267 0.397 0.501 -0.349 0.440 0.427 -0.311 0.416 0.455

Combined High Dose 0.544 0.827 0.510 0.809 1.041 0.437 0.685 0.942 0.467
Age 20 − 30 -0.879 0.499 0.078 -0.934 0.511 0.067 -0.91 0.507 0.073
Age > 30 -1.920 0.629 0.002 -1.99 0.648 0.002 -1.957 0.640 0.002
logVRC -0.142 0.465 0.760 -0.155 0.477 0.746 -0.148 0.471 0.753

logVRC×High Dose -0.532 0.990 0.591 -0.536 0.979 0.584 -0.534 0.984 0.587
HVTN-703 High Dose 1.270 2.874 0.659 1.289 2.829 0.649 1.279 2.851 0.654

Age 20 − 30 -0.00372 1.041 0.997 -0.010 1.045 0.992 -0.007 1.043 0.995
Age > 30 0.0305 1.001 0.976 0.0253 1.016 0.980 0.028 1.008 0.978
logVRC -0.646 0.769 0.393 -0.693 0.738 0.348 -0.675 0.748 0.367

logVRC×High Dose 0.096 0.740 0.896 -0.017 0.695 0.981 0.039 0.708 0.956
HVTN-704 High Dose -0.225 1.40 0.872 0.129 1.414 0.927 -0.045 1.392 0.974

Age 20 − 30 -1.096 0.635 0.084 -1.197 0.665 0.072 -1.149 0.653 0.079
Age > 30 -2.990 0.825 0.0003 -3.111 0.865 0.0003 -3.052 0.848 0.0003

Based on the non-significance of the interaction term between the high-dose group and log(VRC)

(Table 2.2), combined with the consistent observation that higher log(VRC) concentrations are

associated with a reduced likelihood of HIV infection across both dose groups (Figures 4.28 and

2.2), we propose that excluding the high-dose group is a justified approach. In the subsequent

analysis, we fit model (2.13) using Z = Age. The removal of the high-dose group is supported by its

lack of statistical significance and its minimal relevance to understanding HIV infection mechanisms.

The high-dose indicator consistently yielded non-significant and predominantly negative coefficients,

indicating a negligible impact on the observed outcomes. Including such non-significant variables

adds unnecessary complexity to the model without contributing meaningful insights. To enhance

model parsimony and interpretability, we proceed by excluding the high-dose indicator. This refined

model is expected to capture the key factors influencing HIV infection while avoiding unnecessary

complexity, ultimately providing a clearer understanding of the data relationships. The results of

this model are presented in Table 2.3, with the estimated survival curves shown in Figures 4.31 and

4.32. The results confirm that higher log(VRC) concentrations consistently correspond with a lower

likelihood of HIV infection. The significance of log(VRC) in the model highlights a strong, inverse
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Figure 2.1: Observed log(VRC) concentration for High versus Low dose groups
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Figure 2.2: Relative hazard of high dose group against low dose group with Z=(High Dose Group,
Age) and X = (log (VRC), log (VRC) ∗High Dose) at mean and quartiles of log(VRC)

relationship between log(VRC) levels and the risk of HIV infection. This finding underscores the

protective role of elevated log(VRC) concentrations and provides valuable insight into its influence

in mitigating HIV infection risk.

Table 2.3: Analysis results for HIV data without High Dose Indicator

Proportional hazards Proportional odds Transformation model (r = 0.5)
Trials Covariates Est. SE P.value Est. SE P.value Est. SE P.value

logVRC -0.539 0.134 < 0.0001 -0.556 0.176 0.0016 -0.545 0.163 0.0008
Combined Age 20 − 30 -0.893 0.501 0.075 -0.929 0.527 0.078 -0.915 0.517 0.077

Age > 30 -1.933 0.608 0.0015 -1.979 0.634 0.0018 -1.957 0.640 0.002
logVRC -0.264 0.303 0.383 -0.275 0.312 0.378 -0.270 0.307 0.380

HVTN-703 Age 20 − 30 0.105 0.931 0.910 0.095 0.947 0.920 0.100 0.939 0.915
Age > 30 0.151 0.958 0.874 0.146 0.977 0.882 0.149 0.967 0.878
logVRC -0.567 0.147 0.0001 -0.681 0.246 0.0057 -0.634 0.218 0.0036

HVTN-704 Age 20 − 30 -1.098 0.617 0.075 -1.200 0.654 0.066 -1.156 0.640 0.071
Age > 30 -2.983 0.790 0.0001 -3.121 0.840 0.0002 -3.060 0.821 0.0002

2.7.2 Remarks

In the real data application, we conduct two analyses. The first analysis includes the high dose

indicator in proposed model. The second analysis does not include the high dose indicator. Both

results suggest that larger amount of VRC antibody injection lead to lower risks of getting HIV
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infection and elder people have lower risk of getting HIV infection. The second model provides

better interpretability, given that a majority of its coefficients are statistically significant, whereas

the first model does not exhibit the same level of significance. In the trial HVTN-703, both analyses

fail to provide significant model fitting results. This is partly caused by the HIV sub-variant in Sub-

Saharan has more resistant to VRC01 and higher transmissibility compared to the HIV subvariant

in other regions. We also investigated the best transformation model for the dataset. We conduct

our analysis with model (2.13) with G(x) = log(1+rx)
r . We tested r values in the interval [0, 3] with

a step size of 0.1 and chose the value of r that yielded the maximum weighted log-likelihood at

the final parameter estimates. We found that the weighted log-likelihood was maximized at r = 0.

Our simulation studies in Tables 2.2, 2.3 supported this finding by demonstrating that the fitting

regression values did not change significantly for different values of r due to the high censoring rate.

2.8 Concluding Remarks

This paper introduces a novel and unified methodology designed to address the challenges posed

by partly interval-censored data within the framework of a linear transformation model, while also

accounting for missing covariate information. The proposed approach offers a versatile solution

that tackles the complexities associated with both left/right/interval censoring, providing a compre-

hensive tool for statistical modeling in various research settings. Moreover, the application of our

method to HIV antibody research showcases its practical relevance and effectiveness in a real-world

context. By incorporating the unique features of HIV antibody data, such as interval-censoring

and missing VRC01 information, our approach proves to be a valuable asset in understanding the

dynamics of HIV progression. The ability to handle these complexities allows for more accurate and

nuanced analyses, contributing to the advancement of our understanding of HIV infection dynamics.

The presented results, supported by empirical evidence and simulations, underscore the efficacy and

reliability of the proposed method. Its successful application in the field of HIV antibody research

reinforces its potential for broader application in epidemiological and biomedical studies where sim-

ilar data intricacies exist. In conclusion, this paper not only introduces a cutting-edge statistical

methodology but also demonstrates its practical utility through its application in the critical domain
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of HIV research. The proposed unified method has the potential to significantly impact the way

researchers analyze and interpret complex datasets, ultimately contributing to advancements in our

understanding of various diseases and informing more effective.



CHAPTER 3: THE STRATIFIED COX MODEL WITH LONGITUDINAL COVARIATES
MEASURED WITH ERRORS AND SUBJECT TO MISSINGNESS

3.1 Introduction and Literature Review

This study is motivated by the HIV Antibody Trials HVTN-703/HVTN-704, which aim to evalu-

ate the risk of HIV infection associated with the administration of the VRC antibody across diverse

geographic regions. In these trials, a subset of participants undergoes VRC antibody concentration

measurements at regular 4-week intervals, while others do not receive such monitoring. A primary

objective is to assess the associations between age, time-dependent VRC concentration, and the

clinical endpoint of HIV infection.

A significant methodological challenge arises from the intermittent and error-prone nature of

VRC concentration measurements. Naive approaches that either ignore measurement errors or

replace them with imputed values can lead to biased estimates. Additionally, the time-to-event data

for the clinical endpoint is partly interval-censored, meaning the exact time of HIV infection is not

observed but is known to occur within an interval defined by two consecutive visit dates.

Currently, there is a lack of established statistical methodologies to address the complexities of

proportional hazards models in the presence of partly interval-censored failure times, longitudinal

covariates subject to measurement errors, and missing covariate information. This study seeks to fill

this methodological gap by developing robust inference procedures to ensure valid statistical analysis

under these challenging conditions.

Estimation of semiparametric transformation with interval/partly interval censored data have

been studied thoroughly. Zeng et al. (2016) proposed an efficient algorithm using Expectation-

Maximization (EM) for estimating transformation models with interval-censored data. Zhang et al.

(2010) introduced a spline based sieve semiparametric maximum likelihood method to estimate the

proportional hazards with interval censored data. Kim (2003) studied the maximum likelihood
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estimation for the proportional hazards model with partly interval censored data using generalized

Gauss-Seidel algorithm with midpoint imputation for the interval censored data. Gao et al. (2017)

studied generalized Buckley-James estimator for partly interval censored data with failure time under

accelerate failure time model. Gao et al. (2019) proposed an EM algorithm for the partly interval

censored data under the asymptomatic disease and symptomatic disease and random effects.

Censored data with covariates measurement error under semiparametric regression model have

been studied extensively. Tsiatis and Davidian (2001) studied Cox proportional hazards model with

right censored data and longitudinal covariates with measurement error using conditional score ap-

proach. Song and Ma (2008) studied interval-censored data with covariate measurement error under

proportional hazard model using multiple imputation approach to converting interval censored data

into right censored data and then applying conditional score approach. Wen and Chen (2014) studied

interval censored data with covariate measurement error using working independence strategy and

conditional score approach. Mandal et al. (2019) studied studied interval-censored data with covari-

ate measurement error under linear transformation model by multiple imputation of both event time

and covariates. Sun et al. (2023) studied partly interval censored data with covariate measurement

error under proportional hazard model by induced hazard approach and EM algorithm.

The existing literature lacks coverage on the analysis of partly interval censored data incorporating

covariate measurement errors and covariate missingness within a proportional hazard model frame-

work. This article aims to bridge this gap by introducing a weighted EM procedure for estimating

proportional hazards models in the context of partly interval censored failure times. Additionally,

we employ an induced hazard approach to address the impact of measurement errors in longitu-

dinal covariates. Assuming an additive measurement error model for longitudinal covariates, we

propose a nonparametric maximum likelihood estimation(NPMLE) approach. This involves deriv-

ing a measurement error induced hazard model, which illustrates the attenuating effects of ignoring

measurement errors. To enable maximum likelihood estimation for partly interval-censored failure

times, we devise an EM algorithm. Simulation studies demonstrate the effectiveness of our meth-

ods, highlighting their satisfactory finite-sample performance and revealing significant biases in naive



30

approaches that either ignore measurement errors or rely on plug-in estimates. Furthermore, our

simulations highlight the attenuating bias introduced by using plug-in estimates for the true un-

derlying longitudinal covariate. While the additive measurement error model is often practical and

verifiable for time-independent covariates, caution is advised when applying a measurement error

model to time-varying covariates. Commonly used additive random effects models with known time-

dependent basis functions may lead to bias if misspecified. The subsequent sections of this chapter

are organized as follows: Section 3.2 introduces the data structure, models, and model assumptions.

In Section 3.3, we derive the measurement error induced hazard model, while Section 3.4 presents

a nonparametric maximum likelihood estimation approach, including the devised EM algorithm for

partly interval censored failure times. Section 3.5 introduces a weighted bootstrap variance esti-

mating procedure. The proposed methods’ finite-sample performance is assessed through simulation

studies in Section 3.7. Additionally, the methods are applied to the HVTN-703/704 data in Section

3.8. Finally, Section 3.9 provides concluding remarks.

3.2 Preliminaries

Let Tji denote the failure time for the i-th subject in the j-th stratum, where j = 1, . . . , J and

i = 1, . . . , nj . Let Zji be the d × 1 vector of time-independent covariates that includes baseline

covariates and treatment assignment, and Xji(t) the time-dependent covariate of interest. Let

X̄ji(t) = {Xji(u) : 0 ≤ u ≤ t} denote the history of Xji(·) up to time t ∈ [0, τ ], where τ is the

end of follow-up time. We assume that the conditional hazard function of Tji given X̄ji(t) and Zji

only depends on Zji and the current value of Xji(t). Let λj(t|X̄ji(t), Zji) be the conditional hazard

function of Tji given X̄ji(t) and Zji. We consider the stratified proportional hazards model

λj(t|X̄ji(t), Zji) = λj(t) exp{βXji(t) + γ⊤Zji} (3.1)

for 0 ≤ t ≤ τ , where λj(t) is an unspecified baseline function for the j-th stratum, and β and

γ are 1- and d- dimensional vectors of regression parameters, respectively. We investigate model

(3.1) under partly interval censored failure time data and when the time-dependent covariate Xji(t)

is subject to missing and measurement error. Partly interval censored data include observations
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of failure times that are precisely observed and failure times that are left, interval and/or right

censored. Let ∆1ji indicate whether the failure time Tji is observed exactly, i.e. ∆1ji = 1 if Tji is

exactly observed and 0 otherwise. If ∆2ji = 1, let (Lji, Rji] denote the smallest observed interval

that brackets Tji, where Lji ≥ 0 is the last monitoring time at which failure time has not occurred

and 0 < Rji <∞ is the first monitoring time at which failure time has occurred. Rji = ∞ represent

the situation where failure has not occurred by the last monitoring time which means the failure

time being right censored by the last monitoring time. Thus, if Rji = ∞, Tji is right censored; if

0 ≤ Lji < Rji < ∞, Tji is interval censored. The partly interval censored failure time for the i-th

individual at j-th stratum can be represented as {∆1ji,∆1jiTji,∆2ji, (1−∆1ji)Lji, (1−∆1ji)Rji}.

The notations ∆1ji, (1 −∆1ji)Lji, (1 −∆1ji)Ri mean we observed Tji if ∆1ji = 1 and we observed

(Lji, Rji) if ∆1ji = 0. In the HVTN-703/HVTN-704 study, the failure time of interest is the time

to HIV infection. Linear mixed effects models are commonly used to model longitudinal covariates

measured with errors. Suppose that Xji(t) is measured at times νji,1 < · · · < νji,Mji before τ with

errors and there are Bjim repeated measurements or replicates of Xji(νjim), where we let Bjim = 1

if there are no replicates. Let Wji,b(νjim) denote the bth measurement of Xji(·) at time νjim with

j = 1, ..., J , i = 1, . . . , nj , m = 1, ...,Mji and b = 1, ..., Bjim. We consider the linear mixed effects

model for longitudinal covariates with measurement errors:

Wji,b(νjim) = Xji(νjim) + ejim,b = θ⊤jif(νjim) + ejim,b (3.2)

where f(νjim) is an r × 1 vector of known design functions, θji is an r × 1 vector of unobserved

random effects, and ejim,b is the measurement error at time νjim. We assume θji = ϑj + νji, where

ϑj is a vector of fixed parameters, and νji (for i = 1, . . . , nj) are independent and identically dis-

tributed (iid) as N(0, Gj), with Gj being an r× r nonnegative definite matrix and j = 1, . . . , J . We

also assume that ejim,b (for i = 1, . . . , nj ; m = 1, . . . ,Mji; and b = 1, . . . , Bjim) are iid N(0, σ2
j ) and

independent of νji, with j = 1, . . . , J . The unknown parameters for the measurement error model

are θjW = (ϑj , Gj , σ
2
j ). Also, note that the design function f(·) is usually chosen as a vector of basis

functions, such as polynomials. In simulation and real data application, we consider f(t) = (1, t) or
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f(t) = (1, t, t2), orthogonal polynomials, or b-spline basis functions.

DefineWjik = (Wji,1(νjik), ...,Wji,Bjik
(νjik)) and ejik = (ejik,1, ..., ejik,Bjik

). Let ν̃ = (νji1, νji2, ..., νji,Mji
)⊤.

The observed data for the i-th individual at j-th stratum can be formed as

{∆1ji,∆1jiTji, (1−∆1ji)Lji, (1−∆1ji)Rji, Xji, Zji, ν̃ji, W̃ji}, i = 1, ..., nj

We will employ individual-specific estimation of the longitudinal covariate Xji(t) via model (3.2).

It does not require repeated measurements at each measurement time νjim, as long as the number

of longitudinal measurements aover time is sufficient to estimate θji, i.e. Mji ≥ r. The proposed

estimation method allows Bjim = 1 for all j, i,m. If we have repeated measurements, then the

efficiency in estimating β can be increased Sun et al., 2023.

3.3 Measurement Error Induced Hazard Model

The true longitudinal covariate Xji(t) is not observed. We obtain an individual-specific estimate

X̂ji(t) of Xji(t) using ordinary least squares method based on the observed data (ν̃ji, W̃ji) and pro-

pose an approach by deriving the conditional hazard function of Tji at time at time t conditional

on Zji and X̂ji(t). Only the longitudinal covariates in the past can be used to model current or

future risk of failure. For example, in assessing the association of time-dependent HIV antibody

VRC concentration with the endpoint HIV infection, only the VRC concentration measurements

before HIV infection are meaningfully associated with the endpoint. Thus, we estimate Xji(t) based

on the data before t to preserve the predictability.

Let Mji(t) denote the index of the last measurement time before t such that νi,Mji(t) < t ≤

νi,Mji(t)+1. Since θi is r-dimensional, at least r longitudinal measurements from individual i in j-th

before t are required, i.e.,Mji(t) ≥ r. Let ν̃ji(t) = (νji1, ..., νji,Mji(t))
⊤, W̃ji(t) = (Wji1, ...,Wji,Mji(t))

⊤

and ẽji(t) = (eji1, eji2, ..., eji,Mji(t))
⊤. Under model (3.2), W̃ji(t) = F̃ji(t)θji + ẽji(t), where

F̃ji(t) = Bji(t)f̃ji(t)
⊤ with Bji = diag(1Bji1

,1Bji2
, ...,1Bji,Mji(t)

), 1m is a m × 1-vector of ones,

and f̃ji(t) = (f(νji1), ..., f(νji,Mji(t))). Hence the ordinary least squares estimator of θji based on
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(ν̃ji(t), W̃ji(t)) for the i-th individual at j-stratum equals

θ̂ji(t) =

(
F̃⊤
ji (t)F̃ji(t)

)−1

F̃⊤
ji (t)W̃ji(t) (3.3)

We estimate θji based on the observations from subject i-th in the j-th stratum without pulling infor-

mation from other individuals. The longitudinal covariateXji(t) is estimated by X̂ji(t) = f⊤(t)θ̂ji(t)

based on the observed error-prone covariate information. Since θ̂ji(t) = θji+{F̃⊤
ji (t)F̃ji(t)}−1F̃⊤

ji (t)ẽji(t),

then we have

X̂ji(t) = f⊤(t)θ̂ji(t)

= f⊤(t)θji(t) + f⊤(t){F̃⊤
ji (t)F̃ji(t)}−1F̃⊤

ji (t)ẽji(t)

= Xji(t) + f⊤(t){F̃⊤
ji (t)F̃ji(t)}−1F̃⊤

ji (t)ẽji(t)

The two terms Xji(t) and ẽji(t) are independent. Then X̂ji(t) is normally distributed with mean

Xji(t) and variance dji(t, σ
2
j ) = σ2

j f
⊤(t){F̃⊤

ji (t)F̃ji(t)}−1f(t). An estimator of σ2
j can be constructed

using the residuals:

σ̂2
j = n−1

j

nj∑
i=1

M−1
ji

Mji∑
k=1

B−1
jik

Bjik∑
b=1

(
Wjib(vjik)− X̂ji(vjik)

)2

(3.4)

Now we derive the induced hazard model of Tji conditional on Zji and X̂ji(t) under the measurement

error model (3.2). Define the counting process increment dNji(t) = I(t ≤ Tji < t+ dt, vjir ≤ t) and

the at-risk process Yji(t) = I(Tji ≥ t, vjir ≤ t). dNji(t) = 1 means the failure time occurs at time

t and after r longitudinal measurements. Motivated by the induced hazard approach in Sun et al.

(2023), we can derive the conditional hazard function of Tji at time t given (X̂ji(t), Zji, ṽji(t), vjir ≤

t).

We present the regularity conditions needed for Proposition 1. Let Ũji = (Uji1, Uji2, ..., Uji,Kji)

denote the monitoring times for the failure event for i-th individual for j-th stratum, where 0 =

Uji0 < Uji1 < · · · < Uji,Kji
< Uji,Kji+1 = ∞. We use the monitoring times to generate interval

censored failure times [Lji, Rji], where Lji = max{Ujik : Tji > Ujik, k = 0, ...,Kji} and Rji =

min{Ujik : Tji ≤ Ujik, k = 1, ...,Kji} with Uji0 = 0 and Uji,Kji+1 = ∞. We assume the following
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conditions that require non-informative monitoring times and a non-differential measurement error

mechanism for the time-dependent covatiates.

1. The monitoring times, measurement times and measurement errors are non-informative given

the information already provided by Zji and θji, i.e.,Tji is independent of (∆1ji,∆2ji, ν̃ji, ẽji)

given (Zji, θji)

2. Measurement error ẽji is independent of (∆1ji,∆2ji, Ũji, ν̃ji, ẽji) given (Zji, θji)

3. Xji(t), 0 ≤ t ≤ τ , is a left continuous process

Proposition 1. Under conditions 1-3, for j = 1, ..., J where J is the number of stratums, the

induced hazard function is

λ∗j (t|X̂ji(t), Zji, ṽji(t)) = λ0j(t) exp

{
βζji(t)X̂ji(t) + γ⊤Zji +Oji(β, t, θjW )

}
, for t ≥ vjir (3.5)

where σ2
ji,rel(t) =

dji(t,σ
2
j )

f(t)⊤Gjf(t)+dji(t,σ2)
, ζji(t) = 1− σ2

ji,rel(t) =
f(t)⊤Gjf(t)

f(t)⊤Gjf(t)+dji(t,σ2)
, Oji(β, t, θjW ) =

β{ϑ⊤j f(t) + 1
2βf(t)

⊤Gjf(t)}σ2
ji,rel(t), θjW = (ϑj , Gj , σ

2
j ).

Proof. By definition of the counting process dNji(t) and at risk process Yji(t), we have

P (dNji(t) = 1|X̂ji(t), Zji, ṽji(t), Yji(t) = 1)

= E{E(I(dNji(t) = 1)|W̃ji(t), ẽji(t), X̂ji(t), Zji, ṽji(t), Yji(t) = 1, Ũji)|X̂ji(t), Zji, ṽji(t), Yji(t) = 1}

= E{E(I(dNji(t) = 1)|W̃ji(t), ẽji(t), X̂ji(t), Zji, ṽji(t), Yji(t) = 1, ŨjiI(Ũji ≤ t), ŨjiI(Ũji > t))|X̂ji(t),

Zji, ṽji(t), Yji(t) = 1}

= E{λj(t|Xji(t), Zji)dt|X̂ji(t), Zji, ṽji(t), Yji(t) = 1}

= λ0j(t) exp(γ
⊤Zji)E{exp{βXji(t)}|X̂ji(t), Zji, ṽji(t), Yji(t) = 1}dt

The conditional hazard function of Tji at time t given (X̂ji(t), Zji, ṽji(t), vjir ≤ t) equals

λ∗j (t|X̂ji(t), Zji, ṽji(t)) = λ0j(t) exp(γ
⊤Zji)E{exp{βXji(t)}|X̂ji(t), Zji, ṽji(t), Yji(t) = 1}, for t ≥ vjir

By equation (3.3),Xji(t) is normally distributed conditional on X̂ji(t) and ṽji(t). Thus exp(βXji(t)|X̂ji(t), ṽji(t))
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follows log-normal distribution and

E{exp(βXji(t)|X̂ji(t), ṽji(t))}

= exp{E(βXji(t)|X̂ji(t), ṽji(t)) +
1

2
Var(βXji(t)|X̂ji(t), ṽji(t))}

= exp{βE(Xji(t)|X̂ji(t), ṽji(t)) +
1

2
β2Var(Xji(t)|X̂ji(t), ṽji(t))}

= exp

{
β
E(Xji(t))dji(t, σ

2) + X̂ji(t)f
⊤Gjf(t)

f⊤Gjf(t) + dji(t, σ2)
+

1

2
β2 f⊤Gjf(t)dji(t, σ

2)

f⊤Gjf(t) + dji(t, σ2)

}

The conditional hazard function of Tji at time t given (X̂ji(t), Zji, ṽji(t), vji ≤ t) equals

λ∗j (t|X̂ji(t), Zji, ṽji(t))

= λ0j(t) exp{γ⊤Zji}E{exp(βXji(t))|X̂ji(t), ṽji(t)}, t ≥ vjir

= λ0j(t) exp

{
γ⊤Zji + β

E(Xji(t))dji(t, σ
2) + X̂ji(t)f(t)

⊤Gjf(t)

f(t)⊤Gjf(t) + dji(t, σ2)
+

1

2
β2 f(t)⊤Gjf(t)dji(t, σ

2)

f(t)⊤Gjf(t) + dji(t, σ2)

}
= λ0j(t) exp

{
βX̂ji(t)

f(t)⊤Gjf(t)

f(t)⊤Gjf(t) + dji(t, σ2)
+ γ⊤Zji + β{ϑ⊤j f(t) +

1

2
βf(t)⊤Gjf(t)}

dji(t, σ
2)

f(t)⊤Gjf(t) + dji(t, σ2)

}
= λ0j(t) exp

{
βζji(t)X̂ji(t) + γ⊤Zji +Oji(β, t, θjW )

}

3.4 Model Estimation

We assume the covariate X̂ji(t) is missing at random (MAR), meaning the probability that X̂ji(t)

is missing depends only on observed data and not on the unobserved value of X̂ji(t). Let ηji denote

the missingness indicator (ηji = 1 if X̂ji(t) is observed, and 0 otherwise). Under our design, the

observation probability for X̂ji(t) is modeled as:

P (ηji = 1 | Zji) = ∆1jiq1(Zji) + ∆2jiq2(Zji) + (1−∆1ji −∆2ji)q3(Zji), (3.6)

for i = 1, . . . , nj and j = 1, . . . , J . Here, ∆1ji and ∆2ji are binary indicators for exact observation

and interval censoring (∆1ji + ∆2ji ≤ 1), with 1 − ∆1ji − ∆2ji indicating right censoring. The

functions q1(Zji), q2(Zji), and q3(Zji) represent selection probabilities for exact, interval, and right-

censored observations, respectively, dependent on the covariate Zji. To address potential bias from
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missing data, we employ inverse probability weighting (IPW). The IPW weight is defined as:

ωji =
ηji

P (ηji = 1 | Zji)
=

ηji
∆1jiq1(Zji) + ∆2jiq2(Zji) + (1−∆1ji −∆2ji)q3(Zji)

, (3.7)

where the denominator corresponds to the observation probability in Equation (3.6). These weights

are incorporated into the likelihood function to adjust for missingness under the MAR assumption.

Now we derive an estimator of the induced hazard model based on partly interval censored data.

The observed data from a random sample of study participants consist of {∆1ji,∆1jiTji,∆2ji, (1−

∆1ji)Lji, (1 − ∆1ji)Rji, Zji, ṽji, W̃ji}, i = 1, ..., nj , j = 1, ..., J . We revised methods in Zhou et al.

(2021), Sun et al. (2023) to estimate the measurement error induced hazard model (3.5) with partly

interval censored data. The conditional survival function of Tji given Tji ≥ vjir equals exp
(
−∫ t

vjir
λ∗(x|X̂i(x), Zji, ṽji(x))dx

)
. Let Λ0j =

∫ t

0
= λj(s)ds. Let hji(t, β, γ) = βζji(t)X̂ji(t) + γ⊤Zji +

Oji(β, γ; θjW ). The observed data weighted likelihood with the induced hazard (3.5) is

Ln(β, γ,Λ; θW ) =

J∏
j=1

nj∏
i=1

{
[Λ

′

j(Tji) exp{hji(Tji, β, γ)}]I(vjir≤Tji) exp

(
−
∫ Tji

vjir

exp{hji(t, β, γ)dΛj(t)}
)}∆1jiωji

×
{
exp

(
−
∫ Lji

vjir

exp{hji(t, β, γ)}dΛj(t)

)
− exp

(
−
∫ Rji

vjir

exp{hji(t, β, γ)}dΛj(t)

)}∆2jiωji

×
{
exp

(
−
∫ Lji

vjir

exp{hji(t, β, γ)}dΛj(t)

)}(1−∆1ji−∆2ji)ωji

(3.8)

Following the approach introduced by Zeng et al. (2016), Zhou et al. (2021), we treat Λj(t) as a step

function with non-negative jumps at ordered unique time points Tji and (Lji, Rji], i = 1, ..., nj , j =

1, ..., J . Let 0 = tj0 < tj1 < · · · < tjmj be ordered unique values of the sets {∆1jiTji, (1 −

∆1ji)Lji,∆2jiRji : i = 1, ..., nj} at j-th stratum. Let λjk be the jump size of the estimator for Λj(t)

at tjk for k = 1, ...,mj and let λj0 = 0. Let hji(tjk, β, γ) = βζjikX̂jik + γ⊤Zji + Oji(β, tjk, θjW ),
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where X̂jik = X̂ji(tjk) and ζjik = ζji(tjk). The likelihood function of (3.8) becomes

Ln(β, γ,Λ; θW ) =

J∏
j=1

nj∏
i=1

{
[Λj{Tji} exp{hji(Tji, β, γ)}]I(vjir≤Tji)

exp

(
−

∑
tjk≤Tji

I(vjir ≤ tjk)λjk exp{hji(tjk, β, γ)dΛj(t)}
)}∆1jiωji

×
{
exp

(
−

∑
tjk≤Lji

I(vjir ≤ tjk)λjk exp{hji(tjk, β, γ)}
)

[
1− exp

(
−

∑
Lji<tjk≤Rji

I(vjir ≤ tjk)λjk exp{hji(tjk, β, γ)}
)]}∆2jiωji

×
{
exp

(
−

∑
tjk≤Lji

I(vjir ≤ tjk)λjk exp{hji(tjk, β, γ)}
)}(1−∆1ji−∆2ji)ωji

(3.9)

where Λj{Tji} denote the jump size of Λj(t) at Tji. We deploy EM algorithm to maximum the

likelihood function in equation (3.9). Let ρjik be independent Poisson random variables with means

µjik = λjik exp
{
hji(tjk, β, γ)

}
, i = 1, ..., nj , k = 1, ...,mj , j = 1, ..., J . Following Zhou et al. (2021),

for i = 1, ..., nj and j = 1, ..., J , we define

Aji = ∆1ji

∑
tjk<Tji

I(vjir ≤ tjk)ρjik

Bji = ∆1ji

∑
tjk=Tji

I(vjir ≤ tjk)ρjik

Cji = ∆2ji

∑
tjk≤Lji

I(vjir ≤ tjk)ρjik

Dji = ∆2ji

∑
Lji<tjk≤Rji

I(vjir ≤ tjk)ηjik

Eji = (1−∆1ji −∆2ji)
∑

tjk≤Lji
I(vjir ≤ tjk)ρjik

Let X̂ji· = {X̂jik, k = 1, ....,mj}. The observed data consists of
(ṽji, Tji, ηjiX̂ji·, Zji, Aji = 0, Bji = 1) if ∆1ji = 1

(ṽji, Lji, Rji, ηjiX̂ji·, Zji, Cji = 0, Dji > 0) if ∆2ji = 1

(ṽji, Lji, ηjiX̂ji·, Zji, Eji = 0) if 1−∆1ji −∆2ji = 1

(3.10)

The likelihood function of the observed data in (3.10) is

L∗
n =

J∏
j=1

nj∏
i=1

{
P (Aji = 0, Bji = 1)

}∆1jiωji
{
P (Cji = 0, Dji > 0)

}∆2jiωji
P (Eji = 0)(1−∆1ji−∆2ji)ωji

Notice that P (Aji = 0, Bji = 1) equivalent to the term in likelihood function (3.9) with ∆1ji = 1,

P (Cji = 0, Dji > 0) equivalent to the term in likelihood function (3.9) with ∆2ji = 1 and P (Eji = 0)



38

corresponds to the term in likelihood function (3.9) with 1−∆1ji−∆2ji = 1. Then L∗
n can be written

as

Ln(β, γ,Λ; θW ) =

J∏
j=1

nj∏
i=1

{ ∏
tjk<Tji

P (ρjik = 0)I(vjir≤tjk)
∏

tjk=Tji

P (ρjik = 1)I(vjir≤tjk)

}∆1jiωji

×
{ ∏

tjk≤Lji

P (ρjik = 0)I(vjir≤tjk)

[
1−

∏
Lji<tjk≤Rji

P (ρjik = 0)I(vjir≤tjk)

]}∆2jiωji

×
{ ∏

tjk≤Lji

P (ρjik = 0)I(vjir≤tjk )

}(1−∆1ji−∆2ji)ωji

(3.11)

We maximize the likelihood function (3.11). Let R∗
ji = ∆1jiTji+∆2jiRji+(1−∆1ji−∆2ji)Lji and

define 1∗jik = I(vir ≤ tjk ≤ R∗
ji) and ρjik be the independent Poisson random variables with means

µjik = λjk exp{hji(tjk, β, γ)} for j = 1 . . . J ; i = 1, . . . nj , k = 1, . . .mj . Treating ρjik as missing

data. The complete weighted data log-likelihood is given by

ln(β,Λ) =

J∑
j=1

nj∑
i=1

ωji

( mj∑
k=1

1∗jik

[
ρjik log{µjik} − log(ρjik!)− µjik

])
(3.12)

where R∗
ji = ∆1jiTji + ∆2jiRji + (1 − ∆1ji − ∆2ji)Lji. The expectation of the complete data

log-likelihood is

E(ln(β,Λ)) =
J∑

j=1

nj∑
i=1

ωji

( mj∑
k=1

1∗jik

[
Êρjik log{µjik} − Ê log(ρjik!)− µjik

])
(3.13)

where Ê(·) is the posterior mean given the observed data. In the M-step, we estimate λjk and β, γ

by maximizing (3.13) using the results from the previous iteration. To compute the optimal λjk, we

solve the score equation:

∂Eln(β,Λ)
∂λjk

=

nj∑
i=1

ωji

(
1∗jik

[
Êρjik

1

λjk
− eβζjikX̂jik+γ⊤Zji+Oji(β,tjk,θjW )

])
∆
= 0.

The solution for λjk that maximizes (3.13) is given by

λjk =

∑nj

i=1 ωji1
∗
jikÊ(ρjik)∑nj

i=1 ωji1∗jike
βζjikX̂jik+γ⊤Zji+Oji(β,tjk,θjW )

, k = 1, 2, . . . ,mj . (3.14)
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Using the previously obtained λjk, we define Z
∗
jik =

(
(ζjikX̂jik+ Ȯji(β, tjk, θjW ))⊤, Z⊤

ji

)⊤
. We then

update β and γ using the one-step Newton-Raphson method:

J∑
j=1

nj∑
i=1

ωji

( mj∑
k=1

1∗jikÊ(ρjik)
[
Z∗
jik −

∑nj

l=1 ωjl1
∗
jlke

βζjlkX̂jlk+Ȯj(β,tjk,θjW )+γ⊤ZjlkZ∗
jlk∑nj

l=1 ωjl1∗jlke
βζjlkX̂jlk+Ȯj(β,tjk,θWj

)+γ⊤Zjlk

])
= 0.

In E-step, we find Ê(ρji,k) which is the posterior mean of ρji conditional on the observed data. If

∆1ji = 1, we have

Ê(ρjik) = E(ρjik|Aji = 0, Bji = 1)

=


1, vjir < tjk = Tji

0, vjik < tjk < Tji

For the observation with ∆2ji = 1 , i.e. vjir ≤ tjk and Lji < tjk < Rji <∞, then

Ê(ρjik) = E(ρjik|ṽji, Lji, Rji, Zji, Cji = 1, Dji > 0)

=

∞∑
m=0

mP (ρjik = m|ṽji, Lji, Rji, Zji, Cji = 1, Dji > 0)

=

∞∑
m=0

m
(λjk exp{hji(tjk, β, γ)})m exp{−λjk exp{hji(tjk, β, γ)}}/m!

1− exp{−
∑

Lji<tjk≤Rji
1∗jikλjk exp{hji(tjk, β, γ)}}

=
λjk exp{hji(tjk, β, γ)}

1− exp{−
∑

Lji<tjk≤Rji
1∗jikλjk exp{hji(tjk, β, γ)}}

(3.15)

If vjir ≤ tjk ≤ Lji, it follows that Ê(ρjik) = 0. We obtain the estimator of (λjk, j = 1, ..., J ; i =

1, ..., nj) and (β, γ) by iterating between the E steps and M steps until convergence and denote

the final estimator of (λ̂jk, j = 1, ..., J ; i = 1, ..., nj) and (β̂, γ̂). This EM procedure assumes that

the measurement error model parameters θjW are known. These parameters can be estimated by

existing methods for estimating linear mixed effects model. Similar to Sun et al. (2023), we use R

package lme4 to obtain the maximum likelihood estimates of θ̂jW . The θjW is replaced by θ̂jW when

we conducting the aforementioned EM algorithm.

3.5 Variance Estimation

The variance estimators of β̂, γ̂, Λ̂ are obtained from weighted bootstrap which is similar to the

procedure introduced in section 2.4. The weighted bootstrap applying different weights to the
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log-likelihood function with weights from a distribution with mean and variance equal to 1. The

procedure of weighted bootstrap described as follows:

• Generate a sequence IID random variables uji from Exp(1) and let U = {uji, j = 1 · · · J, i =

1 · · ·nj}

• Use U to obtain perturbed weights ω∗
ji =

ηji

p̂∗
ji

where p̂∗ji is obtained from the following proce-

dures:

– Fit a logistic regression model using the weighted log-likelihood with weight {uj1, uj2, . . . , ujnj
}.

Let π̂j = (π̂0j , π̂1j) be the coefficients of the fitted logistic regression model, i.e.

π̂j = argmax
πj

nj∑
i=1

uji

{
ηji(π0j + π1jzji)− log[1 + exp(π0j + π1jzji)]

}

– Then p̂∗ji =
exp(π̂0j+π̂1jzji)

1+exp(π̂0j+π̂1jzji)
(Notice that when the missingness of X does not depend on

Z, then p̂∗ji =
exp(π̂0j)

1+exp(π̂0j)
=

∑nj
i=1 ujiηji∑nj

i=1 uji
)

• With the perturbed inverse probability weight, we can set up our weighted complete data

log-likelihood (perturbed)

l∗n(β,Λ|θ) =
J∑

j=1

nj∑
i=1

ujiωji

( mj∑
k=1

1∗jik

[
ρjik log{µjik} − log(ρjik!)− µjik

])

where R∗
ji = ∆1jiTji +∆2jiRji + (1−∆1ji −∆2ji)Lji

• Use the EM procedure introduced before with

λ∗jk =

∑nj

i=1 ujiωji1
∗
jikÊ(ρjik)∑nj

i=1 ujiωji1∗jike
βζjikX̂jik+γ⊤Zji+Oji(β,tjk,θjW )

k = 1, 2, ...,mj

•

J∑
j=1

nj∑
i=1

ujiωji

( mj∑
k=1

1∗jikÊ(ρjik)[Z∗
jik −

∑nj

l=1 ujlωjl1
∗
jlke

βζjlkX̂jlk+Ȯj(β,tjk,θjW )+γZjlkZ∗
jlk∑nj

l=1 ujlωjl1∗jlke
βζjlkX̂jlk+Ȯj(β,tjk,θWj

)+γZjlk

]

)
= 0

(3.16)

• Repeat the above procedure B times to get an B different β̂∗, γ̂∗, λ̂∗s.

– The standard error estimator of β̂, γ̂ are the sample standard deviation of those B β̂∗, γ̂∗s.
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– In each iteration of the procedure, the function λ̂∗ is smoothed over the interval [0, τ ] using

Gaussian kernel with a bandwidth 0.1.This smooth process yields a smoothed function,

denoted as λ̂∗
′
. The standard error estimator for λ̂ is then calculated as the sample

standard deviation of these B λ̂∗
′
evaluated at time points 0 = t1, t2, . . . , tM = τ where

the difference between two consecutive time points is 0.01.

3.6 Estimation Based on the Entire Trajectory of Longitudinal Covariates

When estimating Xji(t), we rely on information available up to time t. This approach can result

in significant estimation bias and high variance, particularly when t is small, due to the limited data

available at early time points. By utilizing the entire time trajectory of Xji up to the final time τ ,

we can draw on a more complete set of information, leading to more accurate and reliable estimates.

The following section outlines the rationale behind this approach. Recall the ordinary least square

estimation of in equation (3.3), since we use whole information of ith individual in the jth stratum,

it becomes

θ̂ji =

(
F̃⊤
ji (τ)F̃ji(τ)

)−1

F̃⊤
ji (τ)W̃ji(τ) (3.17)

which is independent of time t. Let X̂ji(t, τ) = f⊤(t)θ̂ji and dji(t, τ, σ
2
j ) = σ2

j f
⊤(t){F̃⊤

ji (τ)F̃ji(τ)}−1f(t),

then the proposition (1) still hold and the induced hazard function (3.5) becomes

λ∗j (t|X̂ji(t, τ), Zji, ṽji(t)) = λ0j(t) exp

{
βζji(t, τ)X̂ji(t, τ) + γ⊤Zji +Oji(β, t, τ, θjW )

}
(3.18)

with σ2
ji,rel(t, τ) =

dji(t,τ,σ
2
j )

f(t)⊤Gjf(t)+dji(t,τ,σ2
j )
, ζji(t, τ) = 1−σ2

ji,rel(t, τ) =
f⊤(t)Gjf(t)

f⊤(t)Gjf(t)+dji(t,τ,σ2
j )
, Oji(β, t, τ, θW ) =

β{ϑjf(t) + 1
2βf

⊤(t)Gjf(t)}σ2
ji,rel(t, τ), θjW = (ϑj , Gj , σ

2
j ). The proof is similar to the proof in

proposition (1). Since X̂ji(t, τ) = Xji(t) + f⊤(t){F̃⊤
ji (τ)F̃ji(τ)}−1F̃⊤

ji (τ)ẽji(t), from property of

conditional mean and variance of normal distributed variable, we have

E(Xji(t)|X̂ji(t, τ), ṽji(t)) =
E(Xji(t))dji(t, τ, σ

2
j ) + X̂ji(t, τ)f

⊤(t)Gjf
⊤(t)

f⊤(t)Gjf⊤(t) + dji(t, τ, σ2
j )

Var(Xji(t)|X̂ji(t, τ), ṽji(t)) =
f⊤(t)Gjf

⊤(t)dji(t, τ, σ
2
j )

f⊤(t)Gjf⊤(t) + dji(t, τ, σ2
j )
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The conditional hazard function of Tji at time t given (X̂ji(t), Zji, ṽji(t), τ) equals

λ∗j (t|X̂ji(t, τ), Zji, ṽji(t))

= λ0j(t) exp{γ⊤Zji}E{exp(βXji(t))|X̂ji(t, τ), ṽji(t)}

= λ0j(t) exp

{
γ⊤Zji + β

E(Xji(t))dji(t, τ, σ
2
j ) + X̂ji(t)f(t)

⊤Gjf(t)

f(t)⊤Gjf(t) + dji(t, τ, σ2
j )

+
1

2
β2

f(t)⊤Gjf(t)dji(t, τ, σ
2
j )

f(t)⊤Gjf(t) + dji(t, τ, σ2
j )

}
= λ0j(t) exp

{
βX̂ji(t)

f(t)⊤Gjf(t)

f(t)⊤Gjf(t) + dji(t, τ, σ2
j )

+ γ⊤Zji + β{ϑjf(t)

+
1

2
βf(t)⊤Gjf(t)}

dji(t, τ, σ
2
j )

f(t)⊤Gjf(t) + dji(t, τ, σ2
j )

}
= λ0j(t) exp

{
βζji(t, τ)X̂ji(t) + γ⊤Zji +Oji(β, t, τ, θjW )

}

thus we obtain the induced hazard function (3.18). Model estimation and variance estimation

procedure are the same as we described in section 3.4 and 3.5 except we use the measurement error

induced hazard function (3.18).

3.7 Simulation Studies

We examine the finite sample properties of proposed method via simulation studies. Let n be the

sample size. For i = 1, ..., n, the failure time Tji is generated from the proportional hazards model

λj(t|Xji(t), Zji) = λj(t) exp{βXji(t) + γ⊤Zji} (3.19)

Let β = 0.5, γ = − log(2), Zji ∼ Ber(0.3) and Xji = (ν0 + b0ji) + (ν1 + b1ji)t. The partly

interval censored data for the i-th individual in the j-th stratum generated as follows. We first

generate the number of examination times K ∼ Ber(0.8) + 1. If K = 1, we generated a single

examination time U1 ∼ Unif(0, 3τ/4), where (L,R] intervals were defined as (0, U1] if T ≤ U1 and

(U1,∞) if T > U1. For K = 2, we generated two examination times U1 and U2, with U2 being

min{0.1 + U1 + exp(1)τ/2, τ}. Define (Lji, Rji] = (0, Uji1] if Tji ≤ Uji1, (Lji, Rji] = (U1ji, U2ji] if

U1ji < T1ji ≤ U2ji and (L1ji, R1ji] = (U2ji,∞) if T1ji > U2ji. If R = ∞, we have ∆1ji = ∆2ji = 0;

If Rji < ∞, we generate ∆1ji ∼ Ber(p) with p = 0.25 or p = 0.75. If ∆1ji = 1, then the failure

time T1ji is observed exactly. We set the length of study τ = 5 which yielding about 40% percent
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right censoring. The error-prone measurements Wji,b(vjik) are generated from the model

Wji,b = Xji(vjik) + ejik,b, b = 1, ..., Bjik, (3.20)

where Xji(vjik) = (ν0j + b0ji) + (ν1j + b1ji)vjik which is specified before. We let ejik,b ∼ N(0, σ2)

with σ = 0.1 or σ = 0.2 and the number of repeated measurements of Xji(vjik) is Bjik = B = 1 for

all j, i, k. The missing model and baseline hazards have the following settings:

1. Assume J = 2 and λ1(t) = 0.1t and λ2(t) = 0.3. The fixed effects are taken as ν01 =

ν02 = 1 and ν11 = ν12 = 0.5. The random effect (b0ji, b1ji) ∼ N(0, G). We set G =

[0.02,−0.01;−0.01, 0.02]. The selection probability for non-case (right censored observation)

is 0.3 and selection probability for case is 0.9. Overall missing rate about 33%. Results are

shown in Table 5.1.

2. Assume J = 2 and λ1(t) = 0.1t and λ2(t) = 0.3. The fixed effects are taken as ν01 =

ν02 = 1 and ν11 = ν12 = 0.5. The random effect (b0ji, b1ji) ∼ N(0, G). We set G =

[0.02,−0.01;−0.01, 0.02]. For noncase, the selection probability for the first stratum is de-

fined as q1(η = 1|Z) = exp(0.1−Z)
1+exp(0.1−Z) and for the second stratum, the selection probability

defined as q2(η = 1|Z) = exp(0.3−1.2Z)
1+exp(0.3−1.2Z) . For case, η ∼ Ber(0.9), each observation has 90%

chance to be selected. The overall missing rate is around 30%. Results are shown in Table 5.2.

3. Assume J = 2 and λ1(t) = 0.1t and λ2(t) = 0.3. The fixed effects are taken as (ν01, ν11) =

(0.85, 0.4) and (ν02, ν12) = (1.15, 0.5). The random effects (b0ji, b1ji) ∼ N(0, G) and G =

[0.02,−0.01;−0.01, 0.02] for j = 1, 2. For noncase, the selection probability for the first stratum

is defined as q1(η = 1|Z) = exp(0.1−Z)
1+exp(0.1−Z) and for the second stratum, the selection probability

defined as q2(η = 1|Z) = exp(0.3−1.2Z)
1+exp(0.3−1.2Z) . For case, η ∼ Ber(0.9), each observation has 90%

chance to be selected. The overall missing rate is around 30%. Results are shown in Table 5.3.

4. Assume J = 2 and λ1(t) = 0.1t and λ2(t) = 0.3. The fixed effects are taken as (ν01, ν11) =

(0.85, 0.4) and (ν02, ν12) = (1.15, 0.5). The random effects (b0ji, b1ji) ∼ N(0, G) and G =

[0.02,−0.01;−0.01, 0.02] for j = 1, 2. For noncase, the selection probability for the first stratum
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is defined as q1(η = 1|Z) = exp(0.1−Z)
1+exp(0.1−Z) and for the second stratum, the selection probability

defined as q2(η = 1|Z) = exp(0.3−1.2Z)
1+exp(0.3−1.2Z) . For case, η ∼ Ber(0.9), each observation has 90%

chance to be selected. The overall missing rate is around 30%. In this scenario, we estimate

Xji(t) by the observed measurements before τ . Results are shown in Table 5.4.

We simulated with sample size n = 800 and 1200. The estimation results for (β, γ) based on

500 simulations. We perform 200 bootstrap for each simulation. The Bias is the average point

estimate minus the true parameter value, SSD is the sample standard deviation of point estimates,

ESE is the average of estimated standard errors and CP is the coverage proportion of the 95%

confidence interval. CP is the coverage proportion of the 95% confidence interval of λ̂(t). The

results presented in Tables 5.1 to 5.4 demonstrate the following key findings: (i) The proposed

estimators exhibit virtually no bias, indicating their accuracy in capturing the true parameters.

(ii) The weighted bootstrap method yields standard error estimates that consistently and reliably

reflect the true variability of the estimators. (iii) The empirical coverage rates of the 95% confidence

intervals, constructed using the normal approximation, are consistently close to the nominal 95%

level, suggesting the validity of the proposed method. (iv) As the sample size increases, both the

bias and variability of the estimators decrease. Furthermore, an increase in the proportion of exact

observations, pt, leads to a reduction in the standard deviation of the estimators. (v) Our proposed

approach (Simulation Setup 4), which leverages the complete available information for each Xji to

estimate X̂ji(t), demonstrates superior performance in model estimation. Compared to the method

that estimates X̂ji(t) using only time points prior to t (Simulation Setup 3), this approach achieves

a smaller standard deviation, resulting in more stable estimation of model coefficients and enhanced

precision in the results. Additionally, it provides an alternative and effective way of estimating

Xji(t), further contributing to the robustness of the estimation process.

3.8 Real Data Application

We analyze data from the HVTN-703/704 trial, where the longitudinal covariate HIV-1 antibody

VRC (measured as logVRC) is subject to measurement error. Let X(t) denote the time-dependent

logVRC value, Z represent the time-independent covariate Age group (categorized as described in
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Chapter 2), and T be the time from enrollment to HIV onset. The model is stratified by geographic

region, with four strata (j = 1, 2, 3, 4) corresponding to USAS, BP, SSA, and other SSA, respectively,

as defined in Chapter 2. We assume the conditional hazard function for T given X(t) and Z in the

j-th stratum follows a Cox proportional hazards model:

λj(t|X(t), Z) = λj(t) exp
{
βX(t) + γ⊤Z

}
, (3.21)

where λj(t) is the baseline hazard function for the j-th stratum, and β and γ are regression coeffi-

cients. These coefficients represent log hazard ratios, quantifying the association between HIV onset

time and (i) logVRC (time-varying) and (ii) Age group (time-independent), respectively. The true

HIV-1 antibody VRC trajectory, denoted X(t), is unobservable; instead, we observe W (t), an error-

contaminated surrogate measurement of X(t). For the observed concentration, we employed the last

value carry forward (LVCF) approach to extend the observed measurementW (t) to the primary end-

point for each participant, defined as either HIV infection for cases or the end of the study period for

non-cases. We use full information about log(VRC) in estimating the X(t), the true value of VRC.

This estimation approach provides an alternative, especially when data is limited. While using avail-

able information about X(t) up to time t in risk prediction is more interpretable, utilizing the full

information of X can lead to a more stable model estimation. We justified that the induced hazard

model remains valid when using full information about X (section 3.6), and simulations demonstrate

that this approach improves estimation efficiency and works well (simulation setting 4). Next we

describe the estimation of X(t) using spline-based method. Suppose a and b are the lower and upper

bounds of the observation times {(Ui, Vi) : i = 1, 2, ..., n}. Let a = d0 < d1 < · · · < dK < dK+1 = b

be a partition of [a, b] into K + 1 sub-intervals IKt = [dt, dt+1), t = 0, ...,K. Denote the set of

partition points by Dn = {d1, d2, · · · , dK}. According to Schumaker (1981), (corollary 4.10) and

Zhang et al. (2010), there exists a local basis Bn = {bt, 1 ≤ t ≤ qn}, B-spline, and the number basis

be qn ≡ Kn +m. These basis functions are nonnegative and sum up to one at each point within

[a, b] and zero outside the interval [dt, dt+m]. From the log(VRC) concentration plot, Fig 2.1, we

observe peak points before week 20, followed by a flat region. Therefore, we select 4 internal knots
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at weeks 5, 9, 13 and 17 to capture the key dynamics of the curve, ensuring an accurate represen-

tation of the rise and subsequent flattening. Therefore, the sequence of partitioning intervals are

[0, 5], [5, 9], [9, 13], [13, 17], [17, τ ]. We choose the order of polynomial at each partition interval to be

three. Therefore, we need seven B-spline basis as described in Schumaker (1981). In particular, let

b1, ..., b8 be a set of B-spline functions of order 3 on a knot sequence {d0 = 0, d1, d2, d3, d4, d5 = τ}.

The B-spline basis functions are calculated recursively. For a B-spline of degree l and a knot sequence

0 = d0 < d1 < d2 < . . . < dK < dK+1 = τ , the basis functions are calculated as follows:

• For l = 0, the basis functions are piecewise constant and defined as follows:

b0i (t) =


1 if di ≤ t < di+1

0 otherwise

• For l > 0, the basis functions are recursively defined using the Cox-de Boor formula:

bli(t) =
t− di

di+l − di
bl−1
i (t) +

di+l+1 − t

di+l+1 − di+1
bl−1
i+1(t)

The log(VRC) concentration, X, is the linear combination of these B-spline basis. Denote the

estimated X from eight B-spline basis as X̂ and we obtain it by regressing W (t), the observed

concentration of log (VRC), over B-spline basis, b1 · · · b8, using the least square approach. The

fitting results are shown in Figs (5.1)-(5.4). Next we fit a linear mixed effect model with all regions

and basis functions. The fixed effect is fitted using region indicators and B-spline basis while the

random effect is obtained from the B-spline basis.

W (t) ∼ USAS + BP + SSA + B-spline basis

random ∼ B-spline basis

(3.22)

where random represent random effect in linear mixed effect model. However, the model did not

converge and we find that the region indicators are not significant instead of region BP. Fig. 3.1

shows that the BP region, represented by the red line, consistently exhibits lower mean and median

observed log(VRC) values, respectively, compared to the other regions (USAS, SSA, and Other SSA).

This difference is particularly notable around the peak, where the region BP remains significantly
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below the others. This distinct behavior suggests that BP has unique VRC dynamics that differ

from the rest, which warrants its separation in subsequent analyzes to avoid potential confounding

and to better understand the underlying factors driving these regional differences. Then we refit

the linear mixed effect model which stratified by region Brazil&Peru, meaning we fit linear mixed

effect model separately for region Brazil&Peru and other three regions. The model has the following

format:

W (t) ∼ B-spline basis

random ∼ B-spline basis

(3.23)

The regions USAS, SSA and other SSA share a linear mixed effect model while region BP has a

unique a linear mixed effect model. The results of fitting model (3.23) for region non-BP and BP

contains the fixed effects, random effects and residuals. The fixed effects are presented in Table

3.1 where we can see that all predictors are statistically significant. The random effects shown in

Table 3.2. The fitted residues for non-BP region is 0.126 and BP region is 0.096. Additionally,

Figure 3.2 suggests that the fixed effect of fitted model in Table 3.1 effectively captures the pattern

of log(VRC) in both BP and non-BP regions. Next, we fit model (3.21) using the linear mixed-

effects model results. The linear mixed effect model parameter θji is estimated using R package

lme4. Then the estimated logVRC is X̂ji(t) = f⊤(t)θ̂ji. As in Chapter 2, VRC concentrations are

unavailable for some participants across four geographic regions (USAS, BP, SSA, and other SSA).

The missingness of VRC measurements is modeled via logistic regression in Equation (2.14). To

address potential bias from missing data, we employ inverse probability weighting (IPW), incorpo-

rating selection probabilities derived from Equation (2.14). The Cox model parameters—regression

coefficients (β, γ) and stratum-specific baseline hazard functions λj(t)—are then estimated using the

EM algorithm outlined in Section 3.4. Standard errors for model coefficients are estimated using

a weighted bootstrap with 500 repetitions. The model estimation results are summarized in Ta-

ble 3.3, and the corresponding estimated survival function is presented in Figure 5.5. The findings

reveal that higher VRC concentrations are associated with a reduced risk of HIV infection, while

older individuals exhibit a lower likelihood of contracting HIV. These results are consistent with the
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findings obtained in Chapter 2. Subsequently, we fitted the proportional hazard model described

in Chapter 2 using the estimated X̂ji(t). The estimation results for this model are summarized in

Table 3.4, and the estimated survival function is illustrated in Figure 5.7. The results demonstrate

a similar pattern to those observed in the previous models.
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Figure 3.1: Mean and median of the observed log(VRC) curves for different regions. The left panel
shows the mean of log(VRC) over time, while the right panel shows the median of log(VRC) over

time.

Table 3.1: Estimation results of fixed effects in the linear mixed effects model for non-BP and BP
regions.

Estimate Std. Error t value
b1 -3.18003 0.03247 -97.925
b2 4.84639 0.13685 35.414
b3 -0.16938 0.16439 -1.030
b4 4.99466 0.08278 60.335
b5 2.45836 0.08976 27.389
b6 1.70035 0.19415 8.758
b7 4.02896 0.34241 11.766
b8 -1.43023 0.31835 -4.493

(a) Non-BP region

Estimate Std. Error t value
b1 -3.35331 0.03537 -94.808
b2 4.13218 0.19136 21.594
b3 -0.57333 0.22238 -2.578
b4 4.33244 0.18376 23.577
b5 1.97996 0.13946 14.197
b6 0.64094 0.31334 2.045
b7 4.01563 0.48645 8.255
b8 -3.16073 0.47079 -6.714

(b) BP region
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Figure 3.2: Mean log(VRC) curve estimated from the linear mixed effect model (3.23) v.s. true
mean log(VRC) curve.
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Table 3.2: Random effects matrices for non-BP and BP regions

(a) Non-BP region

BS1 BS2 BS3 BS4 BS5 BS6 BS7 BS8
BS1 0.00 -0.01 -0.01 0.00 0.00 -0.01 0.01 0.00
BS2 -0.01 1.64 1.91 0.30 0.76 1.14 -0.14 0.51
BS3 -0.01 1.91 2.37 0.41 0.75 1.68 -0.81 0.47
BS4 0.00 0.30 0.41 0.44 0.14 0.58 -0.10 0.12
BS5 0.00 0.76 0.75 0.14 0.79 0.19 1.22 -0.30
BS6 -0.01 1.14 1.68 0.58 0.19 3.10 -3.23 1.03
BS7 0.01 -0.14 -0.81 -0.10 1.22 -3.23 8.30 -2.07
BS8 0.00 0.51 0.47 0.12 -0.30 1.03 -2.07 3.43

(b) BP region

BS1 BS2 BS3 BS4 BS5 BS6 BS7 BS8
BS1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
BS2 0.00 2.32 2.40 1.61 1.49 0.86 3.97 -1.24
BS3 0.00 2.40 3.07 1.44 1.88 1.24 5.00 -1.36
BS4 0.00 1.61 1.44 2.18 0.91 2.01 2.04 0.41
BS5 0.00 1.49 1.88 0.91 1.34 0.36 3.50 -0.91
BS6 0.00 0.86 1.24 2.01 0.36 5.70 -1.98 3.38
BS7 0.00 3.97 5.00 2.04 3.50 -1.98 12.48 -5.26
BS8 0.00 -1.24 -1.36 0.41 -0.91 3.38 -5.26 5.84

Table 3.3: Analysis of HIV Data

Trials Covariates Est. SE P.value
logVRC -0.682 0.223 0.001

Combined Age 20− 30 -0.858 -0.511 0.093
Age > 30 -1.913 0.614 0.002
logVRC -0.434 0.290 0.135

HVTN-703 Age 20− 30 0.277 0.949 0.770
Age > 30 0.512 0.975 0.600
logVRC -0.728 0.245 0.003

HVTN-704 Age 20− 30 -0.942 0.643 0.142
Age > 30 -2.790 0.803 < 0.001

Table 3.4: Analysis of HIV Data Using Estimated X̂i(t) Based on the Method from Chapter 2

Trials Covariates Est. SE P.value
logVRC -0.517 0.180 0.004

Combined Age 20− 30 -0.983 0.503 0.051
Age > 30 -2.154 0.639 < 0.001
logVRC -0.520 0.313 0.099

HVTN-703 Age 20− 30 0.201 0.961 0.834
Age > 30 0.470 0.982 0.632
logVRC -1.274 0.479 0.008

HVTN-704 Age 20− 30 -1.594 0.983 0.105
Age > 30 -3.576 1.424 0.012
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3.8.1 Remarks

We compare the data analysis results from three fitting methods: (1) Using the induced hazard

model from Proposition 1; (2) Fitting the proportional hazard model of Chapter 2 using the observed

Xji(t); (3) Fitting the proportional hazard model of Chapter 2 using the estimated X̂i(t) The analysis

involved fitting three distinct models to assess the relationship between covariates and the hazard

of HIV infection. First, a model incorporating the proportion specified in Proposition 1 was fitted,

with results presented in Table 3.3. Second, the proportional hazard model from Chapter 2 was

fitted using the observed values Xji(t), yielding results in Table 2.3. Finally, the same proportional

hazard model was fitted using the estimated values X̂ji(t), with results detailed in Table 3.4. Across

all models, the variable log(VRC) was consistently found to be statistically significant, underscoring

its strong association with the hazard of HIV infection. Additionally, older age was associated with

a lower risk of HIV infection in all three models. These consistent findings highlight the robustness

of the results and reinforce the importance of log(VRC) and age as key predictors in the context of

HIV risk.
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3.9 Concluding Remarks

In this chapter, we study the Cox model with longitudinal covariates, say X, subject to measure-

ment error and missingness. We applied linear mixed effects model to model longitudinal covariate

measured with error and use inverse probability weighting approach to adjust for the bias introduced

from missingness. For the estimated longitudinal covariate at time t, we proposed two ways of ob-

taining: (i) using the partial information before time t to get X̂(t); (ii)using complete information

for each individual (before study end time τ). Both approaches are validated through theoretical

justification and numerical studies. The measurement error-induced hazard was then applied to

obtain the baseline hazard function. Then we devised a fast and stable EM approach, similar to

Chapter 2, to obtain the model coefficient estimators and the baseline hazard estimators. The ef-

fectiveness of these approaches are supported by theoretical justification and numerous simulation

studies. We then apply these techniques to HIV data, where the covariate log(VRC) is influenced by

both missingness and measurement error. The estimated results closely align with those obtained

under the assumption of no measurement error (as detailed in Chapter 2).



CHAPTER 4: SUPPLEMENTAL RESULTS FOR CHAPTER 2

4.1 EM Algorithm for Weighted Likelihood

For a single subject Y = (Yobs, Ymiss). For the observed data, consider the weighted log-likelihood

function

lω(θ) = ω log f(Yobs, θ),

where f(Yobs, θ) is the observed-data likelihood and ω is a weight which depends only on Yobs. Let

θ̂ be the maximizer of lω(θ), i.e. θ̂ = argmaxθ l
ω(θ).

We develop an EM algorithm to find θ̂. Let Ymiss be the miss value of latent variable. Let f(Y ) be

the complete data likelihood. At k-th iteration,

1. E-step : Compute Q(θ|θ(k)) = E(ω log f(Y ; θ)|Yobs, θ(k))

2. M-step : obtain θ(k+1) = argmaxθ Q(θ|θ(k))

3. iterative beween E- and M-steps until convergence

At each iteration of the EM algorithm, we have

Lemma 4.1. lω(θ(k+1)) = ω log f(Yobs; θ
(k+1)) ≥ ω log f(Yobs; θ

(k)) = lω(θ(k))

Proof. According to the M-step, we have Q(θ(k+1)|θ(k)) ≥ Q(θ(k)|θ(k)), that is

E(ω log f(Y ; θ(k+1))|Yobs, θ(k)) ≥ E(ω log f(Y ; θ(k))|Yobs, θ(k))
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Notice that f(Y ; θ) = f(Ymiss|Yobs; θ)f(Yobs; θ), we have

E(ω log f(Y ; θ(k+1))|Yobs, θ(k)) = E(ω log f(Ymiss|Yobs; θ(k+1))f(Yobs; θ
(k+1))|Yobs, θ(k))

= E(ω log f(Ymiss|Yobs; θ(k+1))|Yobs, θ(k)) + ω log f(Yobs; θ
(k+1))

≥ E(ω log f(Ymiss|Yobs; θ(k))|Yobs, θ(k)) + E(ω log f(Yobs; θ
(k))|Yobs, θ(k))

= E(ω log f(Ymiss|Yobs; θ(k))|Yobs, θ(k)) + ω log f(Yobs; θ
(k))

(4.1)

From the property of Kullback-Leibler divergence,

E(log f(Ymiss|Yobs; θ(k+1))|Yobs, θ(k)) ≤ E(log f(Ymiss|Yobs; θ(k))|Yobs, θ(k))

Also notice that ω depends only on the Yobs and is non-negative, we have

E(ω log f(Ymiss|Yobs; θ(k+1))|Yobs, θ(k)) ≤ E(ω log f(Ymiss|Yobs; θ(k))|Yobs, θ(k)) (4.2)

Combining inequalities (4.1), (4.2), we have

ω log f(Yobs; θ
(k+1)) ≥ ω log f(Yobs; θ

(k))

which means the weighted data likelihood function are non-decreasing at each iteration and equality

holds if and only if θ(k+1) = θ(k) from identifiability. To avoid local maxima, we suggest using a set

of different initial values of θ(0).

4.2 Some Derivation Details

P (Aji = 0, Bji = 1|ξji) = P (
∑

tjk<Tji

Wjik = 0|ξji)P (I(tjk = Tji)Wjik = 1|ξji)

= exp{ξji
∑

tjk<Tji

λke
−β⊤XjiT−γ⊤ZjiT } exp{ξjiλTjie

−β⊤XjiT−γ⊤ZjiT }ξjiλTjie
−β⊤XjiT−γ⊤ZjiT

= ξji exp{−ξjiSjiT }λTji
exp{−β⊤XjiT − γ⊤ZjiT }
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The unconditioned probability is

P (Aji = 0, Bji = 1) =

∫
ξji

P (Aji = 0, Bji = 1|ξji)f(ξji)dξji

=

∫
ξji

ξji exp{−ξjiSjiT }λTji
exp{−β⊤XjiT − γ⊤ZjiT }f(ξji)dξji

= λTji
exp{−β⊤XjiT − γ⊤ZjiT }

∫
ξji

ξji exp{−ξjiSjiT }f(ξji)dξji

= λTji
exp{−β⊤XjiT − γ⊤ZjiT }G

′
(SjiT ) exp{−G(SjiT )}

The the conditional distribution of ξji given observations is

P (ξji|Aji = 0, Bji = 1) =
P (Aji = 0, Bji = 1|ξji)f(ξji)

P (Aji = 0, Bji = 1)
=

ξji exp{−ξjiSjiT }f(ξji)
G′(SjiT ) exp{−G(SjiT )}

Thus the conditional expectation of ξji given observations is (consider whether ηji |=Wjik|(Xji, Zji))

Ê(ξji) = E(ξji|Aji = 0, Bji = 1)

=

∫
ξji

ξjiP (ξji|Aji = 0, Bji = 1)dξji

=

∫
ξji

ξ2ji exp{−ξjiSjiT }f(ξji)
G′(SjiT ) exp{−G(SjiT )}

dξji

=
1

G′(SjiT ) exp{−G(SjiT )}

∫
ξji

ξ2ji exp{−ξjiSjiT }f(ξji)dξji

=
exp{G(SjiT )}
G′(SjiT )

[
(G

′
(SjiT ))

2 exp{−G(SjiT )} −G
′′
(SjiT ) exp{−G(SjiT )

]
= G

′
(SjiT )−

G
′′
(SjiT )

G′(SjiT )

If ∆2ji = 1, strictly interval censored, the posterior distribution of the given observation,

f(ξji|Oji,∆2ji = 1) = f(ξji|Cji = 0, Dji > 0).

Notice that

P (Cji = 0, Dji > 0) =

∫
ξji

P (Cji = 0, Dji > 0|ξji)f(ξji)dξji
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and

P (Cji = 0, Dji > 0|ξji) = P (Cji = 0|ξji)− P (Cji = 0, Dji = 0|ξji)

= P (
∑

tjk≤Lji

Wjik = 0|ξji)− P (
∑

tjk≤Rji

Wjik = 0|ξji)

= exp{−ξji
∑

tjk≤Lji

λjke
β⊤Xjik+γ⊤Zjik} − exp{−ξji

∑
tjk≤Rji

λjke
β⊤Xjik+γ⊤Zjik}

= exp{−ξjiSjiL} − exp{−ξjiSjiR}

Therefore,

P (Cji = 0, Dji > 0) =

∫
ξji

P (Cji = 0, Dji > 0|ξji)f(ξji)dξji

=

∫
ξji

(exp{−ξjiSjiL} − exp{−ξjiSjiR})f(ξji)dξji

= exp{−G(SjiL)} − exp{−G(SjiR)}

Thus, the posterior distribution of the given observation,

f(ξji|Oji,∆2ji = 1) = f(ξji|Cji = 0, Dji > 0)

=
f(Cji = 0, Dji > 0|ξji)f(ξji)

P (Cji = 0, Dji > 0)

=
(exp{−ξjiSjiL} − exp{−ξjiSjiR})f(ξji)

exp{−G(SjiL)} − exp{−G(SjiR)}

So the conditional expectation is with strictly interval censored case is

Ê(ξji) =
∫
ξji

ξjif(ξji|Cji = 0, Dji > 0)dξji

=

∫
ξji

ξji
(exp{−ξjiSjiL} − exp{−ξjiSjiR})f(ξji)

exp{−G(SjiL)} − exp{−G(SjiR)}
dξji

=
G

′
(SjiL) exp{−G(SjiL)} −G

′
(SjiR) exp{−G(SjiR)}

exp{−G(SjiL)} − exp{−G(SjiR)}
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Now we discuss Ê(Wjik). If ∆1ji = 1, which means the data is observed exactly, we have

Ê(Wjik) = E(Wjik|Aji = 0, Bji = 1)

=


1, tjk = Tji

0, tjk < Tji

If ∆2ji = 1 and tjk ≤ Lji, we have

Ê(Wjik) = E(Wjik|Cji = 0, Dji > 0)

= E(Wjik|
∑

tjk≤Lji

Wjik = 0,
∑

Lji<tjk≤Rji

Wjik > 0)

= 0, tjk ≤ Lji

When and Lji < tk ≤ Rji with Rji <∞, we have

Ê(Wjik) = Eξji{E(Wjik|ξji, Cji = 0, Dji > 0)|Cji = 0, Dji > 0}

We first need to compute E(Wjik|ξji, Cji = 0, Dji > 0). Notice that

P (
∑

Lji<tjk≤Rji

Wjik > 0|ξji) = 1− P (
∑

Lji<tjk≤Rji

Wjik = 0|ξji)

= 1− exp{−ξji(SjiR − SjiL)}

and thus, that

P (Wjik = m|ξji,
∑

Lji<tjk≤Rji

Wjik > 0) =
P (Wjik = m,

∑
Lji<tjk≤Rji

Wjik > 0|ξji)
P (
∑

Lji<tjk≤Rji
Wjik > 0|ξji)

=
(ξjiλjke

β⊤Xjik+γ⊤Zjik)m exp{−ξjiλjkeβ
⊤Xjik+γ⊤Zjik}/m!

1− exp{−ξji(SjiR − SjiL)}
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Then we have

Eξji(Wjik|ξji,
∑

Lji<tjk≤Rji

Wjik > 0)

=

∞∑
m=1

m
(ξjiλjke

β⊤Xjik+γ⊤Zjik)m exp{−ξjiλjkeβ
⊤Xjik+γ⊤Zjik}/m!

1− exp{−ξji(SjiR − SjiL)}

=

∑∞
m=1m(ξjiλjke

β⊤Xjik+γ⊤Zjik)m exp{−ξjiλjkeβ
⊤Xjik+γ⊤Zjik}/m!

1− exp{−ξji(SjiR − SjiL)}

=
ξjiλjke

β⊤Xjik+γ⊤Zjik

1− exp{−ξji(SjiR − SjiL)}

Finally, the expectation of Wjik given the observations is

Ê(Wjik) = Eξji{E(Wjik|ξji, Cji = 0, Dji > 0)|Cji = 0, Dji > 0}

= Eξji{
ξjiλjke

β⊤Xjik+γ⊤Zjik

1− exp{−ξji(SjiR − SjiL)}
|Cji = 0, Dji > 0}

=

∫
ξji

ξjiλjke
β⊤Xjik+γ⊤Zjik

1− exp{−ξji(SjiR − SjiL)}
f(ξji|Cji = 0, Dji > 0)dξji

=

∫
ξji

ξjiλjke
β⊤Xjik+γ⊤Zjik

1− exp{−ξji(SjiR − SjiL)}
(exp{−ξjiSjiL} − exp{−ξjiSjiR})f(ξji)

exp{−G(SjiL)} − exp{−G(SjiR)}
dξji

=
λjke

β⊤Xjik+γ⊤Zjik

exp{−G(SjiL)} − exp{−G(SjiR)}

∫
ξji

ξji(exp{−ξjiSjiL} − exp{−ξjiSjiR})f(ξji)
1− exp{−ξji(SjiR − SjiL)}

dξji

=
λjke

β⊤Xjik+γ⊤Zjik

exp{−G(SjiL)} − exp{−G(SjiR)}

∫
ξji

ξjif(ξji) exp{−ξjiSjiL}dξji

=
λjk exp{β⊤Xjik + γ⊤Zjik}

exp{−G(SjiL)} − exp{−G(SjiR)}
G

′
(SjiL) exp{−G(SjiL)}

For the right censored case, namely, ∆1ji = ∆2ji = 0; The observed data consists of Oji =

(Rji, Xji, Cji = 0); Then the conditional expectation of ξji given observations is Ê(ξji). Notice that



59

the

P (ξji|Oji) =
P (Oji|ξji)f(ξji)

P (Oji)

=
P (Cji = 0|ξji)f(ξji)
P (Cji = 0, Dji = 0)

=
P (
∑

tjk≤Rji
Wjik = 0|ξji)f(ξji)

P (
∑

tk≤Rji
Wjik = 0)

=
exp{−ξjiSjiL}f(ξji)∫

ξji
exp{−ξjiSjiL}f(ξji)dξji

=
exp{−ξjiSjiL}f(ξji)

exp{−G(SjiL)}

Then we have

Ê(ξji) = E(ξji|Oji)

=

∫
ξji

ξjif(ξji|Oji)dξji

=

∫
ξji

ξji
exp{−ξjiSjiL}f(ξji)

exp{−G(SjiL)}
dξji

=
G

′
(SjiL) exp{−G(SjiL)}
exp{−G(SjiL)}

= G
′
(SjiL)

The conditional expectation of Wjik is

Ê(Wjik) = Eξji{E(Wjik|Oji, ξji)|Oji}

= Eξji{
∞∑

m=1

m× P (Wjik = m|Oji, ξji)|Oji}

= Eξji{
∞∑

m=1

m× 0|Oji}

= 0

4.3 Proofs of Theorems

4.3.1 Lemmas

Lemma 1. For β, γ ∈ B, α ∈ B2,Λ ∈ M, Lωα0 (β, γ,Λ) = O(1) and Lωα̂n (β, γ,Λ) = Op(1)

Proof. Similar to consistency proof, let c1 and c2 be positive constants such c1 ≤ exp(β⊤X(t) +
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γ⊤Z(t)) ≤ c2 for β, γ ∈ B and Ġ(·) is bounded Λ{T} = O(1) with Λ ∈ M. Then we have

exp

{
ωα0∆1 log

{
G

′
[ ∫ T

0

exp{β⊤X(t) + γ⊤Z(t)}dΛ(t)
]
exp{β⊤X(T ) + γ⊤Z(t)}Λ{T}

}
exp

(
−G

[ ∫ T

0

exp{β⊤X(t) + γ⊤Z(t)}dΛ(t)
])}

≤ exp

{
ωα0

log

{
G′[

∫ T

0

c2dΛ(t)]c2O(1) exp

(
−G[

∫ T

0

c1dΛ(t)]

)}}
= exp

{
ωα0

log

{
G′[c2Λ(T )]c2O(1) exp

(
−G[c1Λ(T )]

)}}
≤ exp{ωα0

O(1)}

= O(1)

exp

{
ωα0

∆2 log

{
exp

(
−G

[ ∫ L

0

exp{β⊤X(t) + γ⊤Z(t)}dΛ(t)
])

− exp

(
−G

[ ∫ R

0

exp{β⊤X(t) + γ⊤Z(t)}dΛ(t)
])}}

≤ exp

{
ωα0

∆2 log

{
exp

(
−G

[ ∫ L

0

exp{β⊤X(t) + γ⊤Z(t)}dΛ(t)
])}}

= exp

{
− ωα0

∆2G

[ ∫ L

0

exp{β⊤X(t) + γ⊤Z(t)}dΛ(t)
]}

≤ exp

{
− ωα0∆2G

[ ∫ L

0

c1dΛ(t)

]}
≤ exp{0} = 1

exp

{
ωα0∆3 log

{
exp

(
−G

[ ∫ L

0

exp{β⊤X(t) + γZ(t)}dΛ(t)
])}}

= exp

{
− ωα0∆3G

[ ∫ L

0

exp{β⊤X(t) + γZ(t)}dΛ(t)
]}

≤ exp

{
− ωα0

∆2G

[ ∫ L

0

c1dΛ(t)

]}
≤ 1

Therefore, Lωα0 (β, γ,Λ) = O(1) and and Lωα̂n (β, γ,Λ) = Op(1) with β, γ ∈ B, α ∈ B2,Λ ∈ M.
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Thus we have

∣∣∣∣ log(1− a+ a
Lωα̂n (β, γ,Λ)

Lωα̂n (β0, γ0, Λ̃0)

)
− log

(
1− a+ a

Lωα0 (β, γ,Λ)

Lωα0 (β0, γ0, Λ̃0)

)∣∣∣∣
≤ Op(1)

∣∣∣∣ Lωα̂n (β, γ,Λ)

Lωα̂n (β0, γ0, Λ̃0)
− Lωα0 (β, γ,Λ)

Lωα0 (β0, γ0, Λ̃0)

∣∣∣∣
≤ Op(1)

∣∣∣∣Lωα̂n (β, γ,Λ)Lωα0 (β0, γ0, Λ̃0)− Lωα0 (β, γ,Λ)Lωα̂n (β0, γ0, Λ̃0)

∣∣∣∣
= Op(1)

∣∣∣∣Lωα̂n (β, γ,Λ)Lωα0 (β0, γ0, Λ̃0)− Lωα0 (β, γ,Λ)Lωα0 (β0, γ0, Λ̃0)

+ Lωα0 (β, γ,Λ)Lωα0 (β0, γ0, Λ̃0)− Lωα0 (β, γ,Λ)Lωα̂n (β0, γ0, Λ̃0)

∣∣∣∣
≤ Op(1)

(
Lωα0 (β0, γ0, Λ̃0)

∣∣∣∣Lωα̂n (β, γ,Λ)− Lωα0 (β, γ,Λ)

∣∣∣∣
+ Lωα0 (β, γ,Λ)

∣∣∣∣Lωα̂n (β0, γ0, Λ̃0)− Lωα0 (β0, γ0, Λ̃0)

∣∣∣∣)
≤ Op(1)O(1)

≤ Op(1)

Lemma 2.

E[ϕ̇ωα0 (θ0)(h)] = −E[ϕωα0 (θ0)(h)]
2

Proof.

E[ϕ̇ωα0 (θ0)(h)] = E
[
d

dϵ

(
d

dϵ
logLωα0 (βϵ, γ,Λ)

)]∣∣∣∣
ϵ=0

+ E
[
d

dϵ

(
d

dϵ
logLωα0 (β, γϵ,Λ)

)]∣∣∣∣
ϵ=0

+ E
[
d

dϵ

(
d

dϵ
logLωα0 (β, γ,Λϵ)

)]∣∣∣∣
ϵ=0

+ crossterm

For the first term, E
[

d
dϵ

(
d
dϵ logL

ωα0 (βϵ, γ,Λ)

)]∣∣∣∣
ϵ=0

, we can further compute it as

E
[
d

dϵ

(
d

dϵ
logLωα0 (βϵ, γ,Λ)

)]∣∣∣∣
ϵ=0

= E
[
d

dϵ

( d
dϵL

ωα0 (βϵ, γ,Λ)

Lωα0 (βϵ, γ,Λ)

)∣∣∣∣
ϵ=0

]
= E

[( d2

dϵ2L
ωα0 (βϵ, γ,Λ)

Lωα0 (βϵ, γ,Λ)
−
[ d

dϵL
ωα0 (βϵ, γ,Λ)

Lωα0 (βϵ, γ,Λ)

]2)∣∣∣∣
ϵ=0

]
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For E
[(

d2

dϵ2
Lωα0 (βϵ,γ,Λ)

Lωα0 (βϵ,γ,Λ)

)∣∣∣∣
ϵ=0

]
, we can further expand it as

E
[( d2

dϵ2L
ωα0 (βϵ, γ,Λ)

Lωα0 (βϵ, γ,Λ)

)∣∣∣∣
ϵ=0

]
= E

[ d
dϵ

d
dϵL

ωα0 (βϵ, γ,Λ)

Lωα0 (βϵ, γ,Λ)

∣∣∣∣
ϵ=0

]
= E

[
d

dϵ

( d
dϵL

ωα0 (βϵ, γ,Λ)

Lωα0 (β, γ,Λ)

)∣∣∣∣
ϵ=0

]
=

d

dϵ
E
[( d

dϵL
ωα0 (βϵ, γ,Λ)

Lωα0 (β, γ,Λ)

)∣∣∣∣
ϵ=0

]
=

d

dϵ
E
[
d

dϵ
ωα0(η, Z) logL(βϵ, γ,Λ)

∣∣∣∣
ϵ=0

]
=

d

dϵ
E
[
E
[
d

dϵ
ωα0(η, Z) logL(βϵ, γ,Λ)|ϵ=0

∣∣∣∣Z,∆1,∆1, L, T,R

]]
=

d

dϵ
E
[
d

dϵ
E
[
ωα0

(η, Z) logL(βϵ, γ,Λ)

∣∣∣∣Z,∆1,∆1, L, T,R

]∣∣∣∣
ϵ=0

]
=

d

dϵ
E
[
E
[
ωα0

(η, Z)

∣∣∣∣Z,∆1,∆2, L, T,R

]
× d

dϵ
E
[
logL(βϵ, γ,Λ)

∣∣∣∣Z,∆1,∆1, L, T,R

]∣∣∣∣
ϵ=0

]
=

d

dϵ
E
[
d

dϵ
E
[
logL(βϵ, γ,Λ)

∣∣∣∣Z,∆1,∆1, L, T,R

]∣∣∣∣
ϵ=0

]
=

d

dϵ
E
[
E
[
d

dϵ
logL(βϵ, γ,Λ)

∣∣∣∣Z,∆1,∆1, L, T,R

∣∣∣∣
ϵ=0

]]
=

d

dϵ
E
[
d

dϵ
logL(βϵ, γ,Λ)

∣∣∣∣
ϵ=0

]
︸ ︷︷ ︸

independent of ϵ

= 0

Thus, we reach the conclusion

E
[
d

dϵ

(
d

dϵ
logLωα0 (βϵ, γ,Λ)

)]∣∣∣∣
ϵ=0

= −E
[([ d

dϵL
ωα0 (βϵ, γ,Λ)

Lωα0 (βϵ, γ,Λ)

]2)∣∣∣∣
ϵ=0

]

Similarly, we have

E
[
d

dϵ

(
d

dϵ
logLωα0 (β, γϵ,Λ)

)]∣∣∣∣
ϵ=0

= −E
[([ d

dϵL
ωα0 (β, γϵ,Λ)

Lωα0 (βϵ, γ,Λ)

]2)∣∣∣∣
ϵ=0

]
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,

E
[
d

dϵ

(
d

dϵ
logLωα0 (β, γ,Λϵ)

)]∣∣∣∣
ϵ=0

= −E
[([ d

dϵL
ωα0 (βϵ, γ,Λ)

Lωα0 (β, γ,Λϵ)

]2)∣∣∣∣
ϵ=0

]

and cross terms can be proved similarly. Thus, we have

E[ϕ̇ωα0 (θ0)(h)] = −E[ϕωα0 (θ0)(h)]
2

Lemma 3. supθ∈Θ ∥
√
n(Φn,θ − Φθ)(α̂n)−

√
n(Φn,θ − Φθ)(α0)∥H = o∗p(1)

Proof. We show the above equation holds by using the lemma 3.3.5 of van der Vaart and Wellner

(1996). The proof consists of two steps:

1. First we show

sup
h∈H

P(ϕωα̂n (θ)(h)− ϕωα0 (θ)(h))2
p−→ 0

We expand the above equation and get

P(ϕωα̂n (θ)(h)− ϕωα0 (θ)(h))2

= P(ϕωα̂n
1 (θ)(h1)− ϕ

ωα0
1 (θ)(h1) + ϕ

ωα̂n
2 (θ)(h2)− ϕ

ωα0
2 (θ)(h2) + ϕ

ωα̂n
3 (θ)(h3)− ϕ

ωα0
3 (θ)(h3))

2

≤ 3P(ϕωα̂n
1 (θ)(h1)− ϕ

ωα0
1 (θ)(h1))

2︸ ︷︷ ︸
A

+3P(ϕωα̂n
2 (θ)(h2)− ϕ

ωα0
2 (θ)(h2))

2︸ ︷︷ ︸
B

+3P(ϕωα̂n
3 (θ)(h3)− ϕ

ωα0
3 (θ)(h3))

2︸ ︷︷ ︸
C

We prove that part A, B, C converges to 0 in probability.
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A = P(ϕωα̂n
1 (θ)(h1)− ϕ

ωα0
1 (θ)(h1))

2

= P
(
(ωα̂n − ωα0)∆1

{
G̈[I0(T ; θ)]I1(T ; θ)

Ġ[I0(T ; θ)]
− Ġ[I0(T ; θ)]I1(T ; θ) +X(T )

}
h1

+ (ωα̂n − ωα0)∆2
exp{−G[I0(R; θ)]}Ġ[I0(R; θ)]I1(R; θ)− exp{−G[I0(L; θ)]}Ġ[I0(L; θ)]I1(L; θ)

exp{−G[I0(L; θ)]} − exp{−G[I0(R; θ)]}
h1

+ (ωα0
− ωα̂n

)(1−∆1 −∆2)Ġ[I0(L; θ)]I1(L; θ)h1

)2

≤ 3P

(
(ωα̂n

− ωα0
)∆1

{
G̈[I0(T ; θ)]I1(T ; θ)

Ġ[I0(T ; θ)]
− Ġ[I0(T ; θ)]I1(T ; θ) +X(T )

}
h1

)2

+ 3P

(
(ωα̂n − ωα0)∆2

exp{−G[I0(R; θ)]}Ġ[I0(R; θ)]I1(R; θ)− exp{−G[I0(L; θ)]}Ġ[I0(L; θ)]I1(L; θ)
exp{−G[I0(L; θ)]} − exp{−G[I0(R; θ)]}

h1

)2

+ 3P
(
(ωα0

− ωα̂n
)(1−∆1 −∆2)Ġ[I0(L; θ)]I1(L; θ)h1

)2
Define I0(u; θ) =

∫ u

0
exp{β⊤X(t)+γ⊤Z(t)}dΛ(t), I1(u; θ) =

∫ u

0
exp{β⊤X(t)+γ⊤Z(t)}X(t)dΛ(t),

I2(u; θ) =
∫ u

0
exp{β⊤X(t)+γ⊤Z(t)}Z(t)dΛ(t), I3(u; θ) =

∫ u

0
exp{β⊤X(t)+γ⊤Z(t)}h3(t)dΛ(t).

Notice that c1 ≤ exp(β⊤X(t) + γ⊤Z(t)) ≤ c2 for β, γ ∈ B and Ġ(·) is bounded Λ{T} = O(1).

c1Λ(u) ≤
∫ u

0

exp{β⊤X(t) + γ⊤Z(t)}dΛ(t) = I0(u; θ) ≤
∫ u

0

c2dΛ(t) = c2Λ(u)

I1(u; θ) =

∫ u

0

exp{β⊤X(t) + γ⊤Z(t)}X(t)dΛ(t) ≤ c2kxΛ(u)

Thus, we have

∣∣∣∣(ωα̂n
− ωα0

)∆1

{
G̈[I0(T ; θ)]I1(T ; θ)

Ġ[I0(T ; θ)]
− Ġ[I0(T ; θ)]I1(T ; θ) +X(T )

}
h1

∣∣∣∣
≤ 2

σ

∣∣∣∣ G̈[c2Λ(T )]c2kxΛ(T )Ġ[c1Λ(T )]
+ Ġ[c2Λ(T )]I1(T ; θ) +X(T )

∣∣∣∣M = O(1)
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and

∣∣∣∣(ωα̂n − ωα0)∆2
exp{−G[I0(R; θ)]}Ġ[I0(R; θ)]I1(R; θ)− exp{−G[I0(L; θ)]}Ġ[I0(L; θ)]I1(L; θ)

exp{−G[I0(L; θ)]} − exp{−G[I0(R; θ)]}

∣∣∣∣M
≤ 2

σ

∣∣∣∣exp{−G[I0(L; θ)]}Ġ[I0(R; θ)]I1(R; θ)− exp{−G[I0(R; θ)]}Ġ[I0(L; θ)]I1(L; θ)
exp{−G[I0(L; θ)]} − exp{−G[I0(R; θ)]}

∣∣∣∣M
≤ 2

σ

∣∣∣∣ exp{−G[I0(L; θ)]}Ġ[I0(R; θ)]I1(R; θ)
exp{−G[I0(L; θ)]} − exp{−G[I0(R; θ)]}

∣∣∣∣M
≤ 2M

σ

∣∣∣∣ exp{−G[c1Λ(L)]}Ġ[c2Λ(R)]c2Λ(R)kx
exp{−G[I0(L; θ)]} − exp{−G[I0(R; θ)]}

∣∣∣∣ = O(1)

and

∣∣∣∣(ωα̂n
− ωα0

)(1−∆1 −∆2)Ġ[I0(L; θ)]I1(L; θ)h1

∣∣∣∣
≤ 2

σ

∣∣∣∣Ġ[c2Λ(L)]c2kxΛ(L)∣∣∣∣M = O(1)

Since ωα̂n

p−→ ωα0
, by dominated convergence theorem and ∥h∥H ≤M , we can prove that

sup
h∈H

A
p−→ 0

and by similar argument we can prove that B
p−→ 0, C

p−→ 0 and thus,

sup
h∈H

P(ϕωα̂n (θ)(h)− ϕωα0 (θ)(h))2
p−→ 0

2. By lemma 3.3.5 of van der Vaart and Wellner (1996) and step 1, we have

sup
θ∈Θ

∥
√
n(Φn,θ − Φθ)(α̂n)−

√
n(Φn,θ − Φθ)(α0)∥H = o∗p(1 +

√
n∥α̂n − α0∥)

Also by the fact that
√
n(α̂− α0) = Op(1) from Saegusa and Wellner (2013), we have

sup
θ∈Θ

∥
√
n(Φn,θ − Φθ)(α̂n)−

√
n(Φn,θ − Φθ)(α0)∥H = o∗p(1)

Lemma 4. The conditional distribution of
√
n(α̂− α̃) given the data converges weakly to the asymp-

totic distribution of
√
n(α̂− α0)

Proof. We proof the asymptotic equivalence of
√
n(α̂ − α0) and

√
n(α̂ − α̃) by theorem 5.21 of

van der Vaart (2000) and theorem 2.6 of Kosorok (2007). Let Ψn(α) = Pnψα, Ψ̃n(α) = P̃nψα and
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Ψ(α) = Pψα. From definition, α̂n is a sequence of estimator satisfying Ψn(α̂n) = 0, α̃n is a sequence

of estimator satisfying Ψ̃n(α̃n) = 0 and α0 is the true value and Ψ(α0) = 0. Vα0
is the non-singular

derivative of Ψ(α). By theorem 5.21 of van der Vaart (2000), we have

√
n(α̂n − α0) = −V −1

α0

√
nPnψα0

+ op(1)

= −V −1
α0

√
n(Pn − P)ψα0

+ op(1)

⇝ −V −1
α0

Gpψα0

(4.3)

Since the class {ψα : α ∈ B} is Donsker by Lemma 5, we have

G̃nψα̃n
− G̃nψα0

+Gnψα̃n
−Gnψα0

P−→ 0

and then,

√
nP(ψα0

− ψα̃n
) =

√
nP̃nψα0

+ op(1)

Similarly, we have

√
n(α̃n − α0) = −V −1

α0

√
nP̃nψα0

+ op(1) (4.4)

Combining equations (4.3) and (4.4), we have

√
n(α̃n − α̂n) = −V −1

α0

√
n(P̃n − P)ψα0

+ op(1)

= −V −1
α0

G̃nψα0
+ op(1)

⇝ −V −1
α0

Gpψα0

(4.5)

Properties of ψα: Notice the α̂ = max l(α; η, z) = max
∑n

i=1

[
ηiα

⊤zi − log

(
1 + exp(α⊤zi)

)]
which equivalent to the zero point of

∑n
i=1

(
ηi− 1

1+exp(−α⊤zi)

)
zi. We have ψα(z) =

(
η− 1

1+exp(−α⊤z)

)
z

and Ψ. By definition, we have Ψn(α) = Pnψα, Ψ(α) = PΨn(α) and Ψn(α̂) = Ψ(α0) = 0.

Lemma 5. The class {ψα(Z(t)) : α ∈ B, t ∈ [0, τ ]} is Donsker.

Proof. From definition, ψα(Z) =

(
η − 1

1+exp(−α⊤Z(t))

)
z, where z are uniformly bounded with
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uniformly bounded total variation over [0, τ ]. The class {Z(t) : t ∈ [0, τ ]} are Donkser by theorem

2.7.5 of van der Vaart and Wellner (1996) and Example 19.11 of van der Vaart (2000). The class of

{η} is also P-Donsker since they are bounded and square-integrable (p.270 of van der Vaart (2000)).

Since α ∈ B which is a compact set, thus {α ∈ B} is Donsker and so {α⊤Z(t) : t ∈ [0, τ ]}. The class

{exp{(−α⊤Z(t))}} is P-Donkser since exponential function is Lipschitz continuous on compact set.

So the class {ψα(Z(t)) : α ∈ B, t ∈ [0, τ ]} is P-Donsker by the preservation property in van der Vaart

and Wellner (1996) Theorem 2.10.6.

4.3.2 Proof of Theorem 1

Proof. Let Pn denote the empirical measure of the data Xi = {∆1i,∆2i,∆1iTi, Li,∆2iRi, X̄i, Z̄i}

for i = 1, · · · , n and P denote the true probability measure. Let f be a function form Xi to R. The

corresponding empirical process is Gnf = n
1
2 (Pnf − Pf).

For each single subject, the weighted log-likelihood for a single subject is

lωα0 (β, γ,Λ) =

{
ωα0∆1

[
log Ġ

(∫ Ti

0

eβ
⊤X(s)+γ⊤Z(s)dΛ(s)

)
−G

(∫ Ti

0

eβ
⊤X(s)+γ⊤Z(s)dΛ(s)

)
+ log Λ̇(Ti) + (β⊤X(Ti) + γ⊤Z(Ti))

]
+ ωα0

∆2 log

[
exp

{
−G

(∫ Li

0

exp{β⊤X(s) + γ⊤Z(s)}dΛ(s)
)}

− exp

{
−G

(∫ Ri

0

exp{β⊤X(s) + γ⊤Z(s)}dΛ(s)
)}]

− ωα0
(1−∆1 −∆2)G

(∫ Li

0

eβ
⊤X(s)+γ⊤Z(s)dΛ(s)

)
(4.6)

where ω1, ω2 and ω3 are weights for exact observation, interval censored observation and right

censored observation separately. They are defined as

ω =
η

q1
∆1 +

η

q2
∆2 +

η

q3
(1−∆1 −∆2) (4.7)

where q1, q2, q3 are defined as q1 = Pr(η = 1|Z,∆1 = 1), q2 = Pr(η = 1|Z,∆2 = 1), q3 = Pr(η =

1|Z, 1−∆1 −∆2 = 1). We also define 0
0 = 0 and Lω(β, γ,Λ) = exp{lω(β, γ,Λ)}.

Following the proof of Zhou et al. (2021), we first show that lim supn Λ̂(τ) <∞. Let Ui0 = ∆1iTi,
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U1i = ∆2iLi and U2i = ∆2iRi. We define

Λ̃0(t) =

∫ t

0

Λ
′

0(s)

f1(s)
d

{
1

n

n∑
i=1

2∑
j=0

I(Uij ≤ s)

}

where f1(t) is the derivative of the function F1(t) = E

{∑2
j=0 I(Uij ≤ t)

}
for t ∈ [ζ, τ ]. Then

Λ̃0(t) is a step function with jumps only at {t1, · · · , tm}. Since 1
n

∑n
i=1

∑2
j=0 I(Uij ≤ s)

a.s.−−→ F1(s)

uniformly in s ∈ [ζ, τ ] as n → ∞, we have that Λ̃0(t)
a.s.−−→ Λ0(t) uniformly in t ∈ [ζ, τ ] as n → ∞.

We want to show that the class L = {L(β, γ,Λ) : β, γ ∈ B,Λ ∈ M} is a Donsker class, where M

denotes the class of non-decreasing functions Λ with bounded total variations in [0, τ ] and satisfying

Λ(0) = 0.

Following Zeng et al. (2016), X(t), Z(t) belong to Donsker classes indexed by t because bounded

total variation and

F0 =

{∫ T

0

exp{β⊤X(t) + γ⊤Z(t)}dΛ(t) : β, γ ∈ B,Λ ∈ M
}

is a Donsker class since it is a convex hull of functions

{
I(T ≥ s) exp{β⊤X(s)+γ⊤Z(s)}

}
. Similarly,

F1 =

{∫ L

0

exp{β⊤X(t) + γ⊤Z(t)}dΛ(t) : β ∈ B,Λ ∈ M
}

and

F2 =

{∫ R

0

exp{β⊤X(t) + γ⊤Z(t)}dΛ(t) : β ∈ B,Λ ∈ M
}

are Donsker classes. Since G is twice continuously differentiable, L is a Donsker class due to the

preservation of the Donsker property under Lipschitz-continuous transformations. Notice that

exp

(
−G

[ ∫ L

0

exp{β⊤
0 X(t) + γ⊤0 Z(t)}dΛ̃0(t)

])
− exp

(
−G

[ ∫ R

0

exp{β⊤
0 X(t) + γ⊤0 Z(t)}dΛ̃0(t)

])
I(R <∞)

is bounded away from 0 and Gnl
ωα̂n (β0, γ0, Λ̃0)⇝ GP l

ωα0 (β0, γ0, Λ̃0). Therefore, as n→ 0,

|Pnl
ωα̂n (β0, γ0, Λ̃0)− Plωα̂n (β0, γ0, Λ̃0)|

a.s.−−→ 0

On the other hand, by the definition of (β̂, γ̂, Λ̂), we have Pnl
ωα̂n (β̂, γ̂, Λ̂) ≥ Pnl

ωα̂n (β0, γ0, Λ̃0). By

the construction of Λ̃0, which implies Λ̃0(t)
a.s.−−→ Λ0(t), we have Plωα̂n (β0, γ0, Λ̃0)

a.s.−−→ Plωα0 (β0, γ0,Λ0).
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Since Plωα0 (β0, γ0,Λ0) is finite, we obtain that with probability 1,

lim inf
n

Pnl
ωα̂n (β̂, γ̂, Λ̂) ≥ O(1)

Let c1 and c2 be positive constants such c1 ≤ exp(β⊤X(t) + γ⊤Z(t)) ≤ c2 for β, γ ∈ B. Notice that

G
′
(·) is bounded Λ̂{T} = O(1). We have

ωα̂n
∆1 log

{
G

′
[ ∫ T

0

exp{β̂⊤X(t) + γ̂⊤Z(t)}dΛ̂(t)
]
exp{β̂⊤X(T ) + γ̂⊤Z(t)}Λ̂{T}

exp

(
−G

[ ∫ T

0

exp{β̂⊤X(t) + γ̂⊤Z(t)}dΛ̂(t)
])}

≤ ωα̂n
∆1 log

{
G′[

∫ T

0

c2dΛ̂(t)]c2O(1) exp

(
−G[

∫ T

0

c1dΛ̂(t)]

)}
= ωα̂n

∆1 log

{
G′[c2Λ̂(T )]c2O(1) exp

(
−G[c1Λ̂(T )]

)}
≤ ωα̂nO(1)

Notice that lωα̂n (β̂, γ̂, Λ̂) =
∑n

i=1 ωα̂n∆1i log

{
G

′
[ ∫ T

0
exp{β̂⊤X(t)+γ̂Z(t)}dΛ̂(t)

]
exp{β̂⊤X(T )+

γ̂Z(t)}Λ̂{T} exp
(
−G
[ ∫ T

0
exp{β̂⊤X(t)+γ̂Z(t)}dΛ̂(t)

])}
+
∑n

i=1 ωα̂n∆2i log

{
exp

(
−G
[ ∫ Li

0
exp{β̂⊤X(t)+

γ̂Z(t)}dΛ(t)
])

−exp

(
−G
[ ∫ Ri

0
exp{β̂⊤X(t)+γ̂Z(t)}dΛ(t)

])}
+
∑n

i=1 ωα̂n
(1−∆1i−∆2i) log

{
exp

(
−

G

[ ∫ Li

0
exp{β̂⊤X(t) + γ̂Z(t)}dΛ(t)

])
. Then we have

Pnl
ωα̂n (β̂, γ̂, Λ̂) =

1

n

n∑
i=1

ωα̂n∆1i log

{
G

′
[ ∫ T

0

exp{β̂⊤X(t) + γ̂Z(t)}dΛ̂(t)
]
exp{β̂⊤X(T ) + γ̂Z(t)}Λ̂{T}

exp

(
−G

[ ∫ T

0

exp{β̂⊤X(t) + γ̂Z(t)}dΛ̂(t)
])}

+
1

n

n∑
i=1

ωα̂n∆2i log

{
exp

(
−G

[ ∫ Li

0

exp{β̂⊤X(t) + γ̂Z(t)}dΛ(t)
])

− exp

(
−G

[ ∫ Ri

0

exp{β̂⊤X(t) + γ̂Z(t)}dΛ(t)
])}

+
1

n

n∑
i=1

ωα̂n(1−∆1i −∆2i) log

{
exp

(
−G

[ ∫ Li

0

exp{β̂⊤X(t) + γ̂Z(t)}dΛ(t)
])
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Thus, we can conclude

lim inf
n

Pnl
ωα̂n (β̂, γ̂, Λ̂)

= lim inf
n

1

n

n∑
i=1

ωα̂n∆1i log

{
G

′
[ ∫ T

0

exp{β̂⊤X(t) + γ̂Z(t)}dΛ̂(t)
]
exp{β̂⊤X(T ) + γ̂Z(t)}Λ̂{T}

exp

(
−G

[ ∫ T

0

exp{β̂⊤X(t) + γ̂Z(t)}dΛ̂(t)
])}

+ lim inf
n

1

n

n∑
i=1

ωα̂n∆2i log

{
exp

(
−G

[ ∫ Li

0

exp{β̂⊤X(t) + γ̂Z(t)}dΛ(t)
])

− exp

(
−G

[ ∫ Ri

0

exp{β̂⊤X(t) + γ̂Z(t)}dΛ(t)
])}

+ lim inf
n

1

n

n∑
i=1

ωα̂n(1−∆1i −∆2i) log

{
exp

(
−G

[ ∫ Li

0

exp{β̂⊤X(t) + γ̂Z(t)}dΛ(t)
])

≤ lim sup
n

1

n

n∑
i=1

ωα̂n∆1iO(1) + lim sup
n

1

n

n∑
i=1

ωα̂n∆2i log

{
exp

(
−G

[ ∫ Li

0

exp{β̂⊤X(t) + γ̂Z(t)}dΛ(t)
])}

+ lim sup
n

1

n

n∑
i=1

ωα̂n(1−∆1i −∆2i) log

{
exp

(
−G

[ ∫ Li

0

exp{β̂⊤X(t) + γ̂Z(t)}dΛ(t)
])}

≤ lim sup
n

Pn(ωα̂n)O(1)− lim sup
n

Pn

(
ωα̂n

∆2G

[ ∫ L

0

exp{β̂⊤X(t) + γ̂Z(t)}dΛ̂(t)
])

− lim sup
n

Pn

(
ωα̂n(1−∆1 −∆2)G

[ ∫ L

0

exp{β̂⊤X(t) + γ̂Z(t)}dΛ̂(t)
])

≤ O(1)− lim sup
n

Pn

(
ωα̂n(1−∆1 −∆2)G

[ ∫ L

0

exp{β̂⊤X(t) + γ̂Z(t)}dΛ̂(t)
])

≤ O(1)− lim sup
n

Pn

(
ωα̂n

(1−∆1 −∆2)G

[
c1Λ̂(L)

])
≤ O(1)− lim sup

n
Pn

(
ωα̂n

(1−∆1 −∆2)I(L = τ)G

[
c1Λ̂(L)

])
≤ O(1)− lim sup

n
Pn

(
ωα̂n

(1−∆1 −∆2)I(L = τ)

)
G

[
c1Λ̂(τ)

]

From above two inequalities, lim infn Pnl
ωα̂n (β̂, γ̂, Λ̂) ≥ O(1) and lim infn Pnl

ωα̂n (β̂, γ̂, Λ̂) ≤ O(1) −

lim infn Pn

(
ωα̂n(1 −∆1 −∆2)I(L = τ)

)
G[c1Λ̂(τ)], we have lim supn Pn

(
ωα̂n(1 −∆1 −∆2)I(L =

τ)

)
G

[
c1Λ̂(τ)

]
≤ O(1), since Pn

(
ωα̂n

(1−∆1 −∆2)I(L = τ)

)
a.s.−−→ P

(
ωα0

(1−∆1 −∆2)I(L = τ)

)
which is positive under condition 4. Thus lim supn Λ̂(τ) <∞ with probability 1 from condition 5.

Now we restrict Λ̂ to a class of functions with uniformly bounded total variation, equipped with

the Skorohod topology on [ζ, τ ]. By Helly’s selection theorem, for any subsequence (β̂, γ̂, Λ̂), there

is a further subsequence such that β̂, γ̂ converge to β∗, γ∗ and Λ̂ converges weakly to some Λ∗ on

[ζ, τ ].
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Since Pn logL
ωα̂n (β̂, γ̂, Λ̂) ≥ Pn logL

ωα̂n (β0, γ0, Λ̃0), then Pn log
L

ωα̂n (β̂,γ̂,Λ̂)

L
ωα̂n (β0,γ0,Λ̃0)

≥ 0. From concavity

of natural log function, we have for 0 < a < 1,

Pn log

(
1− a+ a

Lωα̂n (β̂, γ̂, Λ̂)

Lωα̂n (β0, γ0, Λ̃0)

)
≥ (1− a)Pn log 1 + aPn log

Lωα̂n (β̂, γ̂, Λ̂)

Lωα̂n (β0, γ0, Λ̃0)
≥ 0

where Lωα̂n (β0, γ0, Λ̃0) is bounded away from 0. Notice that for any β, γ ∈ B and Λ ∈ M,

1. For each n ∈ N,

∣∣∣∣ log(1− a+ a
Lωα̂n (β, γ,Λ)

Lωα̂n (β0, γ0, Λ̃0)

)
− log

(
1− a+ a

Lωα0 (β, γ,Λ)

Lωα0 (β0, γ0, Λ̃0)

)∣∣∣∣
≤ Op(1)

∣∣∣∣ Lωα̂n (β, γ,Λ)

Lωα̂n (β0, γ0, Λ̃0)
− Lωα0 (β, γ,Λ)

Lωα0 (β0, γ0, Λ̃0)

∣∣∣∣
≤ Op(1)

∣∣∣∣Lωα̂n (β, γ,Λ)Lωα0 (β0, γ0, Λ̃0)− Lωα0 (β, γ,Λ)Lωα̂n (β0, γ0, Λ̃0)

∣∣∣∣
= Op(1)

∣∣∣∣Lωα̂n (β, γ,Λ)Lωα0 (β0, γ0, Λ̃0)− Lωα0 (β, γ,Λ)Lωα0 (β0, γ0, Λ̃0)

+ Lωα0 (β, γ,Λ)Lωα0 (β0, γ0, Λ̃0)− Lωα0 (β, γ,Λ)Lωα̂n (β0, γ0, Λ̃0)

∣∣∣∣
≤ Op(1)

(
Lωα0 (β0, γ0, Λ̃0)

∣∣∣∣Lωα̂n (β, γ,Λ)− Lωα0 (β, γ,Λ)

∣∣∣∣
+ Lωα0 (β, γ,Λ)

∣∣∣∣Lωα̂n (β0, γ0, Λ̃0)− Lωα0 (β0, γ0, Λ̃0)

∣∣∣∣)
≤ Op(1)O(1)

≤ Op(1)

Also from the fact α̂n
a.s−−→ α0, we have

∣∣∣∣ log(1− a+ a
Lωα̂n (β, γ,Λ)

Lωα̂n (β0, γ0, Λ̃0)

)
− log

(
1− a+ a

Lωα0 (β, γ,Λ)

Lωα0 (β0, γ0, Λ̃0)

)∣∣∣∣ a.s−−→ 0

2. The class {log(1− α+ α Lωα0 (β,γ,Λ)

Lωα0 (β0,γ0,Λ̃0)
) : β, γ ∈ B, Λ ∈ M} is Donkser by Zhou et al. (2021)

By dominated convergence theorem and Lemma 19.24 of van der Vaart (2000), we have Gn log

(
1−

a+ a L
ωα̂n (β,γ,Λ)

L
ωα̂n (β0,γ0,Λ̃0)

)
⇝ GP log

(
1− a+ a Lωα0 (β,γ,Λ)

Lωα0 (β0,γ0,Λ̃0)

)
.

Therefore,

(Pn − P) log
(
1− a+ a

Lωα̂n (β̂, γ̂, Λ̂)

Lωα̂n (β0, γ0, Λ̃0)

)
a.s.−−→ 0
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Thus,

Pn log

(
1− a+ a

Lωα̂n (β̂, γ̂, Λ̂)

Lωα̂n (β0, γ0, Λ̃0)

)
= (Pn − P) log

(
1− a+ a

Lωα̂n (β̂, γ̂, Λ̂)

Lωα̂n (β0, γ0, Λ̃0)

)
+ P log

(
1− a+ a

Lωα̂n (β̂, γ̂, Λ̂)

Lωα̂n (β0, γ0, Λ̃0)

)
≥ 0

Then we have P log

(
1 − a + a L

ωα̂n (β̂,γ̂,Λ̂)

L
ωα̂n (β0,γ0,Λ̃0)

)
≥ 0. By the convergence of α̂n → α0, Λ̃0 → Λ0,

β̂ → β∗ and Λ̂ → Λ∗, then P log

(
1 − a + aLωα0 (β∗,γ∗,Λ∗)

Lωα0 (β0,γ0,Λ0)

)
≥ 0. So

(
1 − a + aLωα0 (β∗,γ∗,Λ∗)

Lωα0 (β0,γ0,Λ0)

)
≥ 1

which implies P log

(
Lωα0 (β∗,γ∗,Λ∗)
Lωα0 (β0,γ0,Λ0)

)
≥ 0 by letting a → 0. From double expectation theorem, we

have

P log

(
Lωα0 (β∗, γ∗,Λ∗)

Lωα0 (β0, γ0,Λ0)

)
= P

(
ωα0

(η, Z) log
L(β∗, γ∗,Λ∗)

L(β0, γ0,Λ0)

)
= P

(
η

Ge(α⊤
0 Z)

log
L(β∗, γ∗,Λ∗)

L(β0, γ0,Λ0)

)
= P

(
P
(

η

Ge(α⊤
0 Z)

log
L(β∗, γ∗,Λ∗)

L(β0, γ0,Λ0)

∣∣∣∣Z,∆1,∆2, L,R, T

))
= P

(
P(η|Z,∆1,∆2, L,R, T )

Ge(α⊤
0 Z)

P
(
log

L(β∗, γ∗,Λ∗)

L(β0, γ0,Λ0)

∣∣∣∣Z,∆1,∆2, L,R, T

))
MAR assumption

= P
(
P
(
log

L(β∗, γ∗,Λ∗)

L(β0, γ0,Λ0)

∣∣∣∣Z,∆1,∆2, L,R, T

))
= P

(
log

L(β∗, γ∗,Λ∗)

L(β0, γ0,Λ0)

)

Hence, P
(
log L(β∗,γ∗,Λ∗)

L(β0,γ0,Λ0)

)
≥ 0. On the other hand, by the property of Kullback-Leibler divergence,

P
(
log L(β∗,γ∗,Λ∗)

L(β0,γ0,Λ0)

)
≤ 0. Therefore, P

(
log L(β∗,γ∗,Λ∗)

L(β0,γ0,Λ0)

)
= 0. We have L(β∗, γ∗,Λ∗) = L(β0, γ0,Λ0)

with probability 1. Then, in this case we have

∫ t

0

exp{(β∗)⊤X(s) + (γ∗)⊤Z(s)}dΛ∗(s) =

∫ t

0

exp{(β0)⊤X(s) + (γ0)
⊤X(s)}dΛ0(s)

for t ∈ [ζ, τ ]. Differentiating both sides with respect to t ∈ [ζ, τ ] and take logorithm, we have

(β∗)⊤X(t) + (γ∗)⊤Z(t) + log Λ∗′
(t) = (β0)

⊤X(t) + (γ0)
⊤Z(t) + log Λ

′

0(t)

From condition 3, we have β∗ = β0, γ
∗ = γ0 and Λ∗′

(t) = Λ
′

0(t) for t ∈ [ζ, τ ]. We let X(t) = 0 by

redefining X(t) to center at a deterministic function in the support of X(t) and let t = ζ. Then we
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have

∫ ζ

0

dΛ∗(s) = Λ∗(ζ) = Λ0(ζ) =

∫ ζ

0

dΛ0(s)

Hence Λ∗(t) = Λ0(t) for t ∈ [ζ, τ ]. It follow that β̂
a.s.−−→ β0 and Λ̂

a.s.−−→ Λ0. The latter convergence

strengthened to uniform convergence by the continuity of Λ0.

4.3.3 Proof of Theorem 2

Proof. First let H = Rd × BV [0, τ ]. For h = (h1, h2, h3) ∈ H, we introduce the norm

∥h∥H = ∥h1∥d+∥h2∥d+∥h3∥V , where ∥h1∥d, ∥h2∥d are the Euclidean norm in Rd, and ∥h3∥V is the

sum of the absolute value of h3(0) and the total variation of h3 on [0, τ ]. LetH be the subset ofH with

∥h∥H ≤M <∞. Consider submodels βϵ = β + ϵh1, γϵ = γ + ϵh2 and Λϵ(t) =
∫ t

0
(1 + ϵh3(u))dΛ(u),

where h = (h1, h2, h3) ∈ H.

Let θ = (β, γ,Λ) and θ0 = (β0, γ0,Λ0). Define I0(u; θ) =
∫ u

0
exp{β⊤X(t)+ γ⊤Z(t)}dΛ(t), I1(u; θ) =∫ u

0
exp{β⊤X(t) + γ⊤Z(t)}X(t)dΛ(t), I2(u; θ) =

∫ u

0
exp{β⊤X(t) + γ⊤Z(t)}Z(t)dΛ(t), I3(u; θ) =∫ u

0
exp{β⊤X(t)+γ⊤Z(t)}h3(t)dΛ(t). The derivatives of the observed data log-likelihood for a single

subject along the submodels are

ϕ
ωα0
1 (θ)(h1) =

d logLωα0 (βϵ, γ,Λ)

dϵ

∣∣∣∣
ϵ=0

= ωα0

{
∆1

[
G̈[I0(T ; θ)]I1(T ; θ)

Ġ[I0(T ; θ)]
− Ġ[I0(T ; θ)]I1(T ; θ) +X(T )h1

]

+∆2
exp{−G[I0(R; θ)]}Ġ[I0(R; θ)]I1(R; θ)− exp{−G[I0(L; θ)]}Ġ[I0(L; θ)]I1(L; θ)

exp{−G[I0(L; θ)]} − exp{−G[I0(R; θ)]}
h1

−∆3Ġ[I0(L; θ)]I1(L; θ)h1

}
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ϕ
ωα0
2 (θ)(h2) =

d logLωα0 (β, γϵ,Λ)

dϵ

∣∣∣∣
ϵ=0

= ωα0

{
∆1

[
G̈[I0(T ; θ)]I2(T ; θ)

Ġ[I0(T ; θ)]
− Ġ[I0(T ; θ)]I2(T ; θ) + Z(T )h2

]

+∆2
exp{−G[I0(R; θ)]}Ġ[I0(R; θ)]I2(R; θ)− exp{−G[I0(L; θ)]}Ġ[I0(L; θ)]I2(L; θ)

exp{−G[I0(L; θ)]} − exp{−G[I0(R; θ)]}
h2

−∆3Ġ[I0(L; θ)]I2(L; θ)h2

}

ϕ
ωα0
3 (θ)(h3) =

d logLωα0 (β, γ,Λϵ)

dϵ

∣∣∣∣
ϵ=0

= ωα0

{
∆1

[
G̈[I0(T ; θ)]I3(T ; θ)

Ġ[I0(T ; θ)]
− Ġ[I0(T ; θ)]I3(T ; θ) + h3(T )

]

+∆2
exp{−G[I0(R; θ)]}Ġ[I0(R; θ)]I3(R; θ)− exp{−G[I0(L; θ)]}Ġ[I0(L; θ)]I3(L; θ)

exp{−G[I0(L; θ)]} − exp{−G[I0(R; θ)]}

−∆3Ġ[I0(L; θ)]I3(L; θ)

}

The score functions along the submodels are Φ
ωα0
1,n (θ)(h1) = Pnϕ

ωα0
1 (θ)(h1), Φ

ωα0
2,n (θ)(h2) =

Pnϕ
ωα0
2 (θ)(h2) and Φ

ωα0
3,n (θ)(h3) = Pnϕ

ωα0
1 (θ)(h3). Let ϕωα0 (θ)(h) = ϕ

ωα0
1 (θ)(h1) + ϕ

ωα0
2 (θ)(h2) +

ϕ
ωα0
3 (θ)(h3), Φ

ωα0
n (θ)(h) = Pnϕ

ωα0 (θ)(h) = Φ
ωα0
1,n (θ)(h1)+Φ

ωα0
2,n (θ)(h2)+Φ

ωα0
3,n (θ)(h3). We prove the

asymptotic normality of θ̂ = (β̂, γ̂, Λ̂) by the following steps:

1. Gnϕ
ωα0
0 (θ0)(h) =

√
n(Φ

ωα0
n (θ0)(h)−Φωα0 (θ0)(h)) converges in distribution to a tight random

element Z.

Let F = {ϕωα0 (θ0)(h) : ∥h1∥d ≤ 1, ∥h2∥d ≤ 1, h3 ∈ BV [0, τ ], ∥h3∥V ≤ 1}. From con-

dition (A4)-(A5), we have exp(−G[I0(L; θ0)]) − exp(−G[I0(R; θ0)])I(R∞) is bounded away

from 0. From condition (A1)-(A5), we have supϕωα0 (θ0)(h)∈F ∥Pϕωα0 (θ0)(h)∥ < ∞. Notice

that ϕ
ωα0
0 (θ0)(h) depends on h1, h2 linearly. The class {h3(·) : h3 ∈ BV [0, τ ], ∥h3∥V ≤ 1}

is Donsker from the results of theorem 2.1 of Dudley (1992). Since the function g(·) =∫ ·
0
exp{β⊤

0 X(t) + γ⊤0 Z(t)h3(t)dΛ0(t) is monotone, absolute continuous in · by theorem 11,

Chapter 6 of Royden (2010) and hence bounded variation. So the class {
∫ ·
0
exp{β⊤

0 X(t) +

γ⊤0 Z(t)h3(t)dΛ0(t)}, h3 ∈ BV [0, τ ], ∥h3∥V ≤ 1} is Donsker by example 19.11 of van der Vaart

(2000). Therefore, ϕ
ωα0
0 (θ0)(h) belongs to some Donsker class by theorem 2.10.6 and example
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2.10.8 of van der Vaart and Wellner (1996) and thus

Gnϕ
ωα0
0 (θ0)(h) =

√
n(Φ

ωα0
n (θ0)(h)− Φωα0 (θ0)(h))⇝ Z ∈ l∞(H)

2. Show that Φωα0 (θ)(h) is Frechet differentiable of θ at θ = θ0.

Since Φωα0 (θ)(h) = Pϕωα0 (θ)(h) = Pϕωα0
1 (θ)(h1)+Pϕωα0

2 (θ)(h2)+Pϕωα0
3 (θ)(h3). The Frechet

derivative Φ̇
ωα0

θ0
(θ − θ0)(h) can be computed as

Φ̇
ωα0

θ0
(θ − θ0)(h) =

dΦωα0 (θ0 + ϵ(θ − θ0))

dϵ

∣∣∣∣
ϵ=0

It is clear that Φ̇
ωα0

θ0
(h) is a linear operator. To show Φ̇

ωα0

θ0
(h) is continuous invertible, it

is suffice to show that Φ̇
ωα0

θ0
(h) is a one-to-one map and thus invertible. If h = 0, then

Φ̇
ωα0

θ0
(h) = 0 for any (β,Λ) in the neighborhood of (β0, γ0,Λ0). Choosing (β, γ,Λ) of the form

βϵ = β0 + ϵh1, γϵ = γ0 + ϵh2, Λ(t) =
∫ t

0
(1 + ϵh3(s))dΛ0(s), by the likelihood properties and

double expectation,

Φ̇
ωα0

θ0
(h) = Pϕ̇ωα0 (θ0)(h) = −P{ϕωα0 (θ0)(h)}2 = 0 (4.8)

If Φ̇
ωα0

θ0
(h) = 0, then ϕωα0 (h) = 0 with probability 1. Let ∆2 = 1, we have

exp{−G[I0(R; θ0)]}Ġ[I0(R; θ0)]I1(R; θ0)h1 − exp{−G[I0(L; θ0)]}Ġ[I0(L; θ0)]I1(L; θ0)h1 = 0

exp{−G[I0(R; θ0)]}Ġ[I0(R; θ0)]I2(R; θ0)h2 − exp{−G[I0(L; θ0)]}Ġ[I0(L; θ0)]I2(L; θ0)h2 = 0

exp{−G[I0(R; θ0)]}Ġ[I0(R; θ0)]I3(R; θ0)− exp{−G[I0(L; θ0)]}Ġ[I0(L; θ0)]I3(L; θ0) = 0

and we obtain h1 = 0, h2 = 0 and h3(·) = 0 for t ∈ [ζ, τ ].

3. Under conditions 1− 5, we can show that {ϕωα0 (θ)(h)− ϕωα0 (θ0)(h) : ∥θ− θ0∥ < δ,h ∈ H} is

P-Donsker for some δ > 0, and

sup
h∈H

P (ϕωα0 (θ)(h)− ϕωα0 (θ0)(h))
2 → 0, as θ → θ0

Since θ̂
a.s.−−→ θ0, we have

∥Gn(ϕ
ωα0 (θ̂)(h)− ϕωα0 (θ0)(h))∥H = op∗(1 +

√
n∥θ̂ − θ0∥)
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where op∗ stands for converging in outer probability.

4. The above equation can be written as

√
n(Φ

ωα0
n − Φωα0 )(θ̂)−

√
n(Φ

ωα0
n − Φωα0 )(θ0) = op∗(1 +

√
n∥θ̂ − θ0∥)

Since Φ
ωα0
n (θ̂) = 0 and Φωα0 (θ0) = 0, from theorem 3.3.1 of van der Vaart and Wellner (1996),

we have

√
nΦ̇

ωα0

θ0
(θ̂n − θ0) = −

√
n(Φ

ωα0
n − Φωα0 )(θ0) + op∗(1)

and by continuous invertible of Φ̇ωα0 , we have
√
n(θ̂n − θ0)

d−→ −(Φ̇
ωα0

θ0
)−1Z.

5. Next we prove the estimator θ̂ωα̂n = (β̂ωα̂n , γ̂ωα̂n , Λ̂ωα̂n ) converges weakly to some tight random

elements in l∞(H) under the estimated weight ωα̂n
. Notice that α̂n

p−→ α0 and we have

√
n(α̂n − α0) = Gnψ + o∗p(1) by proposition A1 of Saegusa and Wellner (2013). By theorem 1

of Breslow and Wellner (2008), we have

√
n(θ̂ωα̂n − θ0) = −(Φ̇

ωα0

θ0
)−1[

√
n(Φ

ωα0
n (θ0)(h)− Φωα0 (θ0)(h)) +

√
n(Φωα̂n (θ0)(h)− Φωα0 (θ0)(h))] + o∗p(1)

= −(Φ̇
ωα0

θ0
)−1[

√
n(Φ

ωα0
n (θ0)(h)− Φωα0 (θ0)(h)) + Φ̇αGnψ] + o∗p(1)

⇝ −(Φ̇
ωα0

θ0
)−1(Z + Φ̇αGpψα0

)

Thus the weak convergence of θ̂ωα̂n = (β̂ωα̂n , γ̂ωα̂n , Λ̂ωα̂n ) established.

4.3.4 Proof of Theorem 3

Proof : Let u1, u2, · · · , un be a sequence of IID exponentially distributed random variables with

µ = P(u1) = 1 and σ2 = Var(u1) = 1. We assume that u1, u2, · · · , un are independent of the

observed data Oi = (∆1i,∆2i, ηi,∆1iTi, Li,∆2iRi, ηiXi, Zi). Let ũi = ui

ū where ū = 1
n

∑n
i=1 ui.

Let P̃nf = 1
n

∑n
i=1 ũif(Oi) be the weighted bootstrapped empirical process for any measurable

function f . Let Φ̃
ωα0
n be Φ

ωα0
n with Pn replaced by P̃n and θ̃ = (ϑ̃, Λ̃) be the weighted bootstrap

estimator which solves Φ̃
ωα0
n (θ) = 0. Let Φ̃ωα0 (θ) = P(ũ · Φωα0 (θ)(h)). From above, the class of

functions {ϕωα0 (θ)(h) : θ ∈ Bδ(θ0), h ∈ BV [0, τ ]} is P-Donsker for some δ > 0. Thus the class

{ũ · ϕωα0 (θ)(h) : θ ∈ Bδ(θ0), h ∈ BV [0, τ ]} from Kosorok (2007) theorem 10.1.
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Since e1, e2, · · · , en is a sequence of IID exp(1) variable. Let ξi = ui − 1, then we have E(ξi) = 0

and Var(ξi) = 1. Since {ϕωα0 (θ)(h) : θ ∈ Bδ(θ0), h ∈ BV [0, τ ]} is P-Donsker, we have Gnϕ
ωα0

converges to a tight random element, GPϕ
ωα0 . Define weighted bootstrap empirical process as

G̃nϕ
ωα0 (θ)(h) =

√
n

{
P̃ϕωα0 (θ)(h)− Pnϕ

ωα0 (θ)(h)

}

On the other hand, by theorem 10.1 of Kosorok (2007) (i→ ii), we have

G̃nϕ
ωα0 (θ)(h)−Gnϕ

ωα0 (θ)(h)⇝ Z0 ∈ l∞(H)

therefore, G̃nϕ
ωα0 (θ)(h) converges to some tight random elements in l∞(H) and hence the class

{ẽ · Φωα0 (θ)(h) : θ ∈ Bδ(θ0), h ∈ BV [0, τ ]} is P-Donsker. We also have P
(
ẽ · ϕωα0 (θ)(h)

)
=

P
(
ϕωα0 (θ)(h)

)
which implies Φ̃ωα0 (θ) = Φωα0 (θ).

By Taylor expansion, we have the following

0 = P̃nϕ
ωα0 (θ̃)(h)− P̃nϕ

ωα0 (θ̂)(h) + P̃nϕ
ωα0 (θ̂)(h)− Pnϕ

ωα0 (θ̂)(h)

=

(
∂P̃nϕ

ωα0 (θ)(h)

∂θ

∣∣∣∣
θ=θ̂

)
(θ̃ − θ) + (P̃n − Pn)ϕ

ωα0 (θ̂)(h) + op(∥θ̃ − θ0∥+ ∥θ̂ − θ0∥)
(4.9)

The consistency of θ̃ can be proved by the similar arguments of consistency proof. From theorem

2.6 of Kosorok (2007), the empirical process G̃n given the data is asymptotically equivalent to Gn

since µ = σ2 = 1. Hence the equation (4.9) above can be written as

√
n · 0 =

√
n

(
∂P̃nϕ

ωα0 (θ)(h)

∂θ

∣∣∣∣
θ=θ̂

)
(θ̃ − θ) +

√
n(P̃n − Pn)ϕ

ωα0 (θ̂)(h) +
√
n · op(∥θ̃ − θ0∥+ ∥θ̂ − θ0∥)

=
√
n

(
∂P̃nϕ

ωα0 (θ)(h)

∂θ

∣∣∣∣
θ=θ̂

)
(θ̃ − θ) +

√
n(P̃n − P)ϕωα0 (θ̂)(h) + op(1)

=
√
nΦ̇

ωα0

θ0
(θ̃ − θ̂) +Gnϕ

ωα0 (θ̂)(h) + op(1)

⇝
√
nΦ̇

ωα0

θ0
(θ̃ − θ̂) + Z

Therefore, we have

√
n(θ̃ − θ̂)⇝ −(Φ̇

ωα0

θ0
)−1 · Z (4.10)
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Now we prove the similar results still hold under estimated weight ωα̂n . Similarly, let u1, u2, · · · , un

be a sequence of IID exponentially distributed random variables with µ = P(u1) = 1 and σ2 =

Var(u1) = 1. Since the class {ϕωα0 (h) : ∥h1∥d ≤ 1, ∥h2∥d ≤ 1, h3 ∈ BV1[0, τ ]} is Donkser and we

proved

sup
h∈H

P(ϕωα̂n (θ)(h)− ϕωα0 (θ)(h))2
p−→ 0

in lemma 3, thus by lemma 19.24 of van der Vaart (2000), we have

Gnϕ
ωα̂n ⇝ Gpϕ

ωα0 = Z ∈ l∞(H)

By definition we have Φ̃ωα̃n (θ̃) = 0, Φ
ωα̂n
n (θ̂) = 0, similarly we can have the following

0 = P̃nϕ
ωα̃n (θ̃)(h)− P̃nϕ

ωα̂n (θ̂)(h) + P̂nϕ
ωα̂n (θ̂)(h)− Pnϕ

ωα̂n (θ̂)(h)

= P̃nϕ
ωα̃n (θ̃)(h)− P̃nϕ

ωα̃n (θ̂)(h) + P̃nϕ
ωα̃n (θ̂)(h)− P̃nϕ

ωα̂n (θ̂)(h) + P̃nϕ
ωα̂n (θ̂)(h)− Pnϕ

ωα̂n (θ̂)(h)

=

(
∂P̃nϕ

ωα̃n (θ)(h)

∂θ

∣∣∣∣
θ=θ̂

)
(θ̃ − θ̂) +

(
∂P̃nϕ

ωα(θ̂)(h)

∂α

∣∣∣∣
α=α̂

)
(α̃− α̂) + (P̃n − Pn)ϕ

ωα̂n (θ̂)(h)

+ op(∥θ̃ − θ0∥+ ∥θ̂ − θ0∥+ ∥α̃− α0∥+ ∥α̂− α0∥)

(4.11)

Notice that the conditional distribution of (P̃n −Pn)ϕ
ωα̂n (θ̂)(h) given the data is asymptotic equiv-

alent to the distribution of (Pn − P)ϕωα̂n (θ̂)(h) and
√
n(α̂ − α0) ⇝ Gpψ by Lemma in Appendix,

then the equation 4.11 can be re-written as

0 =
√
nΦ̇

ωα̃n

θ (θ̃ − θ̂) + Φ̇α

√
n(α̃− α̂) + G̃nϕ

ωα̂n (θ̂)(h) + op(1)

By Lemma 4 in the appendix, we have
√
n(α̃n−α0) = −V −1

α0

√
nP̃nψα0

+op(1) = Gpψα0
+op(1) and

thus

√
n(θ̃ − θ̂)⇝ −(Φ̇

ωα0

θ )−1(Φ̇αGpψα0
+ Z) (4.12)
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4.4 Tables and Figures for Chapter 2

Table 4.1: Simulation results for estimation of the regression parameters under the model
configuration (1) (Missing completely at random with two baselines)

β = 0.5 γ = −0.5
n pt Bias SSD ESE CP Bias SSD ESE CP

r = 0 10% missing for cases, 70% missing for non-cases
800 0 0.022 0.123 0.115 0.922 -0.027 0.131 0.115 0.910

0.2 0.011 0.115 0.108 0.932 -0.013 0.112 0.108 0.934
0.5 0.008 0.110 0.104 0.944 -0.009 0.107 0.105 0.944
1 0.008 0.099 0.099 0.958 -0.005 0.104 0.100 0.932

1200 0 0.016 0.100 0.093 0.924 -0.017 0.103 0.094 0.920
0.2 0.004 0.096 0.090 0.940 -0.005 0.096 0.090 0.932
0.5 0.001 0.092 0.086 0.932 -0.002 0.091 0.090 0.942
1 0.003 0.077 0.076 0.948 0.005 0.078 0.077 0.947

r = 0.5 10% missing for cases, 70% missing for non-cases
800 0 0.023 0.156 0.150 0.923 -0.013 0.161 0.150 0.928

0.2 -0.004 0.138 0.141 0.952 -0.004 0.148 0.143 0.946
0.5 0.007 0.133 0.137 0.965 -0.000 0.141 0.137 0.950
1 0.005 0.135 0.129 0.930 0.002 0.138 0.129 0.930

1200 0 0.008 0.127 0.122 0.930 -0.017 0.125 0.123 0.942
0.2 0.010 0.123 0.115 0.937 -0.017 0.122 0.116 0.932
0.5 0.009 0.119 0.111 0.938 -0.014 0.117 0.112 0.930
1 -0.002 0.113 0.107 0.934 -0.004 0.110 0.107 0.952

r = 1 10% missing for cases, 70% missing for non-cases
800 0 0.025 0.183 0.174 0.930 -0.011 0.184 0.177 0.925

0.2 0.011 0.170 0.164 0.950 -0.007 0.173 0.165 0.936
0.5 0.005 0.163 0.158 0.948 0.007 0.166 0.158 0.944
1 0.003 0.149 0.149 0.964 -0.003 0.156 0.150 0.930

1200 0 0.009 0.149 0.142 0.935 -0.023 0.147 0.144 0.944
0.2 0.013 0.136 0.134 0.941 0.008 0.130 0.134 0.955
0.5 0.010 0.132 0.129 0.930 0.008 0.125 0.129 0.952
1 -0.002 0.128 0.122 0.938 -0.005 0.128 0.123 0.938
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Table 4.2: Simulation results for estimation of the regression parameters under the model
configuration (2) (Missing at random with two baselines)

β = 0.5 γ = −0.5
n pt Bias SSD ESE CP Bias SSD ESE CP

r = 0 10% missing for cases, 60% missing for noncases
800 0 0.015 0.089 0.084 0.925 -0.007 0.112 0.088 0.934

0.2 0.011 0.102 0.098 0.923 0.008 0.104 0.104 0.935
0.5 0.004 0.097 0.094 0.930 0.002 0.109 0.102 0.923
1 0.008 0.097 0.091 0.935 -0.006 0.101 0.091 0.943

1200 0 0.015 0.089 0.084 0.925 -0.007 0.112 0.088 0.934
0.2 0.004 0.083 0.084 0.938 0.003 0.085 0.084 0.942
0.5 0.003 0.080 0.078 0.946 0.002 0.084 0.083 0.946
1 0.003 0.077 0.074 0.940 -0.005 0.084 0.081 0.940

r = 0.5 10% missing for cases, 60% missing for noncases
800 0 0.011 0.128 0.117 0.912 -0.006 0.125 0.123 0.950

0.2 -0.000 0.128 0.126 0.958 0.007 0.130 0.130 0.955
0.5 -0.000 0.123 0.123 0.953 0.006 0.126 0.123 0.952
1 0.000 0.113 0.117 0.956 0.001 0.123 0.123 0.950

1200 0 0.017 0.110 0.107 0.938 -0.008 0.113 0.109 0.938
0.2 0.011 0.106 0.103 0.937 0.002 0.105 0.105 0.941
0.5 0.011 0.103 0.100 0.944 0.004 0.101 0.103 0.946
1 0.005 0.095 0.095 0.954 -0.006 0.100 0.099 0.942

r = 1 10% missing for cases, 60% missing for noncases
800 0 0.015 0.173 0.166 0.945 0.007 0.177 0.185 0.933

0.2 0.011 0.169 0.164 0.950 0.007 0.173 0.165 0.936
0.5 0.011 0.132 0.129 0.930 0.009 0.129 0.125 0.952
1 -0.000 0.130 0.134 0.960 -0.002 0.141 0.142 0.950

1200 0 0.022 0.126 0.126 0.957 -0.008 0.133 0.127 0.930
0.2 0.006 0.123 0.119 0.947 0.008 0.127 0.123 0.961
0.5 0.006 0.119 0.116 0.948 0.006 0.124 0.120 0.952
1 0.004 0.108 0.109 0.952 -0.006 0.119 0.116 0.952
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Table 4.3: Simulation results for estimation of the regression parameters under the model
configuration (3) (Missing at random with time-dependent covariate with two baselines)

β = 0.5 γ = −0.5
n pt Bias SSD ESE CP Bias SSD ESE CP

r = 0 10% missing for cases, 65% missing for noncases
800 0 -0.013 0.111 0.105 0.927 0.025 0.208 0.190 0.933

0.2 -0.018 0.103 0.100 0.930 0.036 0.201 0.185 0.920
0.5 -0.017 0.101 0.097 0.940 0.033 0.190 0.183 0.923
1 -0.006 0.100 0.096 0.940 0.023 0.189 0.180 0.940

1200 0 0.011 0.092 0.085 0.928 0.027 0.160 0.155 0.930
0.2 -0.007 0.084 0.082 0.940 0.019 0.165 0.151 0.943
0.5 -0.002 0.084 0.081 0.940 0.011 0.162 0.152 0.950
1 -0.008 0.083 0.080 0.933 0.010 0.153 0.151 0.940

r = 0.5 10% missing for cases, 65% missing for noncases
800 0 -0.012 0.137 0.130 0.950 0.031 0.235 0.235 0.944

0.2 -0.002 0.136 0.130 0.941 0.005 0.236 0.233 0.948
0.5 -0.002 0.133 0.128 0.954 0.008 0.238 0.231 0.945
1 -0.007 0.132 0.127 0.935 0.015 0.231 0.228 0.940

1200 0 -0.000 0.118 0.115 0.943 0.020 0.189 0.193 0.956
0.2 0.002 0.114 0.110 0.924 0.004 0.196 0.190 0.940
0.5 -0.001 0.114 0.105 0.930 0.004 0.193 0.188 0.940
1 0.005 0.106 0.104 0.944 0.024 0.185 0.186 0.952

r = 1 10% missing for cases, 65% missing for noncases
800 0 0.005 0.161 0.150 0.937 -0.003 0.278 0.272 0.951

0.2 0.001 0.158 0.148 0.934 0.023 0.275 0.267 0.937
0.5 0.008 0.155 0.147 0.943 0.014 0.267 0.265 0.942
1 0.009 0.153 0.145 0.956 -0.009 0.265 0.262 0.950

1200 0 -0.008 0.087 0.080 0.930 0.021 0.153 0.150 0.940
0.2 0.003 0.126 0.122 0.946 0.007 0.223 0.217 0.946
0.5 0.006 0.125 0.121 0.950 0.005 0.225 0.215 0.940
1 0.007 0.125 0.120 0.948 0.008 0.201 0.214 0.958
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Figure 4.1: Estimation results for (a) Λ1(t) = log(1 + t
2 ) and (b) Λ2(t) = 0.2t in Scenario 1 with

r = 0 and pt = 0. Results comes from n = 1200. Est means the average of baseline hazards over
500 replicates, SE, SEE, and CP comes from descriptions before
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Figure 4.2: Estimation results for (a) Λ1(t) = log(1 + t
2 ) and (b) Λ2(t) = 0.2t in Scenario 1 with

r = 0 and pt = 0.5. Results comes from n = 1200. Est means the average of baseline hazards over
500 replicates, SE, SEE, and CP comes from descriptions before
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Figure 4.3: Estimation results for (a) Λ1(t) = log(1 + t
2 ) and (b) Λ2(t) = 0.2t in Scenario 1 with

r = 0 and pt = 1. Results comes from n = 1200. Est means the average of baseline hazards over
500 replicates, SE, SEE, and CP comes from descriptions before
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Figure 4.4: Estimation results for (a) Λ1(t) = log(1 + t
2 ) and (b) Λ2(t) = 0.2t in Scenario 1 with

r = 0.5 and pt = 0. Results comes from n = 1200. Est means the average of baseline hazards over
500 replicates, SE, SEE, and CP comes from descriptions before
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Figure 4.5: Estimation results for (a) Λ1(t) = log(1 + t
2 ) and (b) Λ2(t) = 0.2t in Scenario 1 with

r = 0.5 and pt = 0.5. Results comes from n = 1200. Est means the average of baseline hazards
over 500 replicates, SE, SEE, and CP comes from descriptions before
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Figure 4.6: Estimation results for (a) Λ1(t) = log(1 + t
2 ) and (b) Λ2(t) = 0.2t in Scenario 1 with

r = 0.5 and pt = 1. Results comes from n = 1200. Est means the average of baseline hazards over
500 replicates, SE, SEE, and CP comes from descriptions before
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Figure 4.7: Estimation results for (a) Λ1(t) = log(1 + t
2 ) and (b) Λ2(t) = 0.2t in Scenario 1 with

r = 1 and pt = 0. Results comes from n = 1200. Est means the average of baseline hazards over
500 replicates, SE, SEE, and CP comes from descriptions before
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Figure 4.8: Estimation results for (a) Λ1(t) = log(1 + t
2 ) and (b) Λ2(t) = 0.2t in Scenario 1 with

r = 1 and pt = 0.5. Results comes from n = 1200. Est means the average of baseline hazards over
500 replicates, SE, SEE, and CP comes from descriptions before
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Figure 4.9: Estimation results for (a) Λ1(t) = log(1 + t
2 ) and (b) Λ2(t) = 0.2t in Scenario 1 with

r = 1 and pt = 1. Results comes from n = 1200. Est means the average of baseline hazards over
500 replicates, SE, SEE, and CP comes from descriptions before
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Figure 4.10: Estimation results for (a) Λ1(t) = log(1 + t
2 ) and (b) Λ2(t) = 0.2t in Scenario 2 with

r = 0 and pt = 0. Results comes from n = 1200. Est means the average of baseline hazards over
500 replicates, SE, SEE, and CP comes from descriptions before
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Figure 4.11: Estimation results for (a) Λ1(t) = log(1 + t
2 ) and (b) Λ2(t) = 0.2t in Scenario 2 with

r = 0 and pt = 0.5. Results comes from n = 1200. Est means the average of baseline hazards over
500 replicates, SE, SEE, and CP comes from descriptions before
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Figure 4.12: Estimation results for (a) Λ1(t) = log(1 + t
2 ) and (b) Λ2(t) = 0.2t in Scenario 2 with

r = 0 and pt = 1. Results comes from n = 1200. Est means the average of baseline hazards over
500 replicates, SE, SEE, and CP comes from descriptions before
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Figure 4.13: Estimation results for (a) Λ1(t) = log(1 + t
2 ) and (b) Λ2(t) = 0.2t in Scenario 2 with

r = 0.5 and pt = 0. Results comes from n = 1200. Est means the average of baseline hazards over
500 replicates, SE, SEE, and CP comes from descriptions before
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Figure 4.14: Estimation results for (a) Λ1(t) = log(1 + t
2 ) and (b) Λ2(t) = 0.2t in Scenario 2 with

r = 0.5 and pt = 0.5. Results comes from n = 1200. Est means the average of baseline hazards
over 500 replicates, SE, SEE, and CP comes from descriptions before
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Figure 4.15: Estimation results for (a) Λ1(t) = log(1 + t
2 ) and (b) Λ2(t) = 0.2t in Scenario 2 with

r = 0.5 and pt = 1. Results comes from n = 1200. Est means the average of baseline hazards over
500 replicates, SE, SEE, and CP comes from descriptions before
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Figure 4.16: Estimation results for (a) Λ1(t) = log(1 + t
2 ) and (b) Λ2(t) = 0.2t in Scenario 2 with

r = 1 and pt = 0. Results comes from n = 1200. Est means the average of baseline hazards over
500 replicates, SE, SEE, and CP comes from descriptions before
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Figure 4.17: Estimation results for (a) Λ1(t) = log(1 + t
2 ) and (b) Λ2(t) = 0.2t in Scenario 2 with

r = 1 and pt = 0.5. Results comes from n = 1200. Est means the average of baseline hazards over
500 replicates, SE, SEE, and CP comes from descriptions before
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Figure 4.18: Estimation results for (a) Λ1(t) = log(1 + t
2 ) and (b) Λ2(t) = 0.2t in Scenario 2 with

r = 1 and pt = 1. Results comes from n = 1200. Est means the average of baseline hazards over
500 replicates, SE, SEE, and CP comes from descriptions before
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Figure 4.19: Estimation results for (a) Λ1(t) = 1.5t and (b) Λ2(t) = t in Scenario 3 with r = 0 and
pt = 0. Results comes from n = 1200. Est means the average of baseline hazards over 500

replicates, SE, SEE, and CP comes from descriptions before
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Figure 4.20: Estimation results for (a) Λ1(t) = 1.5t and (b) Λ2(t) = t in Scenario 3 with r = 0 and
pt = 0.5. Results comes from n = 1200. Est means the average of baseline hazards over 500

replicates, SE, SEE, and CP comes from descriptions before
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Figure 4.21: Estimation results for (a) Λ1(t) = 1.5t and (b) Λ2(t) = t in Scenario 3 with r = 0 and
pt = 1. Results comes from n = 1200. Est means the average of baseline hazards over 500

replicates, SE, SEE, and CP comes from descriptions before
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Figure 4.22: Estimation results for (a) Λ1(t) = 1.5t and (b) Λ2(t) = t in Scenario 3 with r = 0.5
and pt = 0. Results comes from n = 1200. Est means the average of baseline hazards over 500

replicates, SE, SEE, and CP comes from descriptions before
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Figure 4.23: Estimation results for (a) Λ1(t) = 1.5t and (b) Λ2(t) = t in Scenario 3 with r = 0.5
and pt = 0.5. Results comes from n = 1200. Est means the average of baseline hazards over 500

replicates, SE, SEE, and CP comes from descriptions before
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Figure 4.24: Estimation results for (a) Λ1(t) = 1.5t and (b) Λ2(t) = t in Scenario 3 with r = 0.5
and pt = 1. Results comes from n = 1200. Est means the average of baseline hazards over 500

replicates, SE, SEE, and CP comes from descriptions before
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Figure 4.25: Estimation results for (a) Λ1(t) = 1.5t and (b) Λ2(t) = t in Scenario 3 with r = 1 and
pt = 0. Results comes from n = 1200. Est means the average of baseline hazards over 500

replicates, SE, SEE, and CP comes from descriptions before
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Figure 4.26: Estimation results for (a) Λ1(t) = 1.5t and (b) Λ2(t) = t in Scenario 3 with r = 1 and
pt = 0.5. Results comes from n = 1200. Est means the average of baseline hazards over 500

replicates, SE, SEE, and CP comes from descriptions before
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Figure 4.27: Estimation results for (a) Λ1(t) = 1.5t and (b) Λ2(t) = t in Scenario 3 with r = 1 and
pt = 1. Results comes from n = 1200. Est means the average of baseline hazards over 500

replicates, SE, SEE, and CP comes from descriptions before
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Figure 4.28: Estimated survival curves under the proportional hazards model:
Λj(t|X(·), Z) =

∫ t

0
exp{β1X(s) + β2X(s)HighDose + γ⊤Z}dΛj(s) for regions USAS, BP, SSA, and

other SSA, where j = 1, · · · , 4. Here, X(·) represents log(VRC) over time, and Z denotes
time-independent covariates, including age groups and high-dose treatment groups. Here, ’Age1’,
’Age2’ and ’Age3’ stand for the age goups, < 20, [20, 30], > 30, respectively and X25, X50, X75
represent logVRC at its 25th, 50th, 75th percentiles, respectively. The title of each figure, for

example, ’USAS+X25’ corresponds to the region USAS with log(VRC) being the 25th percentile of
log(VRC).



110

0 20 40 60 80

0.
70

0.
80

0.
90

1.
00

USAS+Age1

0 20 40 60 80

0.
70

0.
80

0.
90

1.
00

USAS+Age2

0 20 40 60 80

0.
70

0.
80

0.
90

1.
00

USAS+Age3

0 20 40 60 80

0.
70

0.
80

0.
90

1.
00

BP+Age1

0 20 40 60 80

0.
70

0.
80

0.
90

1.
00

BP+Age2

0 20 40 60 80

0.
70

0.
80

0.
90

1.
00

BP+Age3

0 20 40 60 80

0.
70

0.
80

0.
90

1.
00

SSA+Age1

0 20 40 60 80

0.
70

0.
80

0.
90

1.
00

SSA+Age2

0 20 40 60 80

0.
70

0.
80

0.
90

1.
00

SSA+Age3

0 20 40 60 80

0.
70

0.
80

0.
90

1.
00

other SSA + Age1

0 20 40 60 80

0.
70

0.
80

0.
90

1.
00

other SSA + Age2

0 20 40 60 80

0.
70

0.
80

0.
90

1.
00

other SSA + Age3

Week

S
ur

vi
va

l P
ro

ba
bi

lit
y

X25+HighDose
X25+LowDose

X50+HighDose
X50+LowDose

X75+HighDose
X75+LowDose

Figure 4.29: Estimated survival curves by considering different combinations of covariates under
the proportional hazards model Λj(t|X(·), Z) =

∫ t

0
exp{β1X(s) + β2X(s)HighDose + γ⊤Z}dΛj(s),

j = 1, · · · , 4, for regions USAS, BP, SSA, other SSA. X(·) denotes the log(VRC) over time and Z
denotes time-independent covariates, including age groups and high-dose treatment groups. Here,
’Age1’, ’Age2’ and ’Age3’ stand for the age goups, < 20, [20, 30], > 30, respectively and X25, X50,
X75 represent logVRC at its 25th, 50th, 75th percentiles, respectively. The title of each figure, for

example, ’USAS+Age1’ corresponds to the region USAS with Age less than 20.
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Figure 4.30: Estimated baseline cumulative hazard function, Λ̂j(t), j = 1, · · · , 4, for regions USAS,
BP, SSA, other SSA under the proportional hazards model

Λj(t|X(·), Z) =
∫ t

0
exp{β1X(s) + β2X(s)HighDose + γ⊤Z}dΛj(s), j = 1, · · · , 4 denotes log(VRC)

over time and Z denotes time-independent covariates, including age groups and high-dose
treatment groups.
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Figure 4.31: Estimated survival curves by considering different combinations of covariates under
the proportional hazards model Λj(t|X(·), Z) =

∫ t

0
exp{βX(s) + γ⊤Z}dΛj(s), j = 1, · · · , 4, for

regions USAS, BP, SSA, other SSA. X(·) denotes logVRC over time and Z denotes time
independent covariates, the age groups. Here, ’Age1’, ’Age2’ and ’Age3’ stand for the age goups,
< 20, [20, 30], > 30, respectively. The title of each figure, for example, ’USAS+X25’ corresponds to

the region USAS with X being the 25th percentile of log(VRC).
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Figure 4.32: Estimated survival curves by considering different combinations of covariates under
the proportional hazards model Λj(t|X(·), Z) =

∫ t

0
exp{βX(s) + γ⊤Z}dΛj(s), j = 1, · · · , 4, for

regions USAS, BP, SSA, other SSA. X(·) denotes logVRC over time and Z denotes time
independent covariates, the age groups. Here, ’Age1’, ’Age2’ and ’Age3’ stand for the age groups,
< 20, [20, 30], > 30, respectively. The title of each figure, for example, ‘USAS+Age1’ corresponds

to the region USAS with Age < 20.
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Figure 4.33: Estimated baseline cumulative hazard function, Λ̂j(t), j = 1, · · · , 4, for regions USAS,
BP, SSA, other SSA under the proportional hazards model

Λj(t|X(·), Z) =
∫ t

0
exp{βX(s) + γ⊤Z}dΛj(s), where X(·) denotes logVRC over time and Z denotes

time independent covariates, the age groups.
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Table 4.4: Summary of HIV data

Characteristic Placebo Low Dose High-Dose
Total (VRC) Total (VRC)

Size 637 642 (51) 645 (41)

Gender Male 0 0 (0) 0 (0)
Female 637 642 (51) 645 (41)

HVTN-703 Age < 20 38 54 (2) 57 (5)
20− 30 454 449 (38) 443 (29)
> 30 145 139 (11) 145 (7)

Region SSA 340 338 (27) 341 (25)
Other SSA 286 292 (24) 294 (16)

Size 898 895 (53) 894 (51)

Gender Male 887 888 (53) 886 (51)
Female 11 7 (0) 8 (0)

HVTN-704 Age < 20 57 57 (9) 65 (11)
20− 30 531 508 (30) 518 (28)
> 30 310 330 (14) 311 (12)

Region USAS 470 474 (14) 469 (13)
BP 428 421 (39) 425 (38)

Size 1535 1537 (104) 1539 (92)

Gender Male 887 888 (53) 886 (51)
Female 653 649 (51) 653 (41)

< 20 95 111 (11) 122 (16)
Combined Age 20− 30 985 957 (68) 961 (57)

> 30 455 469 (25) 456 (19)

USAS 470 474 (14) 469 (13)
Region BP 428 421 (39) 425 (38)

SSA 340 338 (27) 341 (25)
Other SSA 286 292 (24) 294 (16)
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Table 4.5: Results from fitting the logistic model (2.14)

Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.3464 0.2275 -14.71 0.0000

Combined USAS -0.9087 0.3602 -2.52 0.0117
BP 0.1353 0.2921 0.46 0.6433
SA 0.1243 0.3055 0.41 0.6841

HVTN-703 (Intercept) -3.3464 0.2275 -14.71 0.0000
SA 0.1243 0.3055 0.41 0.6841

HVTN-704 (Intercept) -3.2111 0.1832 -17.53 0.0000
USAS -1.0440 0.3340 -3.13 0.0018



CHAPTER 5: SUPPLEMENTAL RESULTS FOR CHAPTER 3

5.1 Tables and Figures for Chapter 3

Table 5.1: Estimation results of regression parameters under the model configuration (1)

β = 0.5 γ = − log(2)
n pt σ Bias SSD ESE CP Bias SSD ESE CP
800 0.25 0.1 0.017 0.350 0.335 0.927 -0.021 0.169 0.157 0.930

0.75 0.1 -0.014 0.336 0.330 0.932 -0.022 0.161 0.154 0.936
0.25 0.2 0.032 0.426 0.384 0.920 -0.022 0.169 0.157 0.933
0.75 0.2 -0.014 0.387 0.354 0.924 -0.017 0.160 0.153 0.934

1200 0.25 0.1 -0.005 0.256 0.232 0.940 -0.002 0.126 0.128 0.954
0.75 0.1 -0.015 0.265 0.250 0.933 -0.012 0.136 0.128 0.942
0.25 0.2 -0.046 0.279 0.255 0.935 -0.024 0.133 0.128 0.950
0.75 0.2 -0.025 0.269 0.262 0.933 -0.012 0.135 0.126 0.949

Table 5.2: Estimation results of the regression parameters under the model configuration (2)

β = 0.5 γ = − log(2)
n pt σ Bias SSD ESE CP Bias SSD ESE CP
800 0.25 0.1 0.017 0.394 0.320 0.910 -0.021 0.169 0.157 0.931

0.75 0.1 -0.015 0.372 0.330 0.902 -0.019 0.160 0.153 0.937
0.25 0.2 0.051 0.446 0.384 0.903 -0.022 0.169 0.157 0.933
0.75 0.2 -0.014 0.397 0.354 0.910 -0.017 0.160 0.153 0.934

1200 0.25 0.1 0.039 0.239 0.210 0.934 -0.010 0.101 0.100 0.941
0.75 0.1 -0.027 0.237 0.220 0.954 -0.002 0.104 0.100 0.932
0.25 0.2 0.052 0.255 0.250 0.946 -0.005 0.101 0.100 0.934
0.75 0.2 0.029 0.281 0.260 0.947 -0.001 0.104 0.100 0.935
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Table 5.3: Estimation results of the regression parameters under the model configuration (3)

β = 0.5 γ = − log(2)
n pt σ Bias SSD ESE CP Bias SSD ESE CP
800 0.25 0.1 -0.049 0.288 0.250 0.920 -0.010 0.135 0.124 0.920

0.75 0.1 -0.017 0.279 0.267 0.931 -0.005 0.132 0.122 0.931
0.25 0.2 -0.053 0.314 0.260 0.920 -0.009 0.135 0.124 0.920
0.75 0.2 -0.023 0.324 0.285 0.920 -0.005 0.131 0.123 0.930

1200 0.25 0.1 -0.021 0.232 0.220 0.932 0.000 0.103 0.101 0.943
0.75 0.1 -0.008 0.229 0.221 0.940 -0.002 0.101 0.100 0.942
0.25 0.2 -0.012 0.252 0.235 0.941 0.001 0.103 0.101 0.948
0.75 0.2 -0.030 0.250 0.233 0.935 -0.005 0.102 0.100 0.943

Table 5.4: Estimation results of the regression parameters under the model configuration (4)

β = 0.5 γ = − log(2)
n pt σ Bias SSD ESE CP Bias SSD ESE CP
800 0.25 0.1 -0.040 0.270 0.236 0.920 -0.011 0.134 0.122 0.920

0.75 0.1 -0.014 0.270 0.254 0.930 -0.006 0.126 0.120 0.940
0.25 0.2 -0.049 0.273 0.240 0.920 -0.010 0.134 0.123 0.920
0.75 0.2 -0.016 0.283 0.257 0.925 -0.005 0.126 0.120 0.940

1200 0.25 0.1 -0.030 0.221 0.213 0.930 -0.011 0.113 0.114 0.940
0.75 0.1 -0.018 0.212 0.210 0.940 -0.001 0.098 0.102 0.948
0.25 0.2 -0.023 0.233 0.225 0.932 -0.011 0.113 0.114 0.940
0.75 0.2 -0.021 0.213 0.205 0.943 -0.005 0.102 0.106 0.940
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Figure 5.1: True log(VRC) curve versus least squared estimated log(VRC) curve for the
participants in United State and Switzerland
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Figure 5.2: True log(VRC) curve versus least squared estimated log(VRC) curve for the
participants in Brazil and Peru
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Figure 5.3: True log(VRC) curve versus least squared estimated log(VRC) curve for the
participants in Sub-Saharan Countries
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Figure 5.4: True log(VRC) curve versus least squared estimated log(VRC) curve for the
participants in other Sub-Saharan Countries
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Figure 5.5: Estimated survival curves by considering different combinations of covariates under
models (3.21) and (3.23) using the proposed method. Here, ’Age1’, ’Age2’ and ’Age3’ stand for the
age goups, < 20, [20, 30], > 30, respectively and X25, X50, X75 represent logVRC at its 25th, 50th,
75th percentiles, respectively. The title of each figure, for example, ’USAS+X25’ corresponds to

the region USAS with X being the 25th percentile of estimated log(VRC).
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Figure 5.6: Estimated baseline cumulative hazard function, Λ̂j(t), j = 1, · · · , 4, for regions USAS,
BP, SSA, other SSA under models (3.21) and (3.23) using the proposed method.
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Figure 5.7: Estimated survival curves under the proportional hazards model (3.21),

Λj(t|X(·), Z) =
∫ t

0
exp{βX(s) + γ⊤Z}dΛj(s) without accounting for measurement error, using the

naive plug-in method where X(·) = logVRC is replaced by X̂(·) and Z is the age groups, where
X̂(·) is the estimated X(·) based on model (3.23). Here, ’Age1’, ’Age2’ and ’Age3’ stand for the

age goups, < 20, [20, 30], > 30, respectively and X25, X50, X75 represent estimated logVRC at its
25th, 50th, 75th percentiles, respectively. The title of each figure, for example, ’USAS+X25’
corresponds to the region USAS with X being the 25th percentile of estimated log(VRC).
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Figure 5.8: Estimated baseline cumulative hazard function, Λ̂j(t), j = 1, · · · , 4, for regions USAS,
BP, SSA, other SSA under the proportional hazards model (3.21),

Λj(t|X(·), Z) =
∫ t

0
exp{βX(s) + γ⊤Z}dΛj(s) without accounting for measurement error, using the

naive plug-in method where X(·) = logVRC is replaced by X̂(·) and Z is the age groups, where
X̂(·) is the estimated X(·) based on model (3.23).
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