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ABSTRACT

SU XU. Statistical methods for the deconvolution of bulk tissue RNA sequencing
data. (Under the direction of DR. SHAOYU LI)

Bulk tissue RNA sequencing (RNA-seq) offers a cost-effective and high-throughput

snapshot of global gene expression but lacks the resolution to distinguish the con-

tributions of individual cell types within heterogeneous tissues. To overcome this

limitation, computational deconvolution methods aim to disentangle bulk RNA-seq

signals into cell-type-specific components, enabling more precise biological interpreta-

tion of complex samples. This dissertation develops, evaluates, and applies statistical

methodologies to enhance both the accuracy and interpretability of deconvolution

results.

We begin by reviewing RNA-seq technologies, highlighting key differences between

bulk and single-cell approaches, and examining how cellular heterogeneity impacts

transcriptomic analyses. Subsequent chapters delve into the mathematical foun-

dations of deconvolution, framing it as a nonnegative matrix factorization (NMF)

problem and discussing common challenges such as non-uniqueness and sensitivity

to noise. Building on recent theoretical advancements in NMF identifiability, we in-

troduce a geometric structure-guided framework (GSNMF) that integrates biological

priors —such as marker gene information —and leverages local manifold structures

to improve the stability and accuracy of estimated cell-type proportions.

We further extend GSNMF by introducing pseudo-bulk augmentation, a strat-

egy that fuses statistically simulated single-cell-derived mixtures with existing bulk

datasets. This hybrid approach mitigates singularities and the ill-posed nature of

reference-free deconvolution, resulting in more robust factorization. The dissertation

also presents a comprehensive benchmarking study comparing the performance of

both reference-based and reference-free methods across a variety of datasets. Eval-
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uation metrics—including correlation, root mean squared error, and mean absolute

deviation—show that while high-quality reference data can improve performance,

carefully constrained or augmented reference-free methods can be highly effective

when reference data are limited or unreliable. We present and interpret the results,

and conclude by discussing existing challenges and future research directions.
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CHAPTER 1: INTRODUCTION

1.1 RNA sequencing

1.1.1 Bulk sample RNA Sequencing

Bulk RNA sequencing (RNA-seq) is a high-throughput technique used to quantify

gene expression by measuring the complete set of RNA transcripts within a biolog-

ical sample. Unlike single-cell RNA sequencing (scRNA-seq), which captures gene

expression at the resolution of individual cells, bulk RNA-seq provides an aggregate

view of transcriptomic activity across an entire population of cells. This approach is

widely employed in transcriptome profiling to assess gene expression patterns, identify

differentially expressed genes, and explore regulatory mechanisms underlying various

biological processes and disease states.

The workflow for bulk RNA-seq begins with a tissue sample or a heterogeneous cell

population as the starting material. RNA is extracted, converted into complementary

DNA (cDNA), and sequenced to generate a comprehensive dataset representing the

combined transcriptional activity of all cells within the sample. While bulk RNA-seq

offers valuable insights into overall gene expression trends, its measurements reflect

population-level averages, making it unsuitable for capturing cellular heterogeneity

within complex tissues. Despite this limitation, bulk RNA-seq remains a fundamen-

tal tool for large-scale transcriptomic studies, particularly in cases where single-cell

resolution is not required or when working with limited resources.
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1.1.2 Cell level RNA sequencing

1.1.2.1 Single-cell RNA sequencing

Single-cell RNA sequencing (scRNA-seq) is a cutting-edge technique that enables

high-resolution analysis of gene expression at the level of individual cells. Unlike

bulk RNA sequencing—which captures an averaged transcriptomic profile from a

heterogeneous cell population —scRNA-seq provides a detailed snapshot of each cell’s

transcriptome, revealing the complexity, heterogeneity, and functional diversity within

tissues. This unprecedented resolution allows researchers to identify distinct cell

types, characterize cellular states, and investigate dynamic biological processes in

complex systems.

The scRNA-seq workflow begins with isolating single cells from a tissue sample us-

ing various methods, including serial dilution, laser capture microdissection, manual

picking, or advanced microfluidic platforms. Once isolated, RNA molecules within

each cell are tagged with unique cell-specific barcodes, allowing gene expression pro-

files to be independently tracked. The RNA is then reverse transcribed into comple-

mentary DNA (cDNA), followed by amplification and sequencing library preparation

for high-throughput analysis.

Since its introduction in 2009, scRNA-seq has revolutionized transcriptomic re-

search by offering new insights into cellular heterogeneity, lineage differentiation, and

intercellular communication. Its applications span a wide range of disciplines, includ-

ing developmental biology, immunology, cancer research, and neuroscience. Recog-

nizing its transformative potential, Nature named single-cell sequencing the "Method

of the Year" in 2013, solidifying its status as an essential tool in modern biological

research [1]. As scRNA-seq technologies continue to evolve, their integration with

multi-omics approaches and spatial transcriptomics further expands our ability to

explore biology at unprecedented resolution.
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1.1.2.2 Single-nucleus RNA sequencing

Single-nucleus RNA sequencing (snRNA-seq) is a powerful technique for transcrip-

tomic profiling at the single-nucleus level, offering a compelling alternative to single-

cell RNA sequencing (scRNA-seq)—especially in cases where whole-cell dissociation

is impractical. Unlike scRNA-seq, which requires fresh, viable cells, snRNA-seq en-

ables the isolation and sequencing of nuclei from frozen or archived tissues, effectively

decoupling tissue collection from immediate sample processing. This flexibility makes

it an invaluable tool for studying rare, fragile, or otherwise difficult-to-dissociate cell

types and facilitates retrospective analyses of biobanked specimens.

Moreover, snRNA-seq supports the multiplexed analysis of longitudinal samples

from the same individual, making it particularly advantageous for investigating dis-

ease progression, aging, and therapeutic responses over time. However, a notable

limitation of snRNA-seq is the lower mRNA content in nuclei compared to whole

cells, which can affect the sensitivity and resolution of gene expression analyses. Ad-

ditionally, enriching or depleting specific cell types is more challenging in nuclear

preparations, necessitating careful optimization of experimental protocols and bioin-

formatic pipelines to minimize bias. Despite these challenges, ongoing advances in nu-

clear isolation and sequencing technologies continue to improve the performance and

reliability of snRNA-seq, broadening its applications in fields such as neuroscience,

oncology, and developmental biology [2].

1.1.3 Comparative Analysis of Bulk and Cell level RNA Sequencing

Bulk RNA sequencing (bulk RNA-seq) has long served as a foundational technique

for transcriptome profiling, valued for its cost-effectiveness, efficiency, and relatively

low technical complexity compared to single-cell RNA sequencing (scRNA-seq). In

addition to quantifying overall gene expression levels, bulk RNA-seq is instrumental

in identifying novel transcripts, detecting alternative splicing events, and analyzing
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allele-specific expression. However, a major limitation of this approach is its inability

to resolve cellular heterogeneity, as it captures only the average gene expression across

a mixed population of cells.

In contrast, single-cell RNA sequencing (scRNA-seq) provides a high-resolution

view of the transcriptome by profiling gene expression at the level of individual cells.

While more resource-intensive and technically demanding, scRNA-seq enables re-

searchers to identify distinct cell populations, uncover cell-type-specific expression

patterns, and track dynamic cellular processes such as differentiation, immune re-

sponses, and disease progression. This ability to dissect cellular heterogeneity makes

scRNA-seq a powerful tool for studying complex biological systems, advancing preci-

sion medicine, and identifying novel therapeutic targets.

By strategically integrating both approaches, researchers can harness bulk RNA-seq

for broad transcriptomic insights and scRNA-seq for fine-grained cellular resolution

—together offering a comprehensive understanding of gene expression dynamics across

diverse biological contexts.

1.2 Cell Composition Heterogeneity

Human tissues comprise a complex and dynamic mosaic of diverse cell types and

subtypes, each characterized by distinct gene expression profiles and specialized bi-

ological functions. As a result, gene expression measurements obtained from bulk

tissue samples reflect not only the transcriptional activity of individual cell types but

also their relative abundances within the sample. This cellular composition is shaped

by both intrinsic biological factors and technical considerations, making it a critical

variable in transcriptomic analyses [3].

Variability in cellular composition—defined as differences in the distribution of cell

types within a tissue sample—can arise from biological conditions, disease states, or

experimental treatments. This heterogeneity is especially pronounced in pathological

contexts. For example, in the brains of individuals with Alzheimer’s disease (AD), a
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progressive neurodegenerative disorder, neuronal loss is accompanied by a compen-

satory increase in microglia and astrocytes, resulting in substantial shifts in cellular

composition compared to healthy brain tissue [4, 5, 6]. Similarly, pancreatic tissue

from individuals with type 2 diabetes (T2D) exhibits a notable reduction in insulin-

producing β cells relative to non-diabetic controls [7, 8]. Beyond disease, significant

variation in cell composition is also observed across anatomical regions, developmen-

tal stages, and physiological conditions, further contributing to tissue heterogeneity

[9].

This inherent cellular heterogeneity poses significant challenges for bulk RNA se-

quencing (RNA-seq) analyses, particularly in differential expression (DE) studies and

gene co-expression network construction. The presence of multiple cell types in bulk

samples can obscure cell type-specific expression signals, potentially leading to biased

interpretations or spurious findings. As such, addressing cellular composition is es-

sential for deriving accurate and biologically meaningful insights from transcriptomic

data.

1.3 Deconvolution methods

Deconvolution is a computational technique used to identify the properties and

concentrations of individual components within an observed mixture. With a long

history spanning multiple disciplines, it was first applied in audio processing to sepa-

rate speech and music from background noise [10, 11, 12, 13]. It later gained promi-

nence in hyperspectral imaging, where it is used to extract pure spectral signatures

from mixed material signals [14, 15, 16, 17, 18]. In biomedical research, deconvolu-

tion has become indispensable for analyzing complex biological tissues, particularly

in gene expression studies, where it enables the estimation of cell-type-specific signa-

tures from bulk RNA sequencing data. This approach plays a critical role in disease

research, aiding in the identification of tumor microenvironments, monitoring im-

mune responses, and investigating neurodegenerative disorders by tracking changes
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in cellular populations [19, 20].Over time, deconvolution methodologies have evolved

from simple linear models to advanced regression-based and probabilistic approaches,

enhancing both accuracy and applicability across diverse scientific domains.

To mitigate the impact of cellular heterogeneity, a variety of computational decon-

volution methods have been developed. These methods can be broadly classified into

two main categories: reference-based and reference-free approaches.

Reference-based methods for bulk RNA-seq deconvolution utilize expression pro-

files from single-cell or purified cell types to estimate the proportions of different

cell types within bulk RNA-seq data. These methods employ a range of statistical

and machine learning techniques to achieve accurate deconvolution. For instance,

DeconRNASeq [21] and DCQ [22] use regression-based approaches, while Bseq-SC

[23] applies ν-SVR and improves estimation accuracy using scRNA-seq references.

Tools such as TIMER [24] and EPIC [25] are specifically designed for deconvolving

the tumor microenvironment and incorporate additional biological priors to enhance

performance.

CIBERSORTx [26], an extension of CIBERSORT [20], incorporates single-cell data

to increase precision and enables high-resolution estimation of cell-type-specific gene

expression. Dtangle [27] minimizes bias through the careful selection of marker genes,

while MuSiC [28] leverages cross-subject single-cell RNA-seq data for robust estima-

tion across diverse samples. BayesPrism [29] uses Bayesian modeling to enhance

inference accuracy, and DAISM-DNN [30] integrates deep learning techniques to im-

prove deconvolution performance.

Together, these reference-based approaches offer diverse strategies for addressing

the complexity of cellular heterogeneity in bulk RNA-seq data. In contrast, reference-

free deconvolution methods do not rely on external reference datasets. Instead, they

infer cell type proportions through matrix factorization, statistical modeling, and

optimization techniques. For example, CellDistinguisher [31] employs a clustering-
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based method to identify marker genes for each cell type, followed by support vector

machines (SVM) to separate gene expression signals into distinct components. DSA

(Digital Sorting Algorithm) [32] uses regularized linear regression to estimate cell

type proportions based on selected marker genes, offering a fast and interpretable

approach without relying on full reference profiles.

TOAST (TOols for the Analysis of heterogeneouS Tissues) [33, 34] enhances reference-

free deconvolution by iteratively identifying cell-type-specific features and refining

composition estimates. CDSeq (Complete Deconvolution for Sequencing data) [35]

employs non-negative matrix factorization (NMF) to simultaneously estimate cell

proportions and cell-type-specific gene expression profiles. Linseed [36] applies con-

vex geometry principles to identify extreme points in the expression space and solves

the deconvolution problem through convex optimization. GSNMF [37] extends tra-

ditional NMF by incorporating geometric and solvability penalty terms to improve

interpretability and accuracy.

These reference-free methods provide flexible alternatives when high-quality ref-

erence profiles are unavailable. A summary of these methods is presented in Ta-

ble (1.1). Additionally, enrichment-based deconvolution methods estimate cell-type

proportions using predefined marker gene sets rather than full reference expression

profiles. These approaches—such as xCell [38] and ESTIMATE [39]—rely on gene

set enrichment analysis, rank-based statistics, or regression models to infer relative

cell-type proportions. However, a detailed discussion of enrichment-based methods is

beyond the scope of this work.

By incorporating these computational strategies, researchers can more accurately

account for cell composition variability, thereby improving the robustness of RNA-seq

analyses and enhancing the interpretability of transcriptomic findings.
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Table 1.1: Overview of different deconvolution algorithms and their characteristics.

Method
Mathematical/

Statistical Foundations

Input(reference) Output

ReferencescRNA-seq Signature

matrix

Cell type

proportion

Cell-type-specific

GEP

REFERENCE-BASED METHODS

DeconRNASeq Non-negative least squares No Yes Yes No Gong et al.

(2013) [21]

DCQ Regularized constrained

least squares

No Yes Yes No Altboum et al.

(2014) [22]

Bseq-SC ν-Support Vector

Regression

No Yes Yes No Baron et al.

(2016) [23]

EPIC Weighted constrained

least squares

No Yes Yes No Racle et al.

(2017) [25]

Dtangle Linear mixing model of

linear-scale expressions

No Yes Yes No Hunt et al.

(2019) [27]

CIBERSORTx ν-Support Vector

Regression

Yes Yes Yes No Newman et al.

(2019) [26]

MuSiC Weighted least squares Yes Yes Yes No Wang et al.

(2019) [28]

TIMER Regularized linear

regression (multivariate

normal)

No Yes Yes No Li et al. (2020)

[24]

BayesPrism Bayesian model Yes Yes Yes No Chu et al.

(2022) [29]

DAISM-DNN Deep neural network Yes No Yes No Lin et al.

(2022) [30]

REFERENCE-FREE METHODS

DSA Regularized linear

regression

No Yes Yes Yes Zhong et al.

(2013) [32]

CellDistinguisher Non-negative matrix

factorization(NMF)

No No Yes Yes Newberg et al.

(2018) [31]

CDSeq Probabilistic model (LDA) No No Yes Yes Kang et al.

(2019) [35]

Linseed Simplex topology No No Yes No Zaitsev et al.

(2019) [36]

TOAST NMF and principal

component analysis

No No Yes Yes Li et al. (2019)

[33] (2020) [34]

GSNMF Geometric structure

guided NMF model

No No Yes Yes Chen et al.

(2022) [37]

ENRICHMENT METHODS

ESTIMATE Gene set enrichment

analysis

No Yes Enrichment scores Yoshihara et

al. (2013) [39]

xCell Gene set enrichment

analysis

No Yes Enrichment scores Aran et al.

(2017) [38]
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1.4 Mathematical Formulation of Deconvolution

Deconvolution is a computational technique that leverages large-scale bulk tissue

RNA sequencing (RNA-seq) data to estimate the cellular composition within a tissue

sample. The fundamental assumption underlying deconvolution is that the observed

gene expression profile (GEP) of a bulk tissue sample represents a linear combination

of the GEPs of its constituent cell types, weighted by their respective proportions.

This relationship is mathematically expressed as:

gij =
k∑
l=1

pljcil, 1 ≤ i ≤ N, 1 ≤ j ≤ n, (1.1)

where gij and cil denote the GEPs of gene i in the j-th sample and the l-th cell

type, respectively, while plj represents the proportion of the l-th cell type in the j-th

sample. Typically, the number of genes (N) far exceeds the number of bulk tissue

samples (n), and the number of constituent cell types (k) is relatively small, leading

to the common setting N � n > k.

Figure 1.1: Diagram of deconvolution of bulk tissue data

In matrix representation of deconvolution, denote bulk tissue RNA-seq data G ∈
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RN×n with entry gij being the expression of the i-th gene in the j-th sample; the

expected expression levels of genes in these cells C ∈ RN×k with entry cij being the

reference expression of the i-th gene in the j-th cell type; and the proportion of these

cells in the bulk tissue samples P ∈ Rk×n with entry pij being the proportion of the

i-th cell type in the j-th sample. Dimensions N � max(n, k). The following linear

relation is assumed:

G = CP + ε, (1.2)

where ε is noise.

The problem (1.2) of solving for P, given a known C, is commonly addressed

using reference-based deconvolution methods, which have demonstrated remarkable

robustness and accuracy. These methods rely on predefined cell type-specific data

—such as gene expression profiles obtained from sorted cell populations —to guide

the estimation process [20]. With the advent of single-cell RNA sequencing (scRNA-

seq) technology, many algorithms now incorporate scRNA-seq reference datasets to

further enhance deconvolution accuracy. Notable examples of such methods include

CIBERSORTx [20, 26] and MuSiC [28]. However, in more realistic scenarios where

little to no information about the underlying cell types is available, the development

of reliable complete deconvolution methods remains an open challenge, with only a

limited number of models currently established [35, 40, 36].

In contrast, the problem (1.2) of solving for both C and P, as illustrated in Fig-

ure (1.1), is addressed by reference-free deconvolution approaches. These methods

infer cell type proportions without relying on predefined reference profiles. Instead,

they estimate both the cell type-specific expression profiles and proportions directly

from bulk data using matrix decomposition techniques such as singular value decom-

position (SVD) or non-negative matrix factorization (NMF). To improve resolution

and accuracy, reference-free methods often incorporate additional biological insights
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—such as manifold structure or gene co-expression patterns —to aid in identifying

distinct cell types. Notable examples include the Digital Sorting Algorithm (DSA)

[32], Linseed [36], and GSNMF [37].

1.5 Non-negative Matrix Factorization for Deconvolution

Mathematically, reference-free deconvolution can be formulated as a Non-negative

Matrix Factorization (NMF) problem [41, 42, 43]. Extensive research on NMF has

been conducted across various disciplines, including spectral unmixing in analytical

chemistry [42], remote sensing [44], image processing [45], and topic modeling in

machine learning [46].

NMF is a dimensionality reduction technique that decomposes each column of a

given input matrix into a non-negative weighted sum of non-negative basis vectors.

The number of basis vectors is constrained to be equal to or fewer than the number

of columns in the original matrix [47]. In addition to non-negativity, a sum-to-one

(STO) constraint is often applied to the columns of matrix C. This constraint restricts

the search space, potentially improving the accuracy of the results. In this section,

we examine different loss functions and explore the impact of constraint enforcement

strategies.

1.5.1 Objective Function Selection

The reference-free deconvolution problem can thus be formulated as follows by

(1.2): given data G ∈ RN×n, solve

(C∗,P∗) = arg min
C∈RN×k+ ,P∈Rk×n+

δ(CP,G) (1.3)

where RN×k
+ or Rk×n

+ represent matrices with nonnegative entries and δ(·, ·) is a cost

function. The choice of the cost function varies based on prior knowledge of the

probability distribution of data noise and its susceptibility to outliers.

1) Choice of loss function: There are various options for suitable loss functions.
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The choice of the cost function δ(CP,G) is crucial in determining the robustness and

accuracy of the solution. Different loss functions can be selected based on assumptions

about the noise distribution in G and the nature of the data.

1. Least Squares Loss (Frobenius Norm):

δ(CP,G) = ‖CP−G‖2F =
∑
i,j

(CP−G)2ij (1.4)

This loss function assumes that the underlying model is perturbed by Gaussian noise.

The minimization process serves as a maximum likelihood estimator for additive

Gaussian noise. It is computationally efficient but highly sensitive to outliers.

2. L1 Norm Loss (Absolute Error):

δ(CP,G) =
∑
i,j

|(CP−G)ij| (1.5)

The absolute deviation loss is optimal if the noise follows a Laplacian distribution.

It is less sensitive to extreme values than the least squares loss but can be more

challenging to optimize.

3. Huber Loss (Robust to Outliers):

δ(CP,G) =
∑
i,j


1
2
(CP−G)2ij, if |(CP−G)ij| ≤ δ

δ(|(CP−G)ij| − 1
2
δ), otherwise

(1.6)

Huber loss provides a balance between squared error for small deviations and absolute

error for large deviations, making it more robust to outliers.

4. Kullback-Leibler (KL) Divergence:

δ(CP,G) =
∑
i,j

Gij log
Gij

(CP)ij
−Gij + (CP)ij (1.7)
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KL divergence is commonly used for Poisson-distributed count data, such as RNA-

seq data, where it provides an effective measure of dissimilarity between probability

distributions.

5. Support Vector Regression(SVR) Loss Function:

A notable loss function (1.8) used in Support Vector Regression (SVR) is the ε-

insensitive loss function, which is designed to ignore small errors within a margin

ε.

δ(CP,G) =
∑
i,j

Lε ((CP)ij,Gij) (1.8)

where the ε-insensitive loss function is defined as:

Lε(y, ŷ) =


0, if |y − ŷ| ≤ ε

|y − ŷ| − ε, otherwise
(1.9)

where y is the true value, ŷ is the predicted value, ε is a predefined margin of

tolerance. The ε-insensitive loss function, similar to Huber loss, it introduces a tran-

sition between small and large estimation errors. However, unlike Huber loss, the

ε-insensitive loss does not penalize errors that fall within the predefined threshold.

2) Choice of Regularizers: Regularization is commonly used to improve the robust-

ness of deconvolution methods by preventing overfitting, enhancing numerical stabil-

ity, and incorporating prior knowledge about the structure of C and P. When the

reference profile includes many cell types that may not be present in the mixture, or

when certain cell types exhibit high correlation, regularization can help sparsify the

solution or improve the conditioning of the problem.

1. L2 Regularization (Ridge Penalty):

Ω(C,P) = λ
(
‖C‖2F + ‖P‖2F

)
(1.10)
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L2 regularization discourages large coefficients, resulting in smoother solutions. By

penalizing extreme values, it helps control variance and reduces the effects of collinear-

ity.

2. L1 Regularization (Lasso Penalty):

Ω(C,P) = λ (‖C‖1 + ‖P‖1) (1.11)

L1 regularization encourages sparsity by driving many elements of C and P to be

exactly zero. This is particularly useful when only a subset of features or components

is expected to contribute significantly.

3. Elastic Net Regularization:

Ω(C,P) = λ1 (‖C‖1 + ‖P‖1) + λ2
(
‖C‖2F + ‖P‖2F

)
(1.12)

Elastic Net regularization combines L1 and L2 penalties, balancing feature selection

with numerical stability. This approach is particularly effective when dealing with

highly correlated features.

4. Group LASSO Regularization:

Ω(P) = λ
∑
g∈G

‖Pg‖2 (1.13)

where G represents a predefined partitioning of the k cell types into groups, Pg is the

submatrix of P corresponding to group g, ‖Pg‖2 is the L2 norm of the proportions

within each group.

Group LASSO extends L1 regularization by enforcing structured sparsity across

predefined groups of cell types. Given a grouping G among cell types, this method

encourages similarity within each group while promoting sparsity across different

groups. This is particularly useful in biological deconvolution, where certain cell types
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are expected to co-occur while others may not be present in a given bulk sample.

5. Non-negative Constraints:

To ensure interpretability in deconvolution, it is common to impose non-negativity

constraints:

C ≥ 0, P ≥ 0. (1.14)

These constraints align with physical and biological interpretations, ensuring that the

resulting solutions remain meaningful.

1.5.2 Computational algorithms

Non-negative Matrix Factorization (NMF) is a dimensionality reduction technique

widely used in various fields, including bioinformatics, text mining, and image pro-

cessing. Several numerical methods exist for obtaining a local minimum in NMF, in-

cluding the Multiplicative Update Algorithm (MUA) [48], Alternating Nonnegativity-

Constrained Least Squares (ANLS) [49], and the Alternating Direction Method of

Multipliers (ADMM) [50, 51], etc.

Given a data matrix G ∈ RN×n
+ , the objective of NMF is to approximate G as the

product of two non-negative matrices, C and P (1.3). To compute C and P, various

iterative algorithms minimize δ(CP,G) while enforcing non-negativity constraints.

1. Multiplicative Update Rules

A widely used algorithm for NMF is the multiplicative update rule, which minimizes

the Frobenius norm loss:

δ(CP,G) = ‖G−CP‖2F (1.15)

The update rules for C and P are:

C← C� GP>

CPP>
(1.16)



17

P← P� C>G

C>CP
(1.17)

where� denotes element-wise multiplication, and division is also performed element-

wise.

This method ensures non-negativity without requiring additional constraints and

is guaranteed to converge, though not necessarily to a global minimum. However, it

is sensitive to initialization, often requiring multiple runs for stability.

2. Alternating Least Squares (ALS)

An alternative approach, Alternating Least Squares (ALS), minimizes the Frobenius

norm by solving two subproblems iteratively:

1. Fix P and solve for C:

C = arg min
C≥0
‖G−CP‖2F (1.18)

2. Fix C and solve for P:

P = arg min
P≥0
‖G−CP‖2F (1.19)

This method efficiently solves least squares problems iteratively but requires en-

forcing non-negativity constraints using optimization techniques such as projected

gradient descent. Compared to multiplicative updates, ALS is computationally more

expensive.

3. Non-negative Alternating Direction Method of Multipliers (N-ADMM)

A more advanced approach, Non-negative ADMM (N-ADMM), formulates NMF

as a constrained optimization problem:

min
C≥0,P≥0

‖G−CP‖2F + λ‖C‖1 + λ‖P‖1 (1.20)
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where λ controls the sparsity of the factorized matrices.

The ADMM approach enhances NMF by enforcing non-negativity constraints and

promoting sparsity via L1 regularization. It achieves this by solving subproblems

for C and P separately, introducing auxiliary variables for efficient constrained op-

timization, and updating Lagrange multipliers to ensure feasibility. This method is

particularly effective for large-scale NMF problems but is more complex to implement

compared to simpler methods.

1.5.3 Ill-posedness of NMF

Solving Eq. (1.3) for C (or P) while keeping the other variable fixed (reference-free

deconvolution) reduces to a convex regression problem. However, solving for both

variables simultaneously is inherently non-convex, generally NP-hard, and computa-

tional algorithms typically converge only to local minima or stationary points [52].

Furthermore, NMF is an ill-posed problem, meaning its solution is neither unique

nor identifiable. Specifically, if (C∗,P∗) is a local minimum of Eq. (1.3), then for

any Ω ∈ Rk×k, the transformed matrices Ĉ = C∗Ω and P̂ = Ω−1P∗ are also valid

solutions, provided they satisfy the non-negativity constraint.

The non-uniqueness of solutions can significantly impact statistical analyses and

influence key decisions in biological applications. Therefore, it is crucial to constrain

the search space of variables to enhance the identifiability of solutions, thereby im-

proving interpretability. The uniqueness of the NMF solution is formally defined in

the following sense [53]:

Definition 1 (Uniqueness of NMF solution). The solution (C∗,P∗) of an NMF is

unique (or identifiable) if and only if, for any other solution (C̄, P̄), there exists

a permutation matrix Π ∈ {0, 1}k×k and a diagonal scaling matrix S with positive

diagonal entries such that

C̄ = C∗ΠS and P̄ = S−1ΠᵀP∗
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Further results from [52, 53] summarize that under certain conditions [54, 55, 56,

57], NMF solutions can indeed be unique. Two notable results are:

Theorem 1 (Strong identifiability condition). Let k = rank(G) and assume ε = 0.

If there exists a solution for problem (1.3) in which both Cᵀ and P are separable

matrices, then this solution is unique.

Theorem 2 (Weak identifiability condition). Let k = rank(G) and assume ε = 0.

If both Cᵀ and P are sufficiently scattered, then the problem (1.3) admits a unique

solution.

Geometric Interpretation

In summary, if the matrices C and P satisfy certain identifiability conditions, the

NMF problem may yield a unique solution, subject only to the inherent row/column

scaling and permutation ambiguities of factorization.

To better understand the strong and weak conditions of uniqueness, we examine the

NMF problem from a geometric perspective. For A ∈ Rm×n, the notation cone(A)

denotes the convex cone generated by the columns of A, defined as

cone{A} = {x ∈ Rm | x = Aθ, for some θ ∈ Rn, θ ≥ 0}, (1.21)

and the convex hull of A is given by

conv{A} = {x ∈ Rm | x = Aθ, for θ ∈ Rn, θ ≥ 0, and 1
>θ = 1}. (1.22)

To illustrate this concept, we consider G> = P>C>, as gene expression across

samples (i.e., the columns of G>, corresponding to the rows of G) represents the

primary data features of interest. Due to the non-negativity of C and P, we obtain

G(i) ∈ cone(P>) ⊆ Rn
+, 1 ≤ i ≤ N, (1.23)
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which implies that cone(G>) ⊆ cone(P>) ⊆ Rn
+. Consequently, problem (1.3) can

be interpreted as a nested cone problem: given two nested cones, cone(G>) and Rn
+,

the objective is to identify the intermediate nested cone cone(P>) that lies between

them.

This geometric interpretation is depicted in the left panel of Figure 1.2, where N =

8 and k = n = 3. The right panel offers a more intuitive perspective using a convex

hull representation, which reduces the dimensional complexity by one compared to

the cone view. This simplification is achieved by normalizing the columns of G> and

P> to their unit l1-norm.

From the right panel of Figure 1.2, we observe that the solution for conv(P>) is not

unique: the data matrix G can be enclosed within multiple valid cones (e.g., the red

solid and green dashed triangles) formed by different choices of P. This observation

suggests that if the rows of G are sufficiently "spread out" within the nonnegative

orthant, then cone(P>) or conv(P>) may be unique. This idea leads to the following

theoretical conditions on the identifiability of NMF.

Figure 1.2: Cone (left) and convex hull (right) views of NMF as a nested cone problem.

Strong and weak conditions on identifiability
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There are two types of conditions for the uniqueness of the solution to Eq. (1.2)

when ε = 0. These strong and weak conditions are illustrated above, with the defini-

tions of separable and sufficiently scattered matrices provided as follows:

Definition 2 (Separable Matrix). A matrix A ∈ Rm×n
+ is separable if

cone(A) = Rm
+ . (1.24)

Definition 3 (Sufficiently Scattered Matrix). A matrix A ∈ Rm×n
+ is sufficiently

scattered if:

1. The second-order cone in Rm
+ is contained within cone(A), i.e.,

C = {x ∈ Rm
+ | e>x ≥

√
m− 1‖x‖} ⊆ cone(A). (1.25)

2. There does not exist any orthogonal matrix Q such that cone(A) ⊆ cone(Q),

except for permutation matrices.

Theorem (1) imposes a strict condition: for a matrix to be separable, P and C>

must contain (scaled) extreme rays of the nonnegative orthant in their respective

spaces. That is, for every r = 1, 2, . . . , k, there exists a column index lr such that

P(lr) = αrer, er ∈ Rk
+, (1.26)

where αr is a scalar. This condition is illustrated in the left panel of Figure 1.3 for

k = 3. Since this is a convex hull representation, the columns of P are shown as blue

dots within the unit simplex (red triangle) in R3
+. As depicted, some columns of P

must be exactly aligned with the unit vectors er, r = 1, 2, 3 (overlapping with red

dots). A similar condition applies to C>. However, such strict assumptions on both

variables are often impractical, especially in the presence of noise.
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On the other hand, Theorem (2) imposes a much more relaxed condition. The

right panel of Figure 1.3 illustrates this scenario: the dashed circle represents the

intersection of the second-order cone in R3
+ with the unit simplex. The blue markers

—comprising both dots and pentagons —represent the columns of P. Unlike the

stronger condition, none of these columns are required to coincide with the basis

vectors er; however, some of them (shown as pentagons) must lie outside the dashed

circle, that is, outside the second-order cone.

Figure 1.3: Convex hull views for strong (left) and weak (right) identifiability condi-
tions with k = 3

1.6 Statistical Methods for Deconvolution

Deconvolution of bulk RNA sequencing (RNA-seq) data is a crucial computational

challenge in transcriptomics, particularly for complex and heterogeneous tissue sam-

ples such as tumors. Bulk RNA-seq captures gene expression as an aggregate signal

from multiple cell types, complicating downstream analyses. To extract meaningful

biological insights, statistical deconvolution methods aim to infer both cell-type pro-

portions and their respective gene expression profiles. Traditional approaches often

rely on predefined reference profiles or assume prior knowledge of cellular composition,

which may not always be available or reliable.

Two advanced statistical frameworks, CDSeq [29] and BayesPrism [35], have been

developed to address these challenges by leveraging different probabilistic models for
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robust deconvolution.

CDSeq is a novel probabilistic method based on Latent Dirichlet Allocation (LDA)

that performs complete deconvolution without requiring predefined cell-type propor-

tions or cell-type-specific gene expression profiles. By simultaneously estimating both

components directly from bulk RNA-seq data, CDSeq provides an unbiased approach

to studying heterogeneous tissues. The method has demonstrated superior perfor-

mance against multiple existing deconvolution techniques across synthetic and real

experimental datasets, highlighting its robustness and applicability in complex tran-

scriptomic analyses.

BayesPrism, in contrast, employs a Bayesian hierarchical framework that integrates

single-cell RNA sequencing (scRNA-seq) data as prior information to refine cellular

composition and gene expression inference. By explicitly modeling discrepancies be-

tween bulk RNA-seq and reference scRNA-seq data, BayesPrism improves deconvolu-

tion accuracy, particularly in tumor microenvironment (TME) analyses. The method

has been successfully applied to various cancer types, enabling integrative analyses

across large patient cohorts, refining cancer subtype classifications, and identifying

gene expression signatures associated with immune infiltration.

Both CDSeq and BayesPrism represent significant advancements in computational

deconvolution, addressing key limitations of conventional methods and expanding the

analytical capabilities of bulk RNA-seq data. These approaches enhance our ability

to dissect cellular heterogeneity, improve biomarker discovery, and provide deeper

biological insights in both healthy and diseased tissues.

1.7 Overview of the Dissertation

The remainder of this dissertation is organized as follows.

In Chapter 2, complete deconvolution of bulk RNA-seq data aims to recover both

cell type-specific gene expression profiles (GEPs) and relative cell abundances. How-

ever, this remains a challenging task due to the inherently ill-posed nature of models
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like nonnegative matrix factorization (NMF). While existing methods have shown

promising results in certain cases, a general solution to the ill-posedness problem and

improvement in result accuracy is still lacking.

To address these challenges, we investigate the solvability conditions of NMF and

analyze how rescaling ambiguity affects solution uniqueness. Building on these in-

sights, we develop a novel NMF-based framework (GSNMF) that integrates marker

gene information and geometric structure derived from spectral clustering. This leads

to a constrained optimization model with manifold regularization.

Furthermore, we propose a new pipeline—Geometric Structure-Guided NMF with

Pseudo-Bulk Augmentation (GSNMF+)—which enhances solvability by augmenting

the original bulk RNA-seq data with statistically simulated pseudo-bulk data gen-

erated from single-cell RNA-seq profiles. We also introduce a rescaling adjustment

step to reduce estimation error. Our method demonstrates substantial performance

improvements across several realistic datasets, especially in complex tissue samples

with sparse or singular cellular compositions.

In Chapter 3, we conduct a comprehensive benchmarking study to evaluate the

performance of various computational deconvolution methods for estimating cell-type

proportions in bulk RNA-seq data. The comparison includes both reference-based

and reference-free approaches, using in silico pseudo-bulk datasets derived from four

distinct single-cell RNA-seq (scRNA-seq) datasets representing diverse tissue types

and cell composition scenarios. We assess each method’s robustness by comparing its

estimates to ground truth using Pearson’s correlation (R), root mean squared error

(RMSE), and mean absolute deviation (mAD). To evaluate resilience, we introduce

distribution shifts—such as mean shifting, truncation, and scaling—into the single-

cell profiles.

Our findings reveal that reference-based methods generally perform best when high-

quality reference data are available. In contrast, reference-free methods offer more
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consistent performance in the absence of reliable references. We also observe that

variability in scRNA-seq data and tissue heterogeneity significantly impact method

accuracy and stability.

Chapter 4 outlines several directions for future research.



CHAPTER 2: Geometric structure guided NMF model for deconvolution of bulk

RNA-seq data

2.1 Introduction

Performing complete deconvolution analysis of bulk RNA-seq data to recover both

cell type-specific gene expression profiles (GEPs) and relative cell abundances re-

mains a complex and challenging task. A foundational approach in this domain

—nonnegative matrix factorization (NMF)—is inherently ill-posed. While several

complete deconvolution methods have been developed and show promising alignment

with ground truth in certain datasets, a comprehensive understanding of how to mit-

igate ill-posedness and improve solution accuracy is still lacking.

In this section, we begin by examining the conditions under which a dataset sat-

isfies the solvability criteria outlined in NMF theory. Even when these criteria are

met, the âuniqueâ solutions produced by NMF are typically affected by an unknown

rescaling matrix. To address this limitation, we estimate both the local minima to

which the model converges and the potential rescaling matrix, leveraging informative

initialization strategies.

We propose an NMF-based mathematical model along with corresponding compu-

tational algorithms (GSNMF) aimed at enhancing the identifiability of deconvolution

solutions for bulk RNA-seq data. Our approach incorporates the biological concept of

marker genes into the theoretical framework of NMF solvability, culminating in a geo-

metric structure-guided optimization model. This method first explores the geometric

structure of the bulk tissue data using spectral clustering. The identified marker genes

are then used as solvability constraints, while a correlation graph constructed from

the data provides manifold regularization.
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Building on the theoretical insights presented in Chapter 2, we introduce a novel

pipeline: Geometric Structure-Guided NMF with Pseudo-Bulk Augmentation (GSNMF+).

This approach generates pseudo-bulk tissue data by statistically simulating pseudo-

cellular compositions from single-cell RNA sequencing (scRNA-seq) data, which are

then integrated with the original bulk dataset. The resulting hybrid dataset is de-

signed to satisfy the weak solvability conditions of NMF. Additionally, we apply an

estimated rescaling matrix to adjust the NMF minimizer, with the goal of reducing

the mean squared error in the final solutions.

We evaluate our algorithm on multiple realistic bulk tissue datasets and demon-

strate significant improvements in performance, particularly in scenarios involving

sparse or singular cellular compositions.

2.2 Theoretical foundations in NMF model

The reference-free deconvolution algorithm is crucial for distinguishing whether

changes in disease-associated tissue gene expression profiles (GEPs) stem from shifts

in cellular composition or alterations in specific cell types, all without relying on a

predefined reference. Our group has developed an NMF-based mathematical model

and corresponding computational algorithms to enhance the identifiability of solu-

tions when deconvoluting bulk RNA-seq data. In our approach, we integrate the

biological concept of marker genes with the solvability conditions of NMF theories

and formulate an optimization model guided by geometric structures. First, we ex-

plore the geometric structure of bulk tissue data using spectral clustering techniques.

Then, we incorporate identified marker gene information as solvability constraints

while leveraging the overall correlation graph as manifold regularization.

Mathematical Formulation

Based on the mathematical formulation established in Sections 1.4 and 1.5, the
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reference-free deconvolution problem can be formulated as follows: given G, solve

(C∗,P∗) = arg min
C≥0,P≥0

1

2
‖G−CP‖2F + 1T (P). (2.1)

The third term 1T (P) , enforces the sum-to-one constraint on each column of P (i.e.,

column stochasticity), reflecting the requirement that the total cellular proportion in

each tissue sample must equal one.

The choice of the cost function typically depends on prior knowledge of the noise

distribution in the data and its susceptibility to outliers.

In many cases, the minimization process is interpreted as a maximum likelihood

estimation problem. For example, when the Frobenius norm is used, the optimization

corresponds to a maximum likelihood estimator under additive Gaussian noise. When

the noise follows a Poisson process, the Expectation-Maximization (EM) algorithm

and maximum likelihood estimation [58] lead to the I-divergence cost function [48].

Alternatively, if the noise follows a Laplace distribution, the cost function can be

chosen as the row-wise or column-wise l1 norm of the difference matrix [47]. As

summarized in [52], other possible choices include the Earth Mover’s distance metric,

α-divergence, β-divergence, γ-divergence, ϕ-divergence, Bregman divergence, and α-β

divergence.

In this work, we focus on addressing data singularity and structure. To simplify

the optimization, we use the following cost function: 1
2
‖G−CP‖2F .

However, as discussed in Section 1.5.3, NMF is inherently an ill-posed problem.

Figure 2.1 illustrates various scenarios encountered when solving an NMF problem

using the classic Multiplicative Update (MU) rule. Figures 2.1(a) and (b) show two

local minimizers of the matrix C (in blue), neither of which closely approximates the

ground truth (in red). Figure 2.1(c) provides an example where the NMF model is ap-

plied to real RNA-seq data to estimate cellular composition. Although the computed
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results (in blue) are highly correlated with the ground truth (in orange)—yielding a

strong correlation score as a performance metric—they still substantially misestimate

the proportions of two cell types.

This discrepancy arises because, even when all theoretical assumptions are satisfied,

the “unique” solutions of NMF remain subject to permutation and rescaling trans-

formations, as detailed in the following section. While permutation ambiguity can

often be resolved using biological prior knowledge, correcting for rescaling requires

computational strategies.

Figure 2.1: Ill-posedness of NMF and its multiple solutions

Unlike in image processing, where solution non-uniqueness may be less consequen-

tial, its impact on statistical analysis in biological applications can be substantial,

influencing critical decisions. Therefore, it is essential to constrain the search space

of variables to enhance solution identifiability, ultimately improving interpretability.

To address this ill-posedness, several guidelines have been proposed in Section 1.5.3.

In summary, if the matrices C and P satisfy certain identifiability conditions (Theo-

rem 1, Theorem 2), the NMF problem may yield a unique solution, subject only to

the inherent row/column scaling and permutation ambiguities of factorization.

Geometric structure-constrained non-negative matrix factorization (GSNMF) is an

NMF-based mathematical model that integrates biological features of marker genes

to enhance the interpretability of solutions. GSNMF formulates the non-negative
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matrix factorization (NMF) problem as a nested cone problem, leveraging the concept

of convex cones to understand the geometry of NMF. In this formulation, the columns

of the data matrix are interpreted as points within a cone generated by non-negative

linear combinations of basis vectors, thereby creating a nested structure of cones that

represent the factorization.

Under the strong identifiability condition (depicted in the left panel of Figure 1.3),

the factorization must include the extreme rays of the non-negative orthant, leading

to overlaps with each unit basis vector e (shown as red dots). Here, e denotes the

standard unit vectors that span the space. Such assumptions on both variables are

typically too restrictive for practical applications, particularly in the presence of noise.

Conversely, under the weak identifiability condition (depicted in the right panel of

Figure 1.3), approximate uniqueness is achieved by employing second-order cones,

which accommodate noise and complexity in the data. In this less stringent scenario,

none of the columns are required to overlap with e; however, some columns (shown

as pentagons) must lie outside the second-order cone (represented by the circle).

The concept of marker genes helps address challenges encountered when applying

the aforementioned NMF-based theories to RNA-seq data. Marker genes associated

with a particular cell type are predominantly expressed in that cell type while ex-

hibiting negligible expression in others. Although each cell type may have multiple

marker genes, each marker gene is specific to only one cell type. For a given cell type

(e.g., the r-th cell type), the expression levels of its marker genes across samples are

highly correlated with one another and with P.

Each row of G can be visualized as a point in a suitable vector space. Due to the

strong correlation among marker genes of the same cell type, rows in G corresponding

to these genes naturally form clusters around P(r). This observation motivates a

strategy to first identify marker genes from G by clustering its rows, thereby enabling

a quantitative exploration of the geometric structure within G’s row space (depicted
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in the left panel of Figure 2.2).

Furthermore, note that C(i) represents the coefficient vector of G(i) with respect to

the row-basis vectors of P. Consequently, the second step involves transferring this

geometric structure of G to C, thereby enforcing the weak identifiability condition

on the variable C (as illustrated in the right panel of Figure 2.2).

Figure 2.2: RNA-seq data structure (left) and geometric constraints(right).

GSNMF imposes the solvability constraint (2.2) on C through a clustering ap-

proach:

F1(C) =
λ1
2

k∑
r=1

∑
i∈Sr

deisen
(
C(i), eᵀ

r

)2 (2.2)

where λ1 is a tuning parameter. And in the clustering step, all rows of G are parti-

tioned into k groups, and their row indices are recorded in {Gr}kr=1. Subsequently,

within each group, row-wise correlations are ranked, and a subset Sr ⊂ Gr is selected

to identify the marker genes for each cell type.

Within each group, a manifold constraint (2.3) is enforced based on the local in-

variance assumption in manifold regularization.
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F2(C) =
λ2
2

N∑
j=1

N∑
i=1

ωijdeisen(C(i),C(j))2 (2.3)

where entry ωij > 0 in the adjacency matrix W measures the correlations (larger

value represents stronger correlation) between genes i and j in data G.

Specifically, if two data points are close in the intrinsic geometry of the data dis-

tribution, their representations in the new basis should also remain close under the

same metric. Recall that C represents the coordinates of the data points G in the

basis defined by P. Therefore, we require that C preserve the geometric structure

of G; in other words, rows of C belonging to the same cluster should exhibit strong

correlations.

Under these constraints, certain rows of C must lie sufficiently close to each fun-

damental basis vector such that the convex hull of all rows can span the second-order

cone. The distinct groups of rows in C associated with each basis vector —repre-

sented by red, blue, and green dots in the right panel of Figure 2.2—are identified

via a clustering algorithm and correspond to sets of biological marker genes. More-

over, we employ the Eisen cosine correlation distance in both geometric constraints,

rather than Euclidean distance. This choice captures relative expression patterns and

eliminates the need for row normalization.

By combining the solvability condition and the manifold constraint, we arrive at

the following geometric-structure-guided nonnegative matrix factorization (GSNMF)

model. For convenience, define T :=
{
Z ∈ Rk×n

+

∣∣ 1ᵀZ = 1
ᵀ
}
, and let 1T be the

corresponding indicator function, where 1T (Z) = 0 if Z ∈ T and 1T (Z) = ∞ oth-

erwise. With these definitions, solving for C and P takes the form of the following

optimization problem:

min
C≥0,P≥0

1

2
‖G−CP‖2F + F(C) + 1T (P), (2.4)
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where F(C) = F1(C) + F2(C).

To derive a numerical solution, we employ the Alternating Direction Method of

Multipliers (ADMM). First, we rewrite the optimization model (2.4) as:

min
C,P

1

2
‖G−CP‖2F + F(C) + 1S(C) + 1T (P), (2.5)

where S := RN×k
+ represents the set of all nonnegative matrices of size N × k.

Introducing auxiliary variables A and Q, we reformulate (2.5) as:

min
C,P,A,Q

1

2
‖G−CP‖2F + F(A) + 1S(C) + 1T (Q) (2.6)

s.t. C−A = 0, P−Q = 0,

The corresponding augmented Lagrangian function is given by [59]:

L =
1

2
‖G−CP‖2F +F(A)+1S(C)+1T (Q)+

ρ

2
‖C−A+Ã‖2F +

γ

2
‖P−Q+Q̃‖2F (2.7)

where Ã and Q̃ are dual variables of A and Q, respectively, while ρ > 0 and γ > 0

are penalty parameters.

The ADMM(2.7) iteration from step i to i+ 1 is given in its scaled form [50]:

Ci+1 := arg min
C

1

2
‖G−CPi‖2F +

ρ

2
‖C−Ai + Ãi‖2F + 1S(C)

Pi+1 := arg min
P

1

2
‖G−CiP‖2F +

γ

2
‖P−Qi + Q̃i‖2F + 1T (P)

Ai+1 := arg min
A
F(A) +

ρ

2
‖Ci −A + Ãi‖2F

Qi+1 := arg min
Q

γ

2
‖Pi −Q + Q̃i‖2F

Ãi+1 := Ãi + Ci −Ai

Q̃i+1 := Q̃i + Pi −Qi

(2.8)

Each variable in (2.8) can be solved individually. Specifically, for the C-subproblem,
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the Karush-Kuhn-Tucker (KKT) condition [60] yields:

Ci+1 = [GPi> + ρ(Ai − Ãi)](PiPi> + ρI)−1, (2.9)

where PiPi>+ρI is a small k×k matrix that can be easily inverted. The nonnegativity

constraint on C is enforced using a row-wise active set method.

For the P-subproblem, the KKT condition gives:

Pi+1 = Π{(Ci>Ci + γI)−1[Ci>G + γ(Qi − Q̃i)]}, (2.10)

which is a small-scale problem requiring the inversion of a k × k matrix, followed by

a column-wise probability simplex projection Π [61].

The solution to the Q-subproblem is simply:

Qi+1 = max{Pi + Q̃i, 0}. (2.11)

The A-subproblem involves both the solvability condition (2.2) and the manifold

constraints (8), making it a nonlinear optimization problem without a closed-form

solution. Consequently, we employ the gradient descent method, making this step an

inner iteration. Denoting the total objective function of the A-subproblem as:

f(A) = F(A) +
ρ

2
‖C−A + Ã‖2F , (2.12)

its gradient, ∇f(A), is computed based on (2.2) and (2.3). Since ∇f(A) is nonlinear

in terms of A, we improve computational efficiency by utilizing the current outer

iteration’s result for C, approximating ∇f(A) ≈ ∇f(C) without updating it in the

inner loop.

Algorithm 1 summarizes the entire GSNMF process, excluding necessary raw data
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preprocessing and spectral clustering steps. The stopping criteria are defined by

ensuring that both |Ci+1 − Ci|/|Ci|F and |Pi+1 − Pi|/|Pi|F fall below a specified

tolerance.

Algorithm 1 Geometric structure constrained NMF (GSNMF)
Require: Data G, initial guesses C0,P0, structure identifier Cg, graph adjacency

matrix W, tolerance ε, parameters λ1, λ2, ρ and γ.

Ensure: Matrices C and P.

1: for i = 0, 1, . . . until criteria is satisfied do . outer iteration

2: Solve C-subproblem in Eq. (2.8) by (2.9);

3: Solve P-subproblem in Eq. (2.8) by (2.10);

4: for m = 0, 1, . . . until criteria is satisfied do . inner iteration

5: Solve A-subproblem in Eq. (2.8) through gradient descent method;

6: end for

7: Solve Q-subproblem in Eq. (2.8) by (2.11);

8: Set Ãi+1 := Ãi + Ci −Ai;

9: Set Q̃i+1 := Q̃i + Pi −Qi;

10: end for

2.3 The pseudo-bulk tissue data augmented GSNMF model

With these constraints (Eq. 2.4), GSNMF significantly enhances the interpretability

of solutions. However, it still struggles to achieve accurate solutions when the cellular

compositions in the bulk tissue data are singular. Recall that both the strong and

weak identifiability conditions impose requirements on both matrices C> and P. The

weak condition on C> is generally satisfied for a given dataset, making it reasonable

to impose constraints on C(i) due to the biological characteristics of marker genes,

which can be identified computationally or inferred from prior knowledge.

However, there is usually no prior information available about the cellular composi-

tion. The black star dots in the right panel of Figure (2.3) illustrate a scenario where
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the cellular proportions of two cell types are highly correlated across all samples. In

such cases, the data points tend to align along a line rather than fully occupying the

entire simplex, leading to challenges in accurately estimating cellular compositions.

Figure 2.3: Geometric interpretation of solvability condition (left) and constraints of
the proposed NMF model (right).

One major contribution of GSNMF+ is its ability to address the challenge of sin-

gular data, as mentioned in the introduction. To achieve this, the core idea is to

augment the original NMF problem, which involves potentially singular sample data

G, by incorporating pseudo-bulk tissue data Ĝ with regular cellular proportions. This

leads to an augmented NMF formulation:

(C∗,P∗) = arg min
C∈RN×k+ ,P∈Rk×(n+n̂)

+

δ(CP, [G, Ĝ]). (2.13)

The key challenge is determining how to construct the regular pseudo-bulk tissue

data Ĝ in Eq. (2.13).

Constructing Pseudo-Bulk Tissue Data from Single-Cell Data

Single-cell RNA-seq data is represented as a matrix recording the count of a set

of N genes across multiple cells of different types and from various samples. In this

section, we illustrate how to generate a vector of pseudo-bulk tissue data from this
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matrix.

Let cγ,l ∈ RN denote the gene expression profile (GEP) of all genes in the l-th cell

of the γ-th cell type, where 1 ≤ γ ≤ k, and the total number of cells depends on the

specific dataset. The relationship between the single-cell data and the j-th sample in

the pseudo-bulk tissue data is given by:

Ĝ(j) =
k∑
γ=1

m(γ,j)∑
l=1

cγ,l =
k∑
γ=1

m(γ, j)c̄γ, (2.14)

where m(γ, j) represents the total number of cells of the γ-th cell type, or the cell

composition in the j-th sample. Since the deconvolution problem does not distin-

guish individual cells, the equation above can be rewritten using the averaged gene

expression profile (GEP) c̄γ for each cell type. If cell type proportion is considered, let

Mj =
∑k

γ=1m(γ, j) be the total number of cells in the j-th sample. Then, Eq.(2.14)

becomes:

Ĝ(j) =
k∑
γ=1

m(γ, j)∑k
γ=1m(γ, j)

Mj c̄γ =
k∑
γ=1

pγ,jMj c̄γ, (2.15)

where
∑k

γ=1 pγ,j = 1 represents the proportion.

It is important to highlight the difference between Eq.(2.15) and the j-th column

of the NMF model, given by:

G(j) =
k∑
γ=1

pγ,jC
(γ). (2.16)

Here, the matrix C ∈ RN×k consists of only k columns C(γ) (for cell type indices

1 ≤ γ ≤ k) and does not depend on the sample index j. This structure implies an

important assumption in bulk tissue data deconvolution: the cell type-specific GEP

should be homogeneous across tissue samples. This assumption provides a guideline

for constructing pseudo-bulk tissue, ensuring that the total number of cells and the
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average GEP, represented by Mj c̄γ, remain as consistent as possible across samples.

To generate pseudo-bulk tissue data, the following steps are taken:

• Choose the total number of cells M as a parameter for all pseudo-bulk tissue

samples;

• Compute c̄γ from the single-cell RNA-seq data for 1 ≤ γ ≤ k;

• Select a mechanism to generate random values for pγ,j, and use Eq. (2.15) to

construct the j-th pseudo-bulk sample.

On the other hand, from a linear regression perspective, the matrix C estimated

from bulk tissue data (whether pseudo or real) using the NMF model represents the

averaged value:

c̄γ = 〈Mj c̄γ〉 (2.17)

across samples. This understanding raises two key concerns when applying the NMF

model:

1. The original data must be well-behaved, meaning that the GEP across samples

should be relatively homogeneous. If prior knowledge suggests that GEP varies

significantly between samples, then NMF may not be a suitable model.

2. Proper use of single-cell data: Single-cell RNA-seq (scRNA-seq) data can be di-

rectly incorporated into NMF as a reference, reducing complete deconvolution

to a standard linear regression problem. However, in practical applications,

scRNA-seq data may not align well with the inherent GEP in bulk tissue data,

especially if obtained from different sources. Such inconsistencies can signifi-

cantly reduce the accuracy of both the estimated GEP matrix C and the inferred

cellular proportion matrix P in the original bulk tissue data.
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Pseudo-bulk tissue data with weak identification condition

To generate pseudo-bulk tissue data effectively, it is crucial to employ an appro-

priate mechanism for constructing pseudo proportions for each sample, as described

in Eq. (2.15). Let P̂ denote the pseudo proportion matrix. We impose the weak

identification condition on P̂, meaning that it must contain a sufficient number of

columns, P̂(j), that are sufficiently close to eγ ∈ Rk. To achieve this, we propose

using a multivariate Dirichlet distribution.

Consider the n column vectors in matrix P̂ as n realizations of the random vector

p̂ ∈ Rk. Given parameters α1, α2, . . . , αk > 0, the probability density function with

respect to the Lebesgue measure on the Euclidean space Rk−1 is given by

f(p̂1, p̂2, . . . , p̂k;α1, α2, . . . , αk) =
1

S(α)

k∏
γ=1

p̂αγ−1γ , where α = (α1, α2, . . . , αk).

(2.18)

where {p̂γ} lie within the standard k− 1 simplex due to the sum-to-one constraint.

The normalizing constant S(α) is defined in terms of the gamma function:

S(α) =

∏k
γ=1 Γ(αγ)

Γ
(∑k

γ=1 αγ

) . (2.19)

It is well known that the mean of the variable is E[p̂γ] = αγ/α0, where α0 =∑k
γ=1 αγ. The variance and covariance of the random vector are given by

Var[p̂γ] =
αγ(α0 − αγ)
α2
0(α0 + 1)

, and Cov[p̂γ, p̂γ′ ] =
−αγαγ′

α2
0(α0 + 1)

. (2.20)

By selecting small and equal values for αγ, one can achieve a smaller α0, resulting

in more widely and evenly scattered vectors within the k − 1 simplex.

The regularity of matrix P̂ can be examined using the condition number of P̂P̂T . If

P̂ contains highly correlated or excessively small rows, the condition number of P̂P̂T
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will be large. Since Var[p̂γ] = E[p̂2γ]−E[p̂γ]
2 and Cov[p̂γ, p̂γ′ ] = E[p̂γ p̂γ′ ]−E[p̂γ]E[p̂γ′ ],

we derive

E[p̂2γ] =
αγ(αγ + 1)

α0(α0 + 1)
, E[p̂γ p̂γ′ ] =

αγαγ′

α0(α0 + 1)
. (2.21)

When the sample size is sufficiently large, the matrix P̂P̂T takes the form

P̂P̂T = c0





α1

α2

. . .

αk


+



α1

α2

...

αk


[
α1 α2 · · · αk

]

, (2.22)

where c0 = n/α0(α0 + 1) and n is the sample size.

Equation (2.22) provides insight into selecting Dirichlet distribution parameters to

ensure a small condition number for P̂P̂T . If α1 = α2 = ... = αk = α, then

P̂P̂T = c0α
(
Ik×k + α11T

)
. (2.23)

Since the eigenvalues of 11T are (k, 0, 0, ...0), it follows that κ(P̂P̂T ) = kα+1. Thus,

selecting a uniform vector α = (α, α, ..., α) with a small value of α helps maintain a

small condition number. Furthermore, for the mixed bulk tissue data (original and

pseudo-bulk), the proportion matrix P̄ = [P, P̂] is always regular. Specifically,

P̄P̄T = PPT + P̂P̂T (2.24)

has full rank, as P̂P̂T contains a diagonal matrix and the remaining matrix is positive

semi-definite.

Computational process of the proposed algorithms

In this section, we summarize and assemble all components of the proposed method.
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According to Eq. (2.20), we select small and equal values for the parameters α,

e.g., α1 = α2 = · · · = αk = 1.5, and use the Dirichlet distribution (2.18) to generate n

random vectors p̂j ∈ Rk, where j = 1, 2, . . . , n, each belonging to the standard k − 1

simplex.

Assume that there are Mγ cells in the single-cell dataset for the γ-th cell type, and

let M =
∑k

γ=1 |Mγ|. Denote p̂γ,j as the γ-th entry of vector p̂j. We then randomly

select bMp̂γ,jc cells from the total Mγ cells of the γ-th type (with replacement). The

j-th pseudo-bulk tissue sample, or column of Ĝ, is then generated as in Eq. (2.14):

Ĝ(j) =
k∑
γ=1

bMp̂γ,jc∑
l=1

gγ,l. (2.25)

The subset of marker genes from the augmented data G̃ = [G, Ĝ] is identified

by clustering the rows of G̃ into k groups. The N rows of G̃ form the vertex set

V = {G̃(i)}Ni=1 ⊂ Rn in the similarity graph G = (V,E), following the spectral

clustering method [62].

The non-negative weights ωij of edges E = {eij} are computed using a function

Rn × Rn → R+:

ωij = exp

−
deisen

(
G̃(i), G̃(j)

)2
σ

 , 1 ≤ i ≤ N, 1 ≤ j ≤ N, (2.26)

where

deisen

(
G̃(i), G̃(j)

)
= 1−

〈G̃(i), G̃(j)〉
|G̃(i)||G̃(j)|

(2.27)

is the Eisen cosine correlation distance, which quantifies the correlation between two

vertices, and σ > 0 is a parameter.

With the adjacency matrix W = (ωij) ∈ RN×N and its degree matrix D =

diag(d1, d2, . . . , dN), where di =
∑N

j=1 ωij, different types of graph Laplacians (gL)
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of G are defined:

• Unnormalized gL: L = D−W

• Symmetric normalized gL: Lsym = I−D−
1
2 WD−

1
2

• Random walk gL: Lrw = I−D−1W

By examining the first few eigenvectors of gL, rows of data G̃ are clustered into k

groups, and the set {Gr}kr=1 records row indices of G̃ in the corresponding clusters.

The choice of different gLs depends on specific data applications [63]. For our problem,

we use the normalized gL Lsym, and the matrix W is carried forward to the next step.

Additionally, the disjoint sets Sγ, γ = 1, 2, . . . , k, represent the indices of marker genes

for each cell type.

The optimization problem for deconvolution is formulated as:

min
C≥0,P≥0

1

2
‖[G, Ĝ]−C[P, P̂]‖2F + F(C) + 1T ([P, P̂]). (2.28)

For simplicity, we use the Frobenius norm to measure the error between the de-

convoluted solutions and the given mixed data. Here, P ∈ Rk×n corresponds to the

original n samples, while P̂ ∈ Rk×n′ represents the pseudo-bulk tissue. Both are

subject to sum-to-one constraints on columns, represented by the set

T := {Z ∈ Rk×n
+ | 1TZ = 1

T}. (2.29)

The indicator function 1T is defined as:

1T (Z) =


0, if Z ∈ T

∞, otherwise.
(2.30)

The regularization function F(C) is defined in the same way as in Section 2.2, and

is illustrated in Equation 2.2 and Equation 2.3.
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Computational algorithm and parameter discussion

The Alternating Direction Method of Multipliers (ADMM) [51] is employed to nu-

merically solve this optimization problem. The overall computational process involves

two types of parameters.

The first set consists of parameters within the ADMM algorithm itself. A detailed

discussion of these parameters can be found in Section 2.2, and the same parameter

tuning strategies are adopted in this section.

The second set comprises two key parameters related to the generation and inte-

gration of pseudo-bulk tissue data. The first is the vector α = (α1, α2, . . . , αk) in

the Dirichlet distribution, which determines the pseudo-cellular proportions. As dis-

cussed in Section 2.5, choosing small and equal values for αl (l = 1, 2, . . . , k) satisfies

both the geometric structure requirements and ensures computational stability. The

second parameter is the number of pseudo-bulk samples, denoted as n′. If n′ is too

small, the dataset will lack sufficient information. Conversely, an excessively large n′

is unnecessary, as per Definition (3), and would increase computational cost.

Determining the optimal number of pseudo-bulk samples is a nontrivial problem.

From Eq. (2.13), we observe that the solution C∗ represents the "average" of the con-

stituent gene expression profiles (GEPs) derived from both the original bulk tissue

samples and the reference single-cell RNA sequencing (scRNA-seq) data. If these two

datasets are not well-aligned, the generated pseudo-bulk samples may introduce inac-

curacies in the estimated GEP, ultimately affecting the inferred cellular proportions.

In Section 2.5, we address this issue computationally using a specific dataset, while

a more systematic investigation is left for future work.

Evaluation Metrics

In many studies and computational packages, the most commonly used evalua-

tion metric is the row-wise (across samples) correlation between the estimated and

ground truth cell proportion matrices, i.e., comparing P(i) and P∗(i) for i = 1, 2, . . . , k.
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However, this metric has notable limitations.

One issue is that it primarily reflects the global similarity of the estimated and true

proportions for each cell type across all samples, but provides little insight into the

accuracy of estimates for all cell types within a specific sample. More importantly,

due to the inherent non-uniqueness of NMF solutions, each row of matrix P may

be subject to an arbitrary rescaling factor. Specifically, λiP(i) will yield the same

correlation coefficient with P∗(i) as P(i). Thus, even if all corresponding rows of P

and P∗ are highly correlated, the columns of these matrices could differ significantly,

leading to inaccurate estimates of cellular composition for each sample.

To address these shortcomings, in addition to Pearson correlation, we also evaluate

simulation accuracy using the normalized mean absolute difference (mAD), which

corresponds to the discrete L1 norm, and the normalized root mean square deviation

(RMSD), which corresponds to the discrete L2 norm. Similar metrics are also applied

to the columns of matrix C, which represent the gene expression profiles (GEPs) for

each cell type.

2.4 Solution analysis and biological insights

According to the theorem, the solution remains subject to a rescaling factor. That

is, if C and P represent the “true” solutions of the NMF problem, the best computa-

tional solution one can obtain is given by

C̄ = CΩ−1λ , and P̄ = ΩλP, (2.31)

where Ωλ = diag(λ1, λ2, . . . , λk) is an unknown diagonal matrix with positive en-

tries (λk > 0). This unknown rescaling matrix can lead to challenges in accurately

estimating cellular proportions.

A key contribution of this work is the development of posterior error estimates

for the NMF solution, providing critical insights into data preparation for realistic
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biological applications. First, we investigate how the solution of the non-convex

problem depends on initial conditions. Then, we attempt to estimate the rescaling

matrix.

It is important to note that the results in this section are based on the matrix de-

composition form G = CP, where P is assumed to be well-conditioned. Additionally,

we do not account for noise or the nonnegativity constraint in this analysis.

Informative initial condition

First, we consider the converged solution.

Theorem 3. Given initial condition P[0] with P[0]P
T
[0] being invertible and assume

the true GEP and cell proportion as C and P, respectively, then the solutions of

G = CP converge to C∗ = CM1M
−1
2 and P∗ = M2M

−1
1 P, where M1 = PPT

[0] and

M2 = P[0]P
T
[0].

Proof. With the simple iteration,

C[0] = GPT
[0](P[0]P

T
[0])
−1 = CPPT

[0](P[0]P
T
[0])
−1 = CM1M

−1
2 (2.32)

Then

P[1] =
(
CT

[0]C[0]

)−1
CT

[0]G

=
(
CT

[0]C[0]

)−1
CT

[0]CP

=
[
(M−1

2 )TMT
1 CTCM1M

−1
2

]−1
(M−1

2 )TMT
1 CTCP

= M2M
−1
1 P

(2.33)

with such updated P[1], we compute
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C[1] = GPT
[1](P[1]P

T
[1])
−1

= CPPT (M−1
1 )T

(
M2M

−1
1 PPT (M−1

1 )TMT
2

)−1
= CM1M

−1
2

= C[0]

(2.34)

Based on Theorem 3, it is possible to integrate information from marker genes and

appropriately select initial conditions to estimate the computational solutions. At

this stage, we assume that the marker genes and their associated cell types have been

identified. Mathematically, we define the setM to represent the indices of all marker

genes, while the disjoint sets Sγ, for γ = 1, 2, . . . , k, represent the indices of marker

genes corresponding to the γ-th cell type. Notably, we have
⋃
γ Sγ = M, and we

denote the complement as Scγ =M\ Sγ.

Based on the properties of marker genes, we ideally expect c[Scγ ],γ = 0, where c[Scγ ],γ

represents all entries of the γ-th column of C with row indices in Scγ. Then, for certain

γ and γ′, let i1, i2 ∈ Sγ and i3 ∈ Sγ′ . It follows that:

G(i1) = ci1,γP(γ), G(i2) = ci2,γP(γ), and G(i3) = ci3,γ′P(γ′). (2.35)

From Equation (2.35), we conclude that the rows of G corresponding to the marker

genes of the same cell type (i.e., i1 and i2) are linearly dependent since they are scalar

multiples of the same γ-th row of P.

Furthermore, for every 1 ≤ γ ≤ k, we compute the mean of all rows G(i) over all

i ∈ Sγ, denoted as 〈G(i)〉Sγ , and define the result as the γ-th row of a matrix P̃:

P̃(γ) = 〈G(i)〉Sγ = 〈ci,γ〉SγP(γ), or equivalently, P̃ = ΩcP, (2.36)

where Ωc = diag(A) and AT = [〈ci,1〉S1 , . . . , 〈ci,γ〉Sγ , . . . , 〈ci,k〉Sk ].

If a well-defined identification of marker gene sets is achieved, the matrix P̃ can
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be directly computed from the original data G. This matrix is related to the true

cellular proportion matrix P through a diagonal rescaling factor Ωc. Although this

factor remains unknown, P̃ can still serve as an informative initial condition.

Estimation of computational solutions

First, if initial condition P[0] as the column normalization of P̃ with sum-to-one

condition, i.e., P[0] = ΩcPΩ−1a , where

Ωa = diag(ATP(1),ATP(2), ...,ATP(n)). (2.37)

Consequently, by Theorem (3), solutions converge to

C∗ = CM1M
−1
2 = C(PΩ−1a PT )(PΩ−2a PT )−1Ω−1c . (2.38)

and

P∗ = M2M
−1
1 P = Ωc(PΩ−2a PT )(PΩ−1a PT )−1P. (2.39)

Theorem 4. Assume ideal data G has true solutions C and P, i.e., G = CP.

Additionally, row index set Ω of C (also G) can be subdivided into k disjoint sets

Sγ, i.e., Ω =
⋃
γ Sγ, and entry of C is ci,γ = 0 if i /∈ Sγ. Given initial condition

P[0] = ΩcPΩ−1a and the solutions of G = CP converge to C∗ and P∗, then the

following estimations hold for each row of C∗

β−1||C(i)||2 ≤ ||C∗(i)||2 ≤ β||C(i)||2 (2.40)

and each column of P∗,

β−1||P(j)||2 ≤ ||P∗(j)||2 ≤ β||P(j)||2, (2.41)

where
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β =
√
κ(PPT )

(
λcmax

λcmin

)2

, (2.42)

where κ(PPT ) is the condition number of PPT and

[λcmax, λ
c
min] = [max,min]{< ci,1 >S1 , ... < ci,k >Sk}. (2.43)

Proof. First denote the matrix R = (PΩ−1a PT )(PΩ−2a PT )−1Ω−1c , hence C∗ = CR

and P∗ = R−1P. Then we estimate ||R||2 to see how it changes each row of the true

GEP matrix C∗. Assuming matrix P has SVD P = UΣVT , where U ∈ Rk×k and

V ∈ Rn×n being unitary, while Σ ∈ Rk×n and has minimum and maximum values as

σmin and σmax, respectively, then

||R||2 = ||UΣVTΩ−1a VUT (UΣVTΩ−2a VUT )−1Ω−1c ||2

= ||UΣVTΩ−1a VUT (ΣT )−1γTΩ−2a V−1UTΩ−1c ||2

= ||UΣVTΩ−1a VIVTΣTΩ−2a V−1UTΩ−1c ||2.

(2.44)

Note that Ĩ ∈ Rn×n and Ĩ =

Ik×k 0

0 0

 due to the definition of singular matrix

Σ. Hence using the property that unitary matrices preserve spectrum norm, we have

the estimate

||R||2 ≤
1

λcmin

||UΣVTΩ−1a ṼVTΩ2
aΣ
−1UT ||2 (2.45)

=
1

λcmin

||ΣVTΩ−1a ṼVTΩ2
aVΣ−1||2 (2.46)

≤ σmax

σminλcmin

||VTΩ−1a ṼVTΩ2
aV||2 (2.47)
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=
σmax

σminλcmin

||Ω−1a ṼVTΩ2
a||2 (2.48)

Note that each entry of Ωa, i.e., ATP(j), is actually a convex linear combination of

entries in A since P has sum-to-one columns. Then exam the eigenvalues λa of Ωa,

we have

λcmin ≤ λamin ≤ λamax ≤ λcmax. (2.49)

Actually, if P satisfies weak or strong separability conditions, we have λcmin = λamin

and λcmax = λamax. Additionally, notice that
√

cond(PPT ) = σmax/σmin, we have the

estimate

||R||2 = ||RT ||2 ≤
√

cond(PPT )

(
λcmax

λcmin

)2

(2.50)

Finally, by definition of spectral norm of matrix,

||C∗(i)||2 = ||RTC(i)||2 ≤ ||C(i)||2
√

cond(PPT )

(
λcmax

λcmin

)2

, (2.51)

and by the same argument, estimate in (2.50) is also true for R−1. Hence the other

side inequality in (2.40) holds since ||C(i)||2 = ||(R−1)TC∗(i)||2.

Biological insights

The estimates in Theorem 4 are derived under noiseless conditions, assuming an

ideal scenario where marker genes can be easily identified. Despite these simplifica-

tions, the results provide valuable qualitative insights into the conditions under which

the constituent matrices C and P yield numerical solutions that closely approximate

the ground truth.

• The quantity β in Eq. (2.42) serves as an estimator of the scaling factor in the

"unique" solution, indicating the extent to which the computational results de-
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viate from the ground truth. Intuitively, this quantity depends on the regularity

of the constituent matrix P, specifically on the condition number of PPT .

• The parameters λcmin and λcmax represent the minimum and maximum averages of

marker gene expression levels within their respective cell types. A smaller ratio

of λcmax/λ
c
min leads to a tighter bound on ||R||2, improving numerical accuracy.

• Based on these observations, we conclude that maintaining a homogeneous av-

erage gene expression profile (GEP) across different cell types and ensuring

regular cellular composition in bulk samples are preferable. For the former,

subsets of marker genes within each cell type can be selected to minimize large

variations in average GEP. For the latter, the motivation behind introducing

pseudo-bulk tissue data is to improve the stability of the decomposition pro-

cess. As demonstrated in the numerical simulations in the next section, solution

accuracy is significantly enhanced when these strategies are applied.

2.5 Numerical Results

In this section, we present the numerical results of the proposed algorithms. First,

we use synthetic data to illustrate the geometric structure of pseudo-cellular pro-

portions generated by the Dirichlet distribution under different parameter settings.

Properly designed data that satisfy the weak solvability condition significantly en-

hance the solution quality for singular data.

Next, we apply the proposed algorithms to three different datasets to validate

their effectiveness and accuracy. Finally, we perform a computational analysis of

the algorithm’s resilience. In contrast to the original GSNMF method, the newly

proposed pseudo-bulk tissue data augmentation approach is referred to as GSNMF+.

Simulation for synthetic data

Figure 2.4 illustrates the geometric structures of cellular proportions generated from

a Dirichlet distribution with various parameter settings. For ease of visualization, the
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cell type dimension is set to k = 3, allowing all data points to be represented within a

2-simplex (blue triangles). Six different parameter sets, α, are considered, including

heterogeneous (first row) and homogeneous (second row) components.

The results indicate that when using heterogeneous parameters α, the convex hull

of the generated data does not enclose the second-order cone, which corresponds to

the inscribed circle (not shown) of the triangles, nor does it satisfy the sufficiently

scattered condition. Conversely, data generated with homogeneous parameters tend

to be more evenly distributed within the simplex. However, for larger values of α, the

data points become concentrated toward the center of the simplex, preventing their

convex hull from covering the second-order cone. This is consistent with the fact that

larger values of α lead to a higher condition number of PPT .

Based on these observations, we will use homogeneous parameters with small to

moderate values in our simulations, specifically ‖α‖∞ = 0.2 or ‖α‖∞ = 1, where

‖α‖∞ denotes the l∞ norm of α.
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Figure 2.4: Geometric structures of simulated cellular proportions from Dirichlet
distribution with various parameters.

Figure 2.5 illustrates how the overall solvability condition improves when singular

original cell proportions (red dots) are mixed with pseudo data (green dots). Fig-

ure 2.5 (a) depicts a case of data singularity, where one cell type has an extremely

small proportion in samples, corresponding to a small row vector in P.

As shown, the red dots are primarily distributed along one edge of the simplex,

with one corner notably absent. Another type of singularity occurs when two cell

types have highly correlated cellular proportions, as demonstrated in Figure 2.5 (b).

In this case, the data points (red dots) align approximately along a single line within

the simplex.

In both scenarios, the geometric structures are improved by incorporating pseudo

data generated from a Dirichlet distribution (green dots) with α = (1, 1, 1), helping
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to mitigate the singularity issues.

Figure 2.5: Geometric structures of mixed data: original singular cell proportions
(red) and simulated regular cell proportions (green).

Figure 2.6 presents the deconvolution results of cellular proportions in a set of

synthetic data, where the cellular composition exhibits the aforementioned singular-

ity. The first and second rows correspond to the original GSNMF method and the

proposed GSNMF+ method, respectively. The synthetic bulk tissue data, G, is gen-

erated by multiplying a predefined matrix C with the pseudo cellular composition

matrix P and adding noise ε. A total of 100 synthetic samples are analyzed. The

ground truth of the cellular composition is represented by orange triangles, while the

deconvolution results are shown as blue stars. In the left panel, cell type 2 appears

infrequently across all samples, resulting in very small proportions (below 0.1). The

original GSNMF algorithm fails to produce accurate estimates for this cell type, with

a solution correlation of 0.74 and an RMSD of 0.96. Similarly, the correlation for

the corresponding column of matrix C is 0.52, and the RMSD is 0.99. In contrast,

the GSNMF+ algorithm significantly improves deconvolution accuracy. For this cell

type, the correlation increases to 0.96, while the RMSD drops to 0.06. The accuracy
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of matrix C estimation is also enhanced, with a correlation of 0.98 and an RMSD

of 0.13. A similar performance improvement is observed when the data contains

correlated cellular compositions, as illustrated in the right panel of Figure 2.6. In

this case, cellular proportions for cell types 1 and 2 are intentionally designed to be

highly correlated. Consequently, the original GSNMF method produces highly inac-

curate deconvolution results. The solution correlation for cell type 1 is 0.99, but the

RMSD is 2.21. For cell type 2, both correlation and RMSD are poor, at 0.56 and

2.22, respectively. Moreover, the estimation of matrix C is entirely inaccurate, with

an RMSD of 5.89. When GSNMF+ is applied, the deconvolution accuracy for all

cell types improves significantly, with correlations exceeding 0.99 and RMSD values

of 0.07, 0.05, and 0.12, respectively. Additionally, the overall RMSD for estimating

matrix C decreases to 0.19.
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Figure 2.6: Deconvolution results of cellular proportion from singular data by GSNMF
and GSNMF+.

Table 2.1 presents the performance of GSNMF+ under different noise-to-data ratios

(NDRs), showing the root mean square deviation (RMSD) of C and P, along with

the relative residue ‖G−CP‖F/‖G‖F . As indicated in the table, errors in matrix C

become more pronounced as the noise level increases (higher NDR). In contrast, the

computation of matrix P appears to be less affected by noise.

Table 2.1: Quantitative results of GSNMF+ under different noise-to-data ratios
(NDRs).

NDR RMSD of C RMSD of P Relative Residue

0.081 0.1802 0.0888 0.0793
0.165 0.2007 0.0940 0.1743
0.346 0.2372 0.1045 0.4024
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It is worth noting that noise management is a common challenge across all areas

of data science. However, addressing noise is not the primary focus of this work.

Extracting meaningful biological insights from the ill-posed NMF model remains an

open problem. Therefore, in all synthetic data experiments, we used low to moderate

noise levels and considered only standard Gaussian noise.

2.6 Deconvolution Results of Biological Data

The first biological dataset used to validate the proposed algorithms is GSE19830 [64],

which was obtained from tissue samples of the brain, liver, and lung of a single rat

using expression arrays (Affymetrix). Homogenates of these three tissue types were

mixed at the scRNA homogenate level in known proportions, and the gene expression

patterns of each mixed sample were subsequently measured. The GSE19830 dataset

mimics a common scenario in heterogeneous biological samples, where both the rela-

tive frequencies of the components and the marker genes for each cell type are clearly

identifiable. As a result, this dataset has been widely used in the literature [35, 36]

for preliminary testing of computational algorithms. In this dataset, the number of

cell types is k = 3, and the number of tissue samples is n = 33. After necessary data

preprocessing to exclude obvious outliers (based on row norms, column norms, etc.),

we selected N = 10, 000 genes from the total ∼ 12, 000 genes available.
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Figure 2.7: Visualization of data features for GSE19830.

Since the dimension k is low, the data features are easily visualized, as shown

in Figure 2.7. First, the bulk-tissue data is clearly grouped into three clusters cor-

responding to the three cell types from distinct organs, as shown in Figure 2.7(a),

making it straightforward to identify marker genes for each type. Secondly, the con-

stituent (ground truth) cellular proportions were carefully designed to avoid correla-

tion. As shown in Figure 2.7(b), the proportion data is sufficiently scattered within

the simplex.
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Figure 2.8: Comparisons of simulation results (cellular proportion) to ground truth
for dataset GSE19830

Figure 2.8 illustrates this case, where the orange triangle line represents the ground

truth of cellular proportions, and the blue stars indicate the corresponding deconvo-

lution results. Our previous GSNMF produced highly accurate solutions, as shown in

Figure 2.8(a), with solution correlations of 0.96, 0.98, and 0.99, respectively. However,

we observed a consistent pattern where the model tended to overestimate the pro-

portion of one cell type (brain) while underestimating another (liver) across different

samples. We hypothesize that this systematic error is due to an unknown rescaling

factor.

To address this issue, we applied the proposed GSNMF+ algorithm to the same

dataset. By estimating the rescaling factors and incorporating an adjustment strategy,

we found that the accuracy was further improved, as shown in Figure 2.8(b). It is

important to note that this improvement, or rescaling, is achieved at a global level

(across all samples), as the errors in samples 6− 8 remain relatively unchanged.

The qualitative errors, measured as the sample-wise l2 norm of errors in cellu-

lar proportions, are displayed in Figure 2.9. The orange bars represent the original

GSNMF algorithm, while the blue bars correspond to the GSNMF+ algorithm devel-

oped in this study. Computational errors are expressed in logarithmic form, clearly
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Figure 2.9: Qualitative errors of the deconvolution results in cellular proportions for
dataset GSE19830.

demonstrating the improvement in accuracy.

The second dataset, GSE67835, consists of brain tissue samples containing five cell

types (k = 5): astrocytes, endothelial cells, microglia, neurons, and oligodendrocytes.

The dataset includes two distinct sample sets: one with an extremely small number

of microglial cells (Case I) and another with a low proportion of endothelial cells

(Case II). These imbalanced datasets present significant computational challenges

and substantially reduce deconvolution accuracy.

Figure 2.10 compares the deconvolution results for these two cases (top and bot-

tom rows) obtained using GSNMF and GSNMF+, respectively. The orange curves

represent the ground truth, while the blue curves depict the deconvolution estimates.

GSNMF notably overestimates the cellular proportions of microglia in Case I and

endothelial cells in Case II. In contrast, GSNMF+ produces more accurate estimates,

demonstrating improved performance in handling these challenging cases.



60

Figure 2.10: Performance comparisons of GSNMF and GSNMF+ for GSE67835.

2.7 Impacts of data variation

It is reasonable to assess the algorithm’s performance when varying amounts of

pseudo-bulk tissue data are augmented or when scRNA-seq data are perturbed. Fig-

ure 2.11 illustrates the solution accuracy for two datasets, GSE67835 and GSE81608,

under different levels of pseudo-bulk sample augmentation in the GSNMF+ algorithm.

In these settings, the original bulk tissue data consist of 50 singular samples (de-

noted as 50S), characterized by constituent cellular compositions with minimal vari-

ation, modeled using a Dirichlet distribution. Additional "regular" samples, which

exhibit greater variation in cellular composition, are incrementally introduced into

the algorithm, ranging from 10L to 300L.

For example, the label 50S+20L indicates a mixture of 50 original bulk tissue sam-
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ples with low variance in cellular proportions and 20 pseudo-bulk tissue samples with

high variance in cellular proportions. Solution accuracy is evaluated using Pearson

correlation, RMSD, and mAD.

The results indicate that adding "regular" samples significantly improves decon-

volution accuracy. However, as the number of "regular" samples increases, solution

accuracy fluctuates slightly but does not show a clear trend of improvement or dete-

rioration. This observation aligns with theoretical findings regarding the weak identi-

fiability condition, which suggests that only a few columns of P need to approximate

each fundamental basis for cone(P) to sufficiently cover the second-order cone in

Rn
+. Consequently, excessive pseudo-bulk tissue samples do not provide additional

benefits.

Figure 2.11: Algorithm accuracy for two biological datasets with different amount of
pseudo-bulk data.

Another common scenario in real-world applications is that the reference scRNA-

seq data used to construct pseudo-bulk tissues may not perfectly align with the con-

stituent cell-specific gene expression profiles (GEP) in bulk tissues. To assess the

impact of inconsistent scRNA-seq data on the proposed algorithm, we perform a

series of model resilience analyses by generating pseudo-bulk tissue samples using

artificially modified reference scRNA-seq data. These modifications include mean
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shifting (MS), truncation (TR), and factoring (FA), which are specifically defined as

follows:

• Mean Shifting (MS): Each single-cell profile of a given type was modified by

adding 10%, 30%, 50%, or 70% of the average expression levels of that cell type.

• Truncation (TR): Single cells were selectively removed from the bulk tissue

data generation process by excluding the top or bottom 10% of cells within each

cell type.

• Factoring (FA): A scaling factor was applied to all gene expression levels,

enabling both upward and downward adjustments. The scaling factors used

were 0.4, 0.8, 1.2, and 1.8.

All modifications were applied to the reference set, which consisted of 200 larger

samples. As shown in Figure 2.12, these manipulations did not significantly impact

the final results. The estimates remained close to the original values, indicating that

the algorithm remains robust and effective despite changes to the reference set.

In Table 2.2, we compare GSNMF+ with several popular NMF-based deconvolu-

tion algorithms: MuSiC, CIBERSORTx, and Linseed, using data from GSE67835.

Among these methods, MuSiC and CIBERSORTx are reference-based (scRNA-seq)

approaches, GSNMF+ utilizes reference data only to mitigate data singularity, while

Linseed operates without any reference data.
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Figure 2.12: Algorithm performance when reference scRNA-seq data is perturbed in
pseudo-bulk tissue data.

Table 2.2: Comparison of methods with different reference data.

Correlation

Method MuSiC CIBERSORTx Linseed GSNMF+

Original 0.9943 0.9643 0.8777 0.8712
snRNAseq 0.8538 0.7435 0.8888 0.8636
Simulator 0.2727 0.035 0.8749 0.9859

RMSD

Original 0.0416 0.1328 0.2025 0.1967
snRNAseq 0.2399 0.2486 0.1942 0.1946
Simulator 0.3806 0.4237 0.2049 0.0606

As previously discussed, reference-based methods (partial deconvolution) gener-

ally achieve higher accuracy than reference-free methods (complete deconvolution),

assuming that the reference data accurately reflect the constituent gene expression

profiles (GEP) in bulk tissue. However, this assumption is often violated in real-world

applications. To examine these scenarios, we consider three different references: the
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original reference from GSE67835 ("Original"), a single-nucleus RNA-seq ("snRNA-

seq") dataset of the human brain from [65], and a reference generated from the scDe-

sign simulator [66], a widely used probabilistic model based on real scRNA-seq data.

The top and bottom halves of the table present the correlation and RMSD of cellular

compositions obtained from these methods, respectively.

As expected, MuSiC and CIBERSORTx outperform the reference-free methods in

both error metrics when the reference data are consistent with the bulk tissue’s con-

stituent GEP. This is because, with a well-matched reference, NMF-based deconvo-

lution is effectively reduced to a least squares or linear regression problem. However,

when the reference data deviate from the bulk tissue GEP, such as with snRNA-seq

or simulated data, the solution accuracy significantly declines. In contrast, Linseed

remains largely unaffected, as it does not rely on reference data.

For our proposed GSNMF+, since the reference is used primarily to address data

singularity rather than directly drive the deconvolution process, it fundamentally

remains an NMF-based method. As a result, its solution accuracy does not degrade

with changes in reference data and, in some cases, even improves.

2.8 Discussion

Complete deconvolution is a computational approach used to decompose bulk-

tissue RNA-seq data—an experimentally accessible, reliable, and cost-effective re-

source—into cell type-specific gene expression profiles (GEP) and cellular composi-

tions. These components are critical for differential expression (DE) analysis, enabling

the discovery of novel insights into genes and pathways associated with human dis-

eases. While various mathematical and statistical methods have been developed to

perform complete deconvolution, nonnegative matrix factorization (NMF) remains a

fundamental model in this domain. However, NMF is inherently an ill-posed problem

due to its non-separable solutions. Although numerous computational strategies have

been proposed to improve solution accuracy, a comprehensive mathematical investi-
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gation of the ill-posedness remains underdeveloped.

In this section, we focused on the solvability conditions of NMF in the context

of bulk-tissue data. Among the two constituent matrices in NMF, the cell-specific

GEP matrix, C, satisfies the weak identifiability conditions due to the presence of

marker genes. This allows us to identify and preserve the geometric structures of

marker genes when estimating C from bulk-tissue data. In contrast, the cellular

abundance matrix, P, often violates identifiability conditions due to the presence

of rare or highly correlated cell proportions. To address this issue, we leveraged

the Dirichlet distribution to generate pseudo-cellular proportions and subsequently

constructed pseudo-bulk tissue data using available single-cell RNA-seq data.

As a result, our developed GSNMF+ algorithm operates on hybrid bulk-tissue data

(a combination of original and pseudo data), ensuring that both constituent matrices

satisfy the weak identifiability condition. Despite meeting these solvability conditions,

NMF solutions remain subject to an arbitrary rescaling matrix. We addressed this

challenge by selecting a specific set of initial conditions and estimating the potential

deviation from theoretical solutions. Although this investigation is conducted under

idealized, noise-free conditions, it represents the first study explicitly addressing so-

lution ambiguity in NMF. Our findings provide valuable insights into improving the

qualitative accuracy of deconvolution results. The proposed algorithm pipeline has

been tested on multiple datasets, demonstrating a significant improvement in solution

accuracy for bulk-tissue data with singular cellular compositions.



CHAPTER 3: Benchmarking and Evaluation of Computational Deconvolution

Methods for Bulk RNA Sequencing Data

3.1 Introduction

In this section, we benchmark the robustness and resilience of computational de-

convolution methods for estimating cell type proportions in bulk tissues, focusing on

the comparison between reference-based and reference-free approaches. Robustness is

assessed by generating in silico pseudo-bulk RNA sequencing data from cell-level gene

expression profiles across four distinct tissue types, simulating cellular composition at

varying levels of heterogeneity. To evaluate resilience, we introduce intentional alter-

ations to single-cell RNA profiles to create pseudo-bulk RNA-seq data. Deconvolution

estimates are then compared with ground truth values using Pearson’s correlation co-

efficient, root mean squared deviation, and mean absolute deviation.

The results demonstrate that reference-based methods perform more robustly when

reliable reference data are available, whereas reference-free methods excel in settings

where suitable reference data are lacking. Additionally, variations in cell-level tran-

scriptomic profiles and cellular composition emerge as key factors influencing the

performance of deconvolution methods. This study provides valuable insights into

the factors affecting bulk tissue deconvolution accuracy, offering guidance for users

and contributing to the development of more powerful and reliable computational

approaches in the future.

3.2 Study Design

We evaluate the robustness and resilience of two reference-based and two reference-

free deconvolution methods by assessing their performance across various scenarios
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and identifying key risk factors that influence their accuracy. The reference-based

methods include CIBERSORTx [31] and MuSiC [28] while the reference-free methods

are Linseed[36] and GSNMF [37]. To assess robustness, we use in silico pseudo-bulk

RNA sequencing data that simulate a wide range of biological scenarios and evaluate

the methods’ performance. For resilience, we intentionally modify the distribution of

single-cell RNA-seq profiles in the pseudo-bulk data while using the original scRNA-

seq data as the reference for deconvolution analysis.

To generate pseudo-bulk tissues, we simulate cell proportions using a multivariate

Dirichlet distribution with parameter γ, which represents the expected proportions of

different cell types. Single-cell profiles are then randomly sampled from an scRNA-seq

dataset and summed to create pseudo-bulk RNA-seq data. The four deconvolution

methods are applied to estimate cell compositions in each pseudo-bulk sample. Their

estimated cell proportions are then compared against the ground truth using three

evaluation metrics: Pearson’s correlation coefficient (R), root mean squared deviation

(RMSD), and mean absolute deviation (MAD).

Figure 3.1: Study design. (a) A cell level dataset is used to generated pseudo-bulk
tissues. (b) Ideal mixing to generate pseudo bulk tissue RNA-seq data. (c) Deconvo-
lution for cell proportions. (d) Performance evaluation.
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Notations and Algorithms

To clarify the notation used in subsequent sections, we introduce the mathematical

framework here. Bulk tissue RNA-seq data is represented by a matrix GM×n, where

M denotes the number of genes and n is the number of bulk tissue samples. Assuming

the presence ofK distinct cell types in the bulk tissue samples, we denote the expected

expression levels of these cells by a matrix CM×K , while their relative proportions are

stored in matrix PK×n. The goal of bulk RNA-seq deconvolution is to estimate the

cell type proportions, P, as described in Equation (3.1):

G = CP + ε. (3.1)

Here, ε represents random error with E(ε) = 0.

Reference-based methods utilize external reference datasets to estimate the ex-

pected cell-type-specific expression matrix C (e.g., the signature matrix in CIBER-

SORTx) and assume it is known in Equation (3.1), leaving only P to be estimated.

CIBERSORTx, based on a ν-support vector regression model [67], is designed to

handle challenges such as noise, unknown mixture content, and closely related cell

types. It is widely used across various bulk tissue types, including whole blood and

solid tumors [20]. MuSiC, the second reference-based method, selects informative

genes based on cross-subject and cross-cell consistency and employs a weighted non-

negative least squares (nnls) regression model to estimate the cell-type proportions

P [28].

Reference-free deconvolution algorithms are particularly useful when reference datasets

are unavailable. In this case, both matrices C and P are unknown and must be

estimated simultaneously. Computational methods such as LINear Subspace iden-

tification for gene Expression Deconvolution (Linseed) [36] and geometric structure-

constrained non-negative matrix factorization (GSNMF) [37] have been developed to

address this challenge.
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Ideally, the expression of cell-type-specific marker genes should be linearly corre-

lated with the corresponding cell-type proportions. Reference-free methods leverage

this mutual linearity to uncover the topological structure of bulk RNA-seq data. Lin-

seed, for instance, employs the SISAL algorithm [68] to identify an underlying sim-

plex structure that characterizes cell-type-specific genes and proportions. In contrast,

GSNMF improves the identifiability and uniqueness of NMF-based deconvolution by

integrating marker gene information as solvability constraints and using a correlation

graph for manifold regularization. By incorporating both solvability and manifold

constraints, GSNMF aims to enhance the accuracy and robustness of cell proportion

estimation.

3.3 Simulation Design

Cell-Level Datasets for Pseudo-Bulk Tissue Generation

Four cell-level expression datasets from different tissue types were used to generate

pseudo-bulk tissues in our simulations (Table A.1).

• GSE19830: Contains 42 samples, including nine pure rat brain, liver, and

lung cell samples, along with 33 mixtures of these three cell types in various

proportions [64]. Only the nine pure cell samples were used in our simulations

to generate pseudo-bulk tissue samples.

• Human Leukocyte Subsets (LM22): Comprises 22 leukocyte subsets from

mature human hematopoietic populations derived from peripheral blood or cul-

tured in vitro [20]. This dataset includes detailed cell-type annotations distin-

guishing subtypes such as naive and memory B cells, CD8 and CD4 T cells

(naive, memory resting, memory activated), follicular helper T cells, Tregs, and

gamma delta T cells. In this study, we grouped all subtypes into six distinct cell

types: B cells, T cells, NK cells, macrophages, dendritic cells, and mast cells.

• GSE81608: Contains scRNA-seq data from human pancreatic islet cells ob-
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tained from twelve non-diabetic and six type 2 diabetic (T2D) samples [69].

This dataset includes 1,492 cells categorized into pancreatic α, β, δ, and γ cells.

• GSE67835: Consists of 466 single cells from healthy human brain samples [70].

It includes nine distinct cell types: astrocytes, endothelial cells, replicating and

quiescent fetal neurons, hybrid cells, microglia, regular neurons, oligodendro-

cytes, and oligodendrocyte precursor cells (OPCs). For our study, we selected

five major types—astrocytes, endothelial cells, microglia, neurons, and oligo-

dendrocytes—totaling 267 cells, to generate pseudo-bulk brain tissue RNA-seq

data.

Additionally, three more datasets—PBMC8K, E-MTAB-5061, and syn18485175—are

listed in Table A.1. These datasets were used either as independent external reference

data for deconvolution or to generate bulk tissue RNA-seq data.

Specifically, PBMC8K consists of 8,000 peripheral blood mononuclear cells (PBMCs)

from a healthy donor, obtained through scRNA-seq from patient blood samples

(https://support.10xgenomics.com/single-cell-gene-expression/datasets).

The dataset was sequenced using the Illumina HiSeq 4000, generating approximately

92,000 reads per cell, with a total of 8,381 detected cells. The raw scRNA-seq reads

were aligned to the GRCh38 reference genome and quantified using Cell Ranger [71]

(10x Genomics). The resulting expression matrix was then processed with Seurat

[72] for cell annotation. To annotate PBMC8K, we used Seurat and incorporated

prior cell type knowledge from PBMC3K. We identified and annotated five distinct

cell types—B cells, T cells, NK cells, macrophages, and dendritic cells—by grouping

related subpopulations to construct in silico bulk tissues. We then used the PBMC8K

dataset [73] to generate pseudo whole blood tissue samples and employed the LM22

dataset as the external reference.

For the simulated human brain bulk tissue samples, we used the syn18485175

dataset, a single-nucleus RNA-seq (snRNA-seq) dataset of the human brain [65],

https://support.10xgenomics.com/single-cell-gene-expression/datasets
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as the reference. For the simulated type 2 diabetes (T2D) bulk tissue samples, we

used the E-MTAB-5061 dataset [74] as the reference.

In total, 12 pseudo-bulk tissue RNA-seq datasets (four different tissue types × three

different levels of variation in cell composition) were generated and used to evaluate

the performance of deconvolution methods.

Resilience Analysis: Controlled Modifications to Generating Datasets

To comprehensively analyze resilience, we systematically introduced controlled

modifications to the generating datasets. Specifically, we altered the cell-level data to

generate pseudo-bulk tissues while using the unmodified original data as the reference

for deconvolution analysis. The variation in cell composition was fixed at a medium

level during resilience testing. We applied three distinct manipulative techniques:

• Mean Shifting: Expression levels were augmented by adding 10%, 30%, 50%,

and 70% of the average expression level for each cell type.

• Truncation: The top or bottom 10% of expressed cells for each cell type were

selectively removed before generating bulk tissue data. The remaining cells were

then used for pseudo-bulk tissue generation.

• Factoring: Expression levels were scaled using factors of 0.4, 0.8, 1.2, and 1.8

to allow both upward and downward adjustments.

Additionally, we used the scDesign simulator by Li et al. (2019) [66] to generate

synthetic scRNA-seq datasets. This simulator estimates the distribution parame-

ters of an assumed probabilistic model based on real scRNA-seq data, enabling the

generation of realistic synthetic single-cell expression profiles. In our experiments,

we used scDesign to create synthetic datasets for human peripheral blood, brain,

and pancreatic tissue cells. The resulting synthetic scRNA-seq data were used to

generate pseudo-bulk tissue samples, while the original single-cell datasets served as

the reference for deconvolution. In contrast to brain and pancreatic tissues, human
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peripheral blood required a different approach: we used the PBMC8k scRNA-seq

dataset as input to the scDesign simulator and employed the LM22 dataset as the

external reference.

Cell Proportion Generation

We simulated cell proportions in pseudo-bulk tissues using a multivariate Dirichlet

distribution with parameter vector p = (p1, p2, . . . , pK), where γk = pk/
∑K

k=1 pk

represents the expected proportion of the kth cell type. The sum p0 =
∑K

k=1 pk

controls variation in cell composition, with larger values corresponding to smaller

variations. Our simulations included three variation levels —small, medium, and

large —as detailed in Table A.2.

The expected cell type proportions for different tissue types were set as follows:

• Brain pseudo-bulk tissues: γbrain = (0.23, 0.07, 0.06, 0.49, 0.14) for astro-

cytes, endothelial cells, microglia, neurons, and oligodendrocytes.

• Blood pseudo-bulk tissues: γblood = (0.17, 0.43, 0.09, 0.14, 0.09, 0.09) for B

cells, T cells, NK cells, macrophages, dendritic cells, and mast cells.

• Pancreatic pseudo-bulk tissues: γislet = (0.51, 0.33, 0.1, 0.05) for α, β, γ,

and δ cells.

Ideal Mixing for Pseudo-Bulk Tissue RNA-seq Data

After simulating cell proportions, single cells were randomly sampled with replace-

ment from the corresponding scRNA-seq dataset. The read counts or expression levels

of the selected single-cell RNA profiles were directly summed to generate the total

gene expression levels for each pseudo-bulk tissue sample. This method is referred to

as the ideal mixing approach.

A total of 50 pseudo-bulk mixture samples were generated for each dataset, except

for the T2D dataset, for which 100 mixtures were created —50 for the healthy group

and 50 for the T2D group. For all simulated bulk tissue samples, genes with fewer
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than 10 read counts in at least 80% of the samples were discarded, followed by column

normalization. For human brain tissues, the top 1,000 marker genes for each of the

five cell types, as identified by McKenzie et al. (2018) [75], were used—resulting in a

total of 5,000 genes for brain tissue analysis.

Evaluation Metrics

The deconvolution methods were evaluated using three quantitative metrics:

1. Pearson’s Correlation Coefficient: R = Cor(p, p̂)

2. Root Mean Squared Deviation (RMSD): RMSD =
√

avg(p− p̂)2

3. Mean Absolute Deviation (MAD): MAD = avg(|p− p̂|)

where p and p̂ represent the ground truth and estimated cell proportions, respec-

tively.

3.4 Results

Through extensive simulations, we gained valuable insights into the performance

of various deconvolution methods, particularly in terms of robustness and resilience.

3.4.1 Robustness Results Analysis

Overall, the two reference-based methods, CIBERSORTx and MuSiC, consistently

outperformed the two reference-free methods, Linseed and GSNMF, across various

tissue types and levels of cell composition variation. This was particularly evident

when the reference dataset used was the same dataset used to generate the pseudo-

bulk tissues.

CIBERSORTx and MuSiC demonstrated comparable performance across different

levels of variation in cell composition, with Pearson’s correlation coefficients between

estimated and true cell proportions approaching 1, as shown in Figure A.1, A.2, A.3

and A.4. When comparing performance across different bulk tissue types, estimates

for pancreatic and brain tissues were slightly less accurate than those for liver, lung,
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brain pseudo-bulk tissues, and whole blood pseudo-bulk samples. For example, under

medium variation in cell proportions, the observed RMSD for MuSiC was 0.00023,

0.00712, 0.00162, and 0.0472 for liver, lung, brain, whole blood, pancreatic, and brain

tissue samples, respectively. The corresponding RMSD for CIBERSORTx was 0.0847,

0.00009, 0.0275, and 0.1037. A similar pattern was observed in Pearson’s correlation

coefficients and MAD (Figure A.1, A.2, A.3 and A.4).

Linseed and GSNMF struggled to accurately estimate cell proportions when vari-

ation in cell composition was minimal. However, their performance improved signif-

icantly as variation increased. For instance, in pseudo-bulk tissues for liver, lung,

and brain, Pearson’s correlation coefficients between estimated cell proportions and

ground truth for Linseed were 0.557, 0.760, and 0.751, respectively, under small,

medium, and large variation levels (third row in Figure A.1). Similarly, for GSNMF,

Pearson’s correlation coefficients were 0.126, 0.361, and 0.890 under the same condi-

tions (fourth row in Figure A.1). Compared to GSNMF, Linseed provided more ac-

curate estimates when variation in cell proportions was small to medium, particularly

for brain, liver, lung mixtures, and LM22 mixtures. However, as variation increased,

GSNMF outperformed Linseed. For example, in pseudo-pancreatic tissues, GSNMF

achieved Pearson’s correlation coefficients of 0.948 and 0.884 at medium and large

variation levels, compared to Linseed’s 0.873 and 0.535, respectively(Figure A.3).

In pseudo-brain tissues, GSNMF demonstrated performance comparable to Linseed

(Figure A.4).

In summary, when pseudo-bulk tissues were generated under ideal mixing condi-

tions, and the same dataset was used as a reference, the two reference-based methods

exhibited robust performance in estimating cell proportions across various tissue types

and levels of variation in cell composition. Two primary sources of variation in the

simulated bulk tissue samples were found to influence method performance: variation

in single-cell gene expression profiles and variation in cell compositions.
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Variation in Single-Cell Gene Expression Profiles

The four scRNA-seq datasets used in this study differed in the number of cells and

tissue types. The liver, lung, and brain dataset contained only nine single cells and

exhibited the most distinct gene expression patterns among the three cell types, as

illustrated in Figure A.5. The signature genes selected by CIBERSORTx displayed

highly distinct expression patterns in liver, lung, and brain cells. Additionally, due

to the limited number of cells, random sampling could result in the same cell being

selected multiple times, leading to reduced sampling variation compared to other

datasets.

The LM22 dataset exhibited similar characteristics. Although LM22 contained

more cells, it had been carefully pre-processed and extensively cleaned, resulting in

clearer cell-type-specific gene expression patterns, as seen in the heatmap (Figure A.5,

b)). In contrast, the T2D and brain cell datasets showed greater variability in gene

expression, including less distinct expression patterns for marker genes, increased

variability within cell types, and a larger number of cells, contributing to greater

overall variation at the cell level.

These findings highlight how factors such as the number of cells, tissue types,

and the biological techniques used for cell-level gene expression measurement can

significantly affect variation in cell-level data, thereby influencing the clarity and

consistency of deconvolution results.

Variation in Cell Proportions

In pseudo-bulk tissues generated under ideal mixing conditions, reference-based

methods remained largely unaffected by variations in cell composition, consistently

outperforming reference-free methods in terms of Pearson’s correlation coefficient,

RMSD, and MAD. However, the degree of variation in cell composition had a sig-

nificant impact on the performance of reference-free methods, with greater variation

correlating with more accurate estimations.
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This trend can likely be attributed to two key factors:

• Identification of Marker Genes - Reference-free methods assume a linear rela-

tionship between cell proportions and the corresponding marker gene expression

levels. When cell proportions vary widely, the linearity in expression levels be-

comes more pronounced, making marker genes easier to identify.

• Mathematical Identifiability - The identifiability condition is better satisfied

when deconvolution leverages correctly identified marker genes, leading to more

precise results.

In summary, greater variation in cell composition enhances the accuracy of reference-

free methods, while reference-based methods remain minimally affected and consis-

tently perform well regardless of variation.

3.4.2 Resilience Results Analysis

We also evaluated the performance of these deconvolution methods under condi-

tions where discrepancies exist between the reference data and the true profiles of

individual cells in bulk tissue samples. Specifically, we examined three levels of dis-

crepancy:

1. Artificially manipulated scRNA-seq data used for bulk tissue generation.

2. Synthetic scRNA-seq data generated by a simulator for bulk tissue generation.

3. Three independent real cell-level datasets used separately for bulk tissue gener-

ation and as a reference.

The following sections summarize our findings on the resilience of these methods

in handling such discrepancies.

Artificial Manipulation by Mean Shifting, Truncation, and Factoring
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Our results indicate that mean shifting and factoring have minimal impact on the

performance of the four selected deconvolution methods. MuSiC, CIBERSORTx, and

GSNMF maintained Pearson correlation coefficients similar to those observed in the

unaltered scenario across different tissue types and varying levels of cell composition.

However, Linseed exhibited some variability in estimating cell proportions in pseudo-

bulk pancreatic tissues. Specifically, its Pearson correlation coefficients were 0.4401,

0.8033, 0.6483, and 0.7422 when 10%, 30%, 50%, and 70% of the mean values were

added, respectively (third row in Figure A.12), compared to 0.8725 in the unaltered

case (Figure A.3). Interestingly, both Linseed and GSNMF showed improved per-

formance when deconvoluting pseudo-bulk brain tissues with higher percentages of

cell-type-specific mean expression values added. Our designed factoring experiments

did not result in any significant changes in the performance of the four deconvolution

methods (Figures A.7, A.10, A.13, A.16).

Removing the top or bottom 10% of cells based on their overall expression level

had a slight impact on the performance of reference-based methods, with Pearson’s

correlation coefficients remaining close to 1. However, this truncation significantly

improved the performance of GSNMF, suggesting its sensitivity to outlier cells with

extreme expression levels. Specifically, GSNMF’s RMSD values for the four different

original pseudo-bulk tissue types were 0.303, 0.230, 0.107, and 0.119. After removing

the top 10% of highly expressed cells, these values changed to 0.302, 0.068, 0.103, and

0.106, respectively. Similarly, removing the bottom 10% of cells resulted in RMSD

values of 0.301, 0.205, 0.101, and 0.107. (fourth row in Figure A.8,A.11,A.14,A.17)

Linseed displayed a different response to truncation: its performance improved

in pseudo whole blood and brain tissues but worsened in pseudo pancreatic tis-

sues, with little change observed in pseudo liver, lung, and brain mixtures. This

suggests that Linseed’s performance may be tissue-dependent.(third row in Figure

A.8,A.11,A.14,A.17)
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Impact of Using Synthetic scRNA-seq Data for Bulk Tissue Generation

When artificially simulated scRNA-seq data were used to generate pseudo-bulk

tissues while a real scRNA-seq dataset served as the reference, the performance of

reference-based methods declined significantly (Figure A.18,A.19,A.20). This effect

was particularly evident for CIBERSORTx, where Pearson’s correlation coefficients

in both types of simulated bulk tissue samples were substantially lower than when

the same scRNA-seq dataset was used for both bulk tissue generation and reference.

In contrast, the performance of reference-free methods improved across all levels of

variation in cell composition. For example, in pseudo-brain tissue samples, GSNMF

achieved Pearson correlation coefficients of 0.6025, 0.9743, and 0.9859 under small,

medium, and large variation levels, respectively. Similarly, for pseudo-pancreatic

samples, its Pearson correlation coefficients were 0.9695, 0.9884, and 0.9986 across the

three variation levels. For pseudo-bulk blood samples, the coefficients were 0.9274,

0.9898, and 0.8649, respectively. Comparable patterns were observed in RMSD and

MAD metrics (fourth row in Figure A.18,A.19,A.20).

This improvement can be attributed to the reduced variability of synthetic scRNA-

seq data generated by a simulator, as it follows an assumed probability distribution.

Conversely, reference-based methods performed worse because this scenario violated

a fundamental assumption of regression-based models: that cell-type-specific expres-

sion levels are known and observed with minimal error. The substantial drop in

CIBERSORTx’s Pearson’s correlation coefficients, along with increased RMSD and

MAD values, further supports this conclusion. Reference-free methods demonstrated

greater resilience as they do not rely on external reference datasets.

Impact of Using an Independent Reference Dataset

To further validate these findings, we conducted three additional analyses using

real, external, and independent reference datasets for deconvolution.

When we used the PBMC8K dataset to generate pseudo whole blood tissue samples
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and employed the LM22 dataset as the external reference, the reference-free methods

demonstrated superior performance. Linseed achieved Pearson correlation coefficients

of 0.9793, 0.9920, and 0.9972; GSNMF obtained 0.9163, 0.8100, and 0.9005; MuSiC

reported 0.8631, 0.8832, and 0.8739; and CIBERSORTx yielded 0.8807, 0.8713, and

0.8149, respectively (Figure A.21).

In bulk pancreatic tissues, MuSiC maintained strong performance across all levels

of cell composition variation, with Pearson correlation coefficients of 0.9650, 0.9880,

and 0.9990. However, CIBERSORTx exhibited slightly weaker performance com-

pared to the ideally mixed pseudo-bulk tissues discussed earlier, with coefficients of

0.3850, 0.6870, and 0.9650, respectively. As expected, the performance of reference-

free methods remained stable, as they do not depend on external reference datasets

(Figure A.22).

Furthermore, when pseudo-brain tissue samples were deconvoluted using an ex-

ternal snRNA-seq dataset, the performance of both reference-based methods de-

clined. MuSiCâs Pearson correlation coefficients dropped to -0.1193, 0.3469, and

0.6523 across increasing levels of variation. In contrast, GSNMF achieved coeffi-

cients of 0.0431, 0.8894, and 0.8712. Similarly, CIBERSORTx produced 0.5680,

0.6250, and 0.7490, while Linseed yielded 0.1346, 0.7639, and 0.8777, respectively

(Figure A.23). Similar patterns were observed in the RMSD and MAD bar plots

(Figures A.21, A.22, A.23).

These results suggest that reference-free methods may offer more reliable estimates

than reference-based methods when no high-quality reference dataset is available.

This advantage becomes especially evident when cell composition variability reaches

medium levels or higher.

3.5 Discussion

In this study, we utilized real scRNA-seq datasets to generate in silico pseudo-bulk

RNA-seq data and evaluated four computational deconvolution methods: CIBER-
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SORTx, MuSiC, Linseed, and GSNMF. These methods were assessed based on their

ability to estimate cell proportions using Pearson’s correlation coefficient, RMSD,

and MAD as evaluation metrics. Our primary objective was to evaluate their robust-

ness across various tissue types and levels of cell composition variation, as well as

their resilience when discrepancies existed between the reference dataset and the true

transcriptome of cells in bulk tissues.

To examine robustness, we conducted simulations using scRNA-seq datasets from

four different tissue types and generated bulk tissue samples with three levels of

cell composition variation. To evaluate resilience, we introduced discrepancies by

manipulating scRNA-seq data, using simulator-generated synthetic scRNA-seq data,

and incorporating independent external scRNA-seq/snRNA-seq datasets as references

for pseudo-bulk tissues.

Robustness of Reference-Based and Reference-Free Methods

Both reference-based methods (CIBERSORTx and MuSiC) demonstrated strong

robustness across different tissue types and levels of cell composition variation. Across

all evaluation metrics, these methods consistently outperformed reference-free ap-

proaches, particularly when pseudo-bulk tissues were generated under ideal mixing

conditions and true scRNA-seq profiles were used as references. CIBERSORTx and

MuSiC produced highly accurate estimates, showing strong correlation with the true

cell proportions and lower RMSD and MAD values. Their performance was compa-

rable in our simulations.

In contrast, the reference-free methods (Linseed and GSNMF) showed variable

performance depending on tissue type and the level of cell composition variation.

Linseed performed best in pseudo-whole-blood tissues, achieving Pearson’s correla-

tion coefficients of 0.922, 0.987, and 0.943 at low, medium, and high variation levels,

respectively. However, its performance in other tissue types, particularly under low

variation conditions, was less satisfactory. GSNMF, on the other hand, performed
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best when cell composition variation was high. The differences in performance be-

tween these two reference-free methods were largely due to their ability to identify

reliable marker genes. In general, variation in cell composition was beneficial for

marker gene identification, whereas variation in gene expression levels did not con-

tribute to improved performance. This pattern was consistently observed in RMSD

and MAD results as well.

Resilience to Discrepancies Between Reference Data and Bulk Transcrip-

tomes

When discrepancies existed between the reference dataset and the actual single-cell

transcriptomes in bulk tissues, reference-based methods were significantly affected.

These methods rely on the fundamental assumption of regression models that cell-

type-specific gene expression profiles are known and observed with minimal error.

When this assumption was violated, their performance declined.

In contrast, reference-free methods, which learn the underlying structure of bulk

tissues without depending on external reference datasets, demonstrated greater re-

silience to such discrepancies. However, they still required some degree of cell propor-

tion variation for optimal performance. GSNMF, as a more mathematical approach,

did not explicitly account for scRNA-seq variability when selecting marker genes,

whereas Linseed incorporated a permutation-based approach, resulting in smaller er-

rors. Similarly, CIBERSORTx, which employs a support vector regression model,

performed better in noisier datasets, while MuSiC, which is based on a regression

model, was more effective when data variability was lower.

These findings were further validated in simulations where pseudo-bulk tissue data

were generated using one scRNA-seq dataset while an independent external scRNA-

seq dataset served as the reference. The results confirmed that reference-free methods

exhibited better resilience in these scenarios, particularly when variation in cell com-

position was at least moderate.
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Implications and Future Directions

In summary, we conducted a comprehensive evaluation of two reference-based and

two reference-free methods for deconvoluting bulk RNA-seq data. We assessed their

performance across different tissue types, cell composition variation levels, and sce-

narios where discrepancies existed between reference datasets and actual single-cell

transcriptomes. Our findings indicate that reference-based methods generally out-

perform reference-free methods, particularly when the same single-cell profiles used

for deconvolution are also used to generate pseudo-bulk tissues. However, when dis-

crepancies between datasets were introduced, reference-free methods sometimes pro-

vided more reliable estimates than reference-based approaches. These insights serve

as practical guidelines for selecting appropriate deconvolution methods in real-world

applications.

We also observed that variation in scRNA-seq profiles and cell composition plays

a crucial role in improving and developing more effective computational deconvolu-

tion methods. These factors should be carefully considered when designing future

deconvolution algorithms.

Study Limitations

Despite its comprehensive scope, this study has some limitations. Although we

explored a wide range of scenarios, our simulations were not exhaustive. The tissue

types examined were limited to four, whereas real-world applications involve a much

broader spectrum. Additionally, there are more than four available deconvolution

algorithms, some of which may exhibit different performance characteristics.

Furthermore, our evaluation relied on three commonly used metrics—Pearson’s cor-

relation coefficient, RMSD, and MAD—without critically assessing whether these are

the most optimal for this type of analysis. Future research could explore alternative

evaluation metrics that may provide additional insights into method performance.

Finally, while we introduced large variation in cell composition in our simulations
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to investigate its impact on deconvolution, such levels of variation are often unreal-

istic in real bulk tissue samples. Nevertheless, understanding how variation affects

deconvolution methods remains valuable for future algorithm development. Further

research should explore ways to leverage variation in a biologically meaningful manner

to enhance deconvolution accuracy.



CHAPTER 4: CONCLUSIONS AND FUTURE WORK

In conclusion, we addressed the fundamental challenge of disentangling cell-type

composition from bulk RNA sequencing (RNA-seq) data—a problem central to many

modern transcriptomic studies. Traditional bulk RNA-seq approaches provide valu-

able, yet averaged, signals across heterogeneous tissues, thereby obscuring the contri-

butions of individual cell types and confounding downstream analyses.

In Chapter 2, we first highlighted the non-identifiability issues inherent in classical

nonnegative matrix factorization (NMF) when reconstructing both cell-type-specific

gene expression profiles and their relative proportions. Formal conditions for solution

uniqueness, along with geometric interpretations, helped clarify why NMF is often

ill-posed in complex biological datasets. Building on recent advances in NMF and

leveraging the availability of single-cell data, we introduced theoretical and practi-

cal innovations aimed at improving deconvolution methodologies. We proposed a new

model—GSNMF —that incorporates biologically plausible priors such as marker-gene

knowledge and manifold constraints to improve interpretability and robustness. The

use of geometric structure, in particular, provided a valuable framework for enforcing

partial identifiability when standard NMF assumptions are relaxed. Expanding on

this, the dissertation introduced an enhanced pipeline, GSNMF+, which augments

limited bulk data with statistically simulated pseudo-bulk data derived from single-

cell RNA-seq profiles. This augmentation helps mitigate "singularity" scenarios where

the original bulk dataset alone may not satisfy critical identifiability conditions. By

systematically combining pseudo-bulk augmentation with informed initialization and

a final rescaling correction, the proposed method achieves more stable and accurate

deconvolution across a range of realistic tissue compositions. These methods signifi-
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cantly enhance the identifiability and reliability of cell-type-specific gene expression

profiles and relative abundances, particularly in complex or sparse tissue contexts.

In Chapter 3, we presented a comprehensive benchmarking study comparing both

reference-based and reference-free deconvolution methods across multiple datasets.

Using evaluation metrics such as Pearson correlation (R), root mean squared error

(RMSE), and mean absolute deviation (MAD), we found that while high-quality ref-

erence datasets can substantially improve performance in some scenarios, carefully

constrained and augmented reference-free methods often excel in cases where reli-

able references are unavailable. Furthermore, structured evaluations revealed how

variations in data—such as mean shifting, scaling expression values, or gene sub-

sampling—can significantly impact deconvolution accuracy. These results underscore

the importance of integrating prior biological knowledge, geometric constraints, and

flexible algorithmic strategies to address real-world data variability. Taken together,

these contributions advance the field of computational deconvolution in several mean-

ingful ways. By clarifying theoretical foundations and offering empirically validated

improvements, this work provides a robust platform for analyzing heterogeneous tis-

sues. Improved estimates of cell-type proportions offer researchers deeper insights

into disease progression, immune responses, and tissue-specific regulatory mecha-

nisms. Moreover, the developed methods and evaluations serve as a blueprint for

future studies aiming to integrate multi-omic data, adopt spatial transcriptomics,

and refine deconvolution techniques under realistic noise conditions.

Based on the findings from this dissertation, we are currently developing a new de-

convolution algorithm based on neural networks to address more complex scenarios in

future work. This forthcoming method aims to extend the capabilities of current ap-

proaches by leveraging deep learning architectures to capture nonlinear relationships,

handle higher levels of noise, and experimental conditions.
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APPENDIX A: FIGURES AND TABLES IN CHAPTER 3

Table A.1: Cell level gene expression datasets.

Data GSE19830 LM22 GSE81608 GSE67835

Tissue Type rat brain, liver, lung human blood human pancreas human brain

Platform Affymetrix Affymetrix Illumina Illumina

Num. of genes 13,841 11,845 39,849 22,088

Num. of cells 9 22 1,492 267

Num. of cell types 3 6 4 5

Num. of subjects NA NA 18∗ NA

Reference Shen-Orr et al. (2010) Newman et al. (2015) Xin et al. (2016) Darmanis et al. (2015)

Data PBMC8K E-MTAB-5061 syn18485175

Tissue Type human peripheral blood human pancreas human brain

Platform Illumina Smart-seq2 Illumina

Num. of genes 32,738 25,453 17,926

Num. of cells 8,381 2,209 75,060

Num. of cell types 10 4 5

Num. of subjects NA 10∗∗ 48

Reference 10X Genomics website [73] Segerstolpe et al. (2016) Mathys et al. (2019)

∗ 12 healthy and 6 T2D samples.

∗∗ 6 healthy and 4 T2D samples.

Table A.2: Values of parameter p for the Multivariate Dirichlet distribution used for
simulations.

Data Set Small Variation Medium Variation Large Variation

GSE19830 (3.3, 3.4, 3.3) (3.3, 3.4, 3.3)/10 (3.3, 3.4, 3.3)/100

LM22 (1, 2.5, 0.5, 0.8, 0.5, 0.5) (1, 2.5, 0.5, 0.8, 0.5, 0.5)/10 (1, 2.5, 0.5, 0.8, 0.5, 0.5)/100

GSE81608 (5.4, 3.5, 1.1, 0.5) (5.4, 3.5, 1.1, 0.5)/10 (5.4, 3.5, 1.1, 0.5)/100

GSE67835 (6.2, 2, 1.6, 13.1, 3.8) (6.2, 2, 1.6, 13.1, 3.8)/10 (6.2, 2, 1.6, 13.1, 3.8)/100
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Figure A.1: Comparison of actual and estimated proportions for dataset GSE19830.
From left to right, the columns represent small, medium, and large variation. Each
row corresponds to a different deconvolution method: MuSiC, CIBERSORTx, Lin-
Seed, and GSNMF. Different colors represent different cell types: liver (red), brain
(green), and lung (blue).



95

Figure A.2: Comparison of actual and estimated proportions for dataset LM22. From
left to right, the columns represent small, medium, and large variation. Each row
corresponds to a different deconvolution method: MuSiC, CIBERSORTx, LinSeed,
and GSNMF. Different colors represent different cell types: B cells (red), T cells
(gold), NK cells (green), Macrophages (cyan), Dendritic cells (blue), and Mast cells
(magenta).
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Figure A.3: Comparison of actual and estimated proportions for dataset GSE81608.
From left to right, the columns represent small, medium, and large variation. Each
row corresponds to a different deconvolution method: MuSiC, CIBERSORTx, Lin-
Seed, and GSNMF. Different colors represent different cell types: beta (red), alpha
(green), delta (cyan), and gamma (purple).
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Figure A.4: Comparison of actual and estimated proportions for dataset GSE67835.
From left to right, the columns represent small, medium, and large variation. Each
row corresponds to a different deconvolution method: MuSiC, CIBERSORTx, Lin-
Seed, and GSNMF. Different colors represent different cell types: astrocytes (red),
endothelial (gold), microglia (green), neurons (blue), and oligodendrocytes (magenta).
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Figure A.5: Heatmap of correlation between signature genes selected by CIBER-
SORTx: a) GSE19830, b) LM22, c) GSE81608, and d) GSE67835.
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Figure A.6: Comparison of actual and estimated cell-type proportions for dataset
GSE19830 under mean shifting conditions. The columns, from left to right, represent
10%, 30%, 50%, and 70% shifts. Each row corresponds to a different deconvolution
method: MUSIC, CIBERSORTx, Linseed, and GSNMF. Different colors indicate
distinct cell types: liver (red), brain (green), and lung (blue).
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Figure A.7: Comparison of actual and estimated cell-type proportions for dataset
GSE19830 under factoring scenarios. The columns, from left to right, represent fac-
toring values of 1.2, 1.8, 0.8, and 0.4. Each row corresponds to a different deconvolu-
tion method: MuSiC, CIBERSORTx, LinSeed, and GSNMF. Different colors indicate
distinct cell types: liver (red), brain (green), and lung (blue).
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Figure A.8: Comparison of actual and estimated cell-type proportions for dataset
GSE19830 under different truncation scenarios. The columns, from left to right, rep-
resent truncation of the top 10%, truncation of the bottom 10%, and the original
dataset. Each row corresponds to a different deconvolution method: MuSiC, CIBER-
SORTx, LinSeed, and GSNMF. Distinct colors represent different cell types: liver
(red), brain (green), and lung (blue).
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Figure A.9: Comparison of actual and estimated cell-type proportions for dataset
LM22 under mean shifting conditions. The columns, from left to right, represent
10%, 30%, 50%, and 70% shifts. Each row corresponds to a different deconvolution
method: MUSIC, CIBERSORTx, Linseed, and GSNMF. Different colors represent
different cell types: B cells (red), T cells (gold), NK cells (green), Macrophages
(cyan), Dendritic cells (blue), and Mast cells (magenta).
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Figure A.10: Comparison of actual and estimated cell-type proportions for dataset
LM22 under factoring scenarios. The columns, from left to right, represent factoring
values of 1.2, 1.8, 0.8, and 0.4. Each row corresponds to a different deconvolution
method: MuSiC, CIBERSORTx, LinSeed, and GSNMF. Different colors represent
different cell types: B cells (red), T cells (gold), NK cells (green), Macrophages
(cyan), Dendritic cells (blue), and Mast cells (magenta)).
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Figure A.11: Comparison of actual and estimated cell-type proportions for dataset
LM22 under different truncation scenarios. The columns, from left to right, represent
truncation of the top 10%, truncation of the bottom 10%, and the original dataset.
Each row corresponds to a different deconvolution method: MuSiC, CIBERSORTx,
LinSeed, and GSNMF. Different colors represent different cell types: B cells (red), T
cells (gold), NK cells (green), Macrophages (cyan), Dendritic cells (blue), and Mast
cells (magenta).
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Figure A.12: Comparison of actual and estimated cell-type proportions for dataset
GSE81608 under mean shifting conditions. The columns, from left to right, represent
10%, 30%, 50%, and 70% shifts. Each row corresponds to a different deconvolution
method: MUSIC, CIBERSORTx, Linseed, and GSNMF. Different colors represent
different cell types: beta (red), alpha (green), delta (cyan), and gamma (purple).
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Figure A.13: Comparison of actual and estimated cell-type proportions for dataset
GSE81608 under factoring scenarios. The columns, from left to right, represent factor-
ing values of 1.2, 1.8, 0.8, and 0.4. Each row corresponds to a different deconvolution
method: MuSiC, CIBERSORTx, LinSeed, and GSNMF. Different colors represent
different cell types: beta (red), alpha (green), delta (cyan), and gamma (purple).
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Figure A.14: Comparison of actual and estimated cell-type proportions for dataset
GSE81608 under different truncation scenarios. The columns, from left to right, rep-
resent truncation of the top 10%, truncation of the bottom 10%, and the original
dataset. Each row corresponds to a different deconvolution method: MuSiC, CIBER-
SORTx, LinSeed, and GSNMF. Different colors represent different cell types: beta
(red), alpha (green), delta (cyan), and gamma (purple).



108

Figure A.15: Comparison of actual and estimated cell-type proportions for dataset
GSE67835 under mean shifting conditions. The columns, from left to right, represent
10%, 30%, 50%, and 70% shifts. Each row corresponds to a different deconvolution
method: MUSIC, CIBERSORTx, Linseed, and GSNMF. Different colors represent
different cell types: astrocytes (red), endothelial (gold), microglia (green), neurons
(blue), and oligodendrocytes (magenta).
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Figure A.16: Comparison of actual and estimated cell-type proportions for dataset
GSE67835 under factoring scenarios. The columns, from left to right, represent factor-
ing values of 1.2, 1.8, 0.8, and 0.4. Each row corresponds to a different deconvolution
method: MuSiC, CIBERSORTx, LinSeed, and GSNMF. Different colors represent
different cell types: astrocytes (red), endothelial (gold), microglia (green), neurons
(blue), and oligodendrocytes (magenta).



110

Figure A.17: Comparison of actual and estimated cell-type proportions for dataset
GSE67835 under different truncation scenarios. The columns, from left to right,
represent truncation of the top 10%, truncation of the bottom 10%, and the orig-
inal dataset. Each row corresponds to a different deconvolution method: MuSiC,
CIBERSORTx, LinSeed, and GSNMF. Different colors represent different cell types:
astrocytes (red), endothelial (gold), microglia (green), neurons (blue), and oligoden-
drocytes (magenta).
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Figure A.18: Comparison of actual and estimated cell-type proportions for dataset
PBMC8K under simulator scenarios. From left to right, the columns represent small,
medium, and large variation. Each row corresponds to a different deconvolution
method: MuSiC, CIBERSORTx, LinSeed, and GSNMF. Different colors represent
different cell types: B cells (red), T cells (gold), NK cells (green), Macrophages
(blue), and Dendritic cells (magenta).
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Figure A.19: Comparison of actual and estimated cell-type proportions for dataset
GSE81608 under simulator scenarios. From left to right, the columns represent small,
medium, and large variation. Each row corresponds to a different deconvolution
method: MuSiC, CIBERSORTx, LinSeed, and GSNMF. Different colors represent
different cell types: beta (red), alpha (green), delta (cyan), and gamma (purple).
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Figure A.20: Comparison of actual and estimated cell-type proportions for dataset
GSE67835 under simulator scenarios. From left to right, the columns represent small,
medium, and large variation. Each row corresponds to a different deconvolution
method: MuSiC, CIBERSORTx, LinSeed, and GSNMF. Different colors represent
different cell types: astrocytes (red), endothelial (gold), microglia (green), neurons
(blue), and oligodendrocytes (magenta).
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Figure A.21: Comparison of actual and estimated cell-type proportions for the LM22
dataset under real dataset(PBMC8k) scenarios. The columns, from left to right,
represent small, medium, and large variation. Each row corresponds to a differ-
ent deconvolution method: MuSiC, CIBERSORTx, LinSeed, and GSNMF. Different
colors represent distinct cell types: B cells (red), T cells (gold), NK cells (green),
macrophages (cyan), dendritic cells (blue), and mast cells (magenta).
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Figure A.22: Comparison of actual and estimated cell-type proportions for the
GSE81608 dataset under real dataset(E-MTAB-5061) scenarios. The columns, from
left to right, represent small, medium, and large variation. Each row corresponds
to a different deconvolution method: MuSiC, CIBERSORTx, LinSeed, and GSNMF.
Different colors represent distinct cell types: beta (red), alpha (green), delta (cyan),
and gamma (purple).
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Figure A.23: Comparison of actual and estimated cell-type proportions for the
GSE67835 dataset under real dataset (syn18485175) scenarios. The columns, from
left to right, represent small, medium, and large variation. Each row corresponds
to a different deconvolution method: MuSiC, CIBERSORTx, LinSeed, and GSNMF.
Different colors represent distinct cell types: astrocytes (red), endothelial cells (gold),
microglia (green), neurons (blue), and oligodendrocytes (magenta).
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