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ABSTRACT

RAY GABRIEL ABNEY FIALLOS. Invisibility and Inverse Problems: Theoretical
and Computational Approaches. (Under the direction of DR. GREGORY GBUR)

This dissertation presents new theoretical and computational advancements in the

study of wave propagation, focusing on invisibility and inverse problems. The research

is divided into three main parts, each addressing a distinct but significant challenge

in mathematical physics.

Chapter 2 develops a theoretical framework for nonradiating orbital motions, a

phenomenon where wave sources move within a bounded domain without emitting

detectable radiation. This study extends classical results on nonradiating sources by

constructing explicit time-dependent solutions that satisfy strict boundary conditions

to suppress outward radiation. Using Fourier series expansions and Green’s formu-

lae, we derive families of sources that exhibit motion while remaining undetectable.

Numerical simulations validate these theoretical findings, and we discuss potential

experimental realizations in structured wave systems, such as surface plasmons.

Chapter 3 explores invisibility techniques for scattering problems, specifically the

design of nonscattering scatterers. We analyze wave interactions with specially en-

gineered structures that prevent scattered waves from revealing the presence of an

object. We construct mathematical models demonstrating how material properties

can be adjusted to achieve near-perfect invisibility. The chapter further provides

computational validations illustrating the feasibility of these invisibility mechanisms

in practical scenarios, with implications for the nonuniqueness of the inverse source

problem and for wave-based imaging.

In Chapter 4, we shift focus to inverse problems for parabolic equations, where the

goal is to reconstruct unknown coefficients using limited boundary data. We introduce

a Carleman-Picard iteration method, a globally convergent algorithm that combines
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Carleman estimates, quasi-reversibility techniques, and a reduced-dimensional repre-

sentation to enhance stability and accuracy. Unlike traditional optimization methods

that rely on initial approximations and are susceptible to local minima, the proposed

approach ensures robust recovery of zero-order coefficients in parabolic partial differ-

ential equations. Numerical experiments confirm the effectiveness of this method in

practical applications, including bioheat transfer modeling, geophysical exploration,

and non-destructive testing.

Through rigorous mathematical derivations and extensive numerical analyses, this

dissertation contributes to the broader understanding of wave manipulation, invisibil-

ity theory, and inverse problems. The results have potential applications in electro-

magnetic and acoustic cloaking, wave-based sensing, medical imaging, and material

characterization, advancing the theoretical foundations and computational tools for

solving complex wave phenomena.
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PREFACE

In this dissertation, I discuss invisibility and inverse problems. I discuss topics that

I know would interest the militaries of the various imperialist powers of this world.

However, I would like to make it absolutely clear to the reader that the goal of this

dissertation is to explore invisibility and inverse problems in the general. Nothing

written in this dissertation was written with the intention of helping any military

anywhere.

However, if I ever do any sort of work with any military of any bourgeois country,

it may be in something in inverse problems along the lines of helping develop math

to clear mines and unexploded ordinance. Among other countries, France, Laos, and,

especially these days, Palestine still have a big problem with unexploded ordinance;

and I would be willing to work with anyone who wants to help clean up hidden

explosives in these countries or anywhere else. Otherwise, if the militaries of the

imperialist powers of this world want scientists to help them dominate over other

countries, they would be wasting their time looking to me because I’m not the one.

My job is to be a scientist for the good of all mankind. My job is to do neat

things and discover neat things in mathematics and in physics. To any students—

mine or otherwise—considering a career in mathematics or the sciences in general,

don’t compromise your morals to please any teacher or employer, or to advance your

career.

—RGAF



CHAPTER 1: INTRODUCTION

This dissertation is structured into three main parts:

1. Invisibility for Sources: The first part explores invisibility in the context of

wave-like equations, focusing on the design of nonradiating sources that do not

emit detectable waves. By ensuring that the emitted fields remain confined and

do not propagate outward, we achieve effective source invisibility.

2. Invisibility for Objects: The second part investigates techniques to render

objects undetectable by constructing nonscattering scatterers that prevent wave

reflections, thereby concealing the presence of an object.

3. Inverse Problems for Parabolic Equations: The third part shifts focus to

inverse problems, particularly in the setting of parabolic equations. Here, we

develop mathematical and computational techniques to detect and reconstruct

hidden objects from limited measurements.

While the first two parts seek to suppress wave interactions to achieve invisibility,

the third part takes the opposite goal, aiming to recover missing information from

external observations. The interplay between these two areas highlights fundamen-

tal challenges in mathematical physics. This dissertation provides both theoretical

insights and computational methodologies to advance the study of invisibility and

inverse problems.

1.1 Nonradiating Orbital Motions

The study of nonradiating sources has been a long-standing topic in wave physics,

particularly in electromagnetics, acoustics, and quantum mechanics. In the early
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1900’s, physicists concerned themselves with, among other topics, the structure of

an atom. What physicists wanted to know in these days was how electrons could

orbit and not emit any radiation. Thus, in 1910, Paul Ehrenfest published [23]. In

his paper, he said that although point charges must radiate when accelerating, an

extended distribution of electric charge could be constructed that could oscillate and

still not radiate.

Some years later, in his 1933 paper [80], George Schott showed how it is possible

for a uniformly charged shell of radius a to move about in an arbitrary, periodic orbit

of period T and not radiate, where a and T are related by the equation

a =
mcT

2
, (1.1)

where m is an integer and c is the speed of light. However, due to equation (1.1),

the orbit of this shell will be very small, well within the radius of the shell. Thus,

Schott’s shell’s “orbit” will be more of a wobbling sort of motion rather than anything

similar to the moon going around the earth.

Schott went on to write more papers concerning charged spheres that spin or orbit,

like [81, 82, 83, 84]. From this later work, the most significant result was that a charged

sphere might also self-oscillate without external force. From this result, Bohm and

Weinstein in 1948 in [10] came up with more classes of nonradiating distributions. And

Goedecke in 1964 in [31] developed a more general theory of radiationless motions.

And finally, the 1989 paper [26] written by Gamliel, Kim, Nachman, and Wolf gave

conditions whereby a source is a nonradiating source. The result of [26] is instrumental

to our work and results in Chapters 2 and 3.

The study of nonradiating sources is important for a couple of reasons, among oth-

ers: First, as Friedlander, Devaney, Wolf, Bleistein, and Cohen showed in their work

back in the 70’s (see [25] by Friedlander, [22] by Devaney andWolf, and [9] by Bleistein

and Cohen), there is a connection between monochromatic nonradiating sources and
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the nonuniqueness of the inverse source problem, which is the type of inverse problem

where one wants to determine the structure of a source from its radiation pattern.

Obviously, if nonradiating sources do not radiate, it is impossible to determine the

properties of any particular nonradiating source from radiation measurements. With

this said, the existence of nonradiating sources implies the nonuniqueness of the in-

verse source problem. Secondly, nonradiating sources can exist in a variety of wave

systems, from gravitational wave systems [62] to vibrating strings [66]. In fact, [36]

considers nonradiating anapoles a candidate for dark matter. So nonradiating sources

may answer some very fundamental questions about our universe.

This dissertation contributes to this evolving field of nonradiating sources by es-

tablishing a theoretical framework for nonradiating orbital motions, a phenomenon

where wave sources move within a bounded region without emitting detectable radia-

tion. While conventional wave sources typically generate propagating waves extending

beyond their origin, we demonstrate that carefully designed sources can remain non-

radiating, ensuring that no energy escapes beyond their confined domain. This has

direct implications for wave-based cloaking.

Our approach begins with the mathematical formulation of nonradiating sources

within the framework of wave-like equations. We construct time-dependent solutions

that satisfy strict boundary conditions, effectively preventing outward radiation. Us-

ing analytical techniques such as Fourier series expansions and Green’s formulae, we

derive explicit examples of nonradiating orbiting sources, where wave energy circu-

lates within an annular region without radiating externally.

To validate our theoretical findings, we perform numerical simulations to compute

the resulting fields and confirm their nonradiating nature. These simulations illus-

trate that such sources can be systematically designed to follow predefined orbital

trajectories while maintaining their invisibility. Furthermore, we discuss potential ex-

perimental realizations, particularly in surface wave systems, where structured light
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beams could be utilized to create similar nonradiating excitations.

1.2 Invisible Objects: Theoretical Models and Numerical Validation

An object is invisible if it does not radiate or scatter waves, see [28, 30, 38]. This

effect is achieved by designing structures that control how waves interact with an

object, preventing them from scattering in a way that would reveal its presence. The

idea of invisibility has been a subject of interest for centuries, but it was only in

recent decades that rigorous mathematical and physical frameworks were developed

to realize invisibility in practical settings.

In 1975, Milton Kerker introduced the concept of nonscattering scatterers in his

pioneering work [40], describing the first objects that could be considered truly “in-

visible” in the sense that they do not scatter incident light. Kerker examined specific

ellipsoidal core-shell structures, where the core possessed a higher refractive index

than the surrounding medium, while the shell had a lower refractive index than the

background. These objects were assumed to be subwavelength-sized, satisfying the

Rayleigh scattering criterion, ensuring that their interaction with light was governed

primarily by dipole radiation.

A major breakthrough in cloaking, a form of invisibility, emerged with the advent

of transformation optics, introduced by Pendry, Schurig, and Smith in their influ-

ential paper on electromagnetic cloaking [77]. They demonstrated that by designing

metamaterials with spatially varying permittivity and permeability, light waves could

be guided around an object as if it were absent, effectively rendering it invisible to an

external observer. This approach was inspired by earlier theoretical work by Greenleaf

et al. [32], which explored invisibility in the context of conductivity equations.

Simultaneously, an alternative cloaking method known as scattering cancellation

was proposed by Alù and Engheta [5]. Their approach utilized plasmonic materials

to induce destructive interference, thereby eliminating scattered waves and achieving

invisibility for specific frequencies. Unlike transformation optics, which demands
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intricate material engineering, scattering cancellation offers a more straightforward

and practical means of achieving cloaking in certain applications.

Further developments include multifrequency cloaking [63, 65, 67], cloaking for

acoustic and water waves [19, 90], and active cloaking [33, 76], where external sources

or metamaterials are used to cancel scattered waves dynamically. These ideas have

been extended to various wave systems, including elastodynamics, acoustics, and

quantum mechanics.

While cloaking technologies continue to advance, challenges remain, such as band-

width limitations, material losses, and the difficulty of achieving perfect cloaking for

all frequencies and angles. Nonetheless, the field has provided deep insights into

wave manipulation and continues to inspire applications in biomedical imaging and

wave-based computing.

Of course, while the big topic in invisibility these days seems to be about cloaking,

which is why we discuss cloaking so much in this section, the second part of this dis-

sertation concerns invisibility more generally. In the second part of this dissertation,

we explore the theoretical and numerical construction of objects that are invisible

from multiple directions, extending previous work on nonscattering scatterers. While

perfect invisibility from all directions is theoretically impossible, as established by

Habashy and Wolf [88], it is feasible to design objects that are undetectable from a

finite number of prescribed directions. Our work builds on the seminal results of De-

vaney [21], who showed how to construct scattering potentials that render an object

invisible along specific directions, and Gbur [29], who further refined these techniques.

We develop a mathematical framework using what we refer to in this disserta-

tion as the “Devaney operator,” which allows us to systematically generate scattering

potentials for objects that are invisible from multiple directions. By applying this

operator iteratively, we construct objects with an increasing number of invisible di-

rections. Our study confirms that as the number of directions of invisibility increases,
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the maximum power radiated by the scattered field decreases, effectively making the

object practically invisible in most cases.

To validate our theoretical findings, we conduct numerical simulations for six differ-

ent objects whose scattering potentials are based on a polynomial and for another six

different objects whose scattering potentials are based on the bump function. Each

object is designed to be invisible from a different number of prescribed directions.

Using Green’s formula techniques, we compute the scattered fields and analyze the

power radiated as a function of the incident wave direction. Our results show that

objects with more invisible directions radiate significantly less power, reinforcing the

effectiveness of our approach.

Our study on nonscattering scatterers contributes to the broader study of wave ma-

nipulation and inverse scattering problems, offering insights into the controlled design

of invisible structures. The findings have potential applications in the nonuniqueness

of the inverse scattering problem and in wave-based imaging, where selective invisi-

bility can be strategically exploited.

1.3 Inverse Problems for Parabolic Partial Differential Equations

This dissertation explores inverse problems alongside invisibility, highlighting their

conceptual opposition. While in Chapters 2 and 3 we concern ourselves with con-

structing objects that cannot be seen, in Chapter 4 we do the opposite and seek to

reconstruct hidden information from observed data. Inverse problems for partial dif-

ferential equations (PDEs) arise in diverse scientific and engineering fields, including

medical imaging, geophysics, non-destructive testing, and remote sensing. Unlike di-

rect problems, where the governing PDE and input data are known, inverse problems

involve determining unknown parameters or unknown sources based on limited or

indirect observations.

The investigation of coefficient inverse problems for parabolic PDEs has a rich his-

tory, deeply rooted in mathematical physics. Hadamard [34] introduced the concept
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of well-posedness, highlighting that many inverse problems are inherently ill-posed,

meaning that solutions may not exist, may lack uniqueness, or may be highly sensitive

to small variations in data. To address these challenges, Tikhonov [86] developed regu-

larization techniques, leading to the widely adopted Tikhonov regularization method,

which remains a fundamental approach for numerically stabilizing and solving inverse

problems. However, a significant drawback of the methods based on Tikhonov regu-

larization is the presence of multiple local minima in the Tikhonov cost functional,

which can cause solutions to become trapped rather than converging to the global

minimizer. To address this issue, recent research has focused on globally convergent

methods that eliminate the need for an initial approximation, thereby reducing the

risk associated with local minima. Three prominent globally convergent approaches

include:

1. the Carleman convexification method, first introduced in [49] by Klibanov and

Ioussoupova;

2. the Carleman contraction principle method, first developed in [57] by Le and

Nguyen;

3. the Carleman-Newton method, first proposed in [60] by Le, Nguyen, and Tran.

While each of these methods is effective, this dissertation adopts the second approach

due to its lower computational cost and its simpler implementation.

Building on these advancements, this dissertation extends the Carleman contrac-

tion principle method to address an inverse coefficient problem in parabolic equations

with limited boundary data. Specifically, we focus on reconstructing the zero-order

coefficient in a parabolic equation, a critical task in applications such as bioheat

transfer, geophysics, and non-destructive testing.

To extend the applicability of the Carleman contraction principle method [57] to

cases with limited data, we incorporate the reduced dimensional approach, originally
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introduced in [35]. This approach reformulates the inverse problem into a system

of one-dimensional nonlinear equations, utilizing the polynomial-exponential basis

expansion introduced in [48]. This transformation not only simplifies the problem

but also improves computational efficiency. Since we do not explicitly construct a

contraction map in our approach, we refer to this modified method as the Carleman-

Picard method to distinguish it from the original version in [57].

We provide a rigorous proof of convergence for the Carleman-Picard method, fur-

ther establishing the reliability and effectiveness of our iterative scheme in accurately

reconstructing the unknown coefficient.

To validate our approach, we perform numerical simulations to evaluate its ac-

curacy and robustness, even in the presence of noisy data. The results demonstrate

that the Carleman-Picard iteration successfully reconstructs the zero-order coefficient

in parabolic equations using only partial boundary data, making it a practical and

computationally efficient solution for real-world applications. This study advances

the broader field of inverse problems for PDEs by introducing a globally convergent

and stable methodology for solving nonlinear inverse problems.



CHAPTER 2: NONRADIATING ORBITAL MOTIONS

The material of this chapter comes from [3], an article based on [2] that was pub-

lished in May 2023 in Physical Review A. In this chapter, we discuss nonradiating

orbital motions. We show how it is possible to create nonradiating sources that

can orbit about the center of an annulus and be whatever shape we want them to

be, and we also discuss about how one could possibly create an experimental setup

demonstrating nonradiating orbital motions.

2.1 Introduction

When a driving force is applied to a closed region, one would expect waves to prop-

agate away from the closed region where the driving force is being applied. However,

this does not necessarily have to happen. It is possible for a driving force to be ap-

plied to a closed region and for the resulting waves to stay within the closed region.

When this happens, the driving force becomes a nonradiating source, and the field

created by the driving force becomes what is known as a nonpropagating excitation.

A major inspiration for the work of this chapter and of the works [2, 3] is the

article [66], written by Dylan Moses, Choon How Gan, and Gregory Gbur, which

discusses how to create nonpropagating excitations in 1D. In this chapter, we create

a nonpropagating excitation in 2D that is the product of two other functions created

according to the results of [66]. And then we put this nonpropagating excitation

through the wave equation to determine the corresponding nonradiating source. The

field and source are both time dependent and we make them orbit about the center

of an annulus.

The work of this chapter is important for a few reasons. In this chapter, we



11

demonstrate how it is theoretically possible to construct 2D nonradiating sources that

can orbit about an annulus and be whatever shape we want them to be, and we discuss

one way one could create an experimental setup demonstrating nonradiating sources

that orbit. We consider 2D nonradiating orbiting sources because it is mathematically

easier to consider than 3D nonradiating orbiting sources. In particular, the 2D case

is ideal for studying nonradiating sources experimentally. For instance, it might

be possible to excite surface waves on a metal plate. And finally, while 1D and

3D nonradiating sources have been studied, 2D nonradiating sources have not been

studied very much, with the exceptions of [2, 27].

2.2 An Important Theorem Concerning Nonradiating Sources

Before we proceed, we must introduce a theorem that is not only important for the

material of this chapter, but also for that of Chapter 3. This theorem comes from

[26], where its proof can also be found; and it concerns the conditions that must be

met in order for us to have a nonradiating source.

Theorem 2.2.1. Let q(r) be a bounded, nonradiating source distribution of finite

support, and let u(r) be the field that q(r) generates. Then u(r) and q(r) are related

by the inhomogeneous Helmholtz equation

(∇2 + k2)u(r) = −4πq(r), (2.1)

with the boundary conditions

u(r) = ∂nu(r) = 0 for r ∈ ∂D, (2.2)

where k > 0 is a constant, D is the domain of our source, ∂D is the boundary of D,

and ∂n denotes differentiation along the outward normal, where n is the unit normal

vector pointing away from ∂D.



12

2.3 Theory of Nonradiating Orbital Motions

Our nonradiating sources Q(r, t) and our fields U(r, t) are related by the wave

equation

∇2U(r, t)− 1

c2
Utt(r, t) = −4πQ(r, t), (2.3)

where c is the speed of our wave and r = (r, θ) ∈ R2. We start off with monochromatic

fields and sources. We have our field U(r, t) = u(r, ω)e−iωt, where u(r, ω) satisfies the

Helmholtz equation

∇2u(r, ω) + k2u(r, ω) = −4πq(r, ω), (2.4)

where k = ω/c is our wave number. Naturally, our nonradiating source will be of the

form Q(r, t) = q(r, ω)e−iωt.

Now, we want our nonradiating source, and thus our field, to orbit the center

of an annulus of inner radius a and outer radius b. And we want to restrict our

nonradiating source to a sector of this annulus bounded by the angles φ and ψ. Thus,

our nonradiating source is restricted to the set

S = {(r, θ) : a ≤ r ≤ b and φ ≤ θ ≤ ψ} . (2.5)

From Theorem 2.2.1, in order for Q(r, t) to be a nonradiating source, the field U(r, t)

must satisfy a pair of boundary conditions. Namely, for a nonradiating source re-

stricted to a region S, u(r, ω) must satisfy the boundary conditions

u(r, ω) = ∂nu(r, ω) = 0 for all r ∈ ∂S. (2.6)

Thus, from Theorem 2.2.1, u(r, ω) must satisfy the boundary conditions

u(a, θ, ω) = u(b, θ, ω) = 0, ur(a, θ, ω) = ur(b, θ, ω) = 0, (2.7)

u(r, φ, ω) = u(r, ψ, ω) = 0, uθ(r, φ, ω) = uθ(r, ψ, ω) = 0. (2.8)

One way to create a u(r, ω) that satisfies our boundary conditions is to make u(r, ω)
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the product of two functions. Thus, we start off with u(r) = v(r)w(θ). Thus,

v(r) =

 cm(r −K)m + cm+2(r −K)m+2 + cm+4(r −K)m+4 r ∈ [a, b]

0 otherwise,
(2.9)

where m ∈ N0, where K = (a+ b)/2, and where

cm = cm+4
(a− b)4

16
, cm+2 = −cm+4

(a− b)2

2
, cm+4 = 1. (2.10)

v satisfies the boundary conditions

v(a) = v(b) = 0, v′(a) = v′(b) = 0, (2.11)

where the primes indicate derivatives with respect to r. In our calculations, we take

m = 0, 2. And similarly,

w(θ) =

 dn(θ −H)n + dn+2(θ −H)n+2 + dn+4(θ −H)n+4 θ ∈ [φ, ψ]

0 otherwise,
(2.12)

where n ∈ N0, where H = (φ+ ψ)/2, and where

dn = dn+4
(φ− ψ)4

16
, dn+2 = −dn+4

(φ− ψ)2

2
, dn+4 = 1. (2.13)

And w satisfies the boundary conditions

w(φ) = w(ψ) = 0, w′(φ) = w′(ψ) = 0, (2.14)

where the primes indicate derivatives with respect to θ. In our calculations, we take

n = 0, 2. The inspiration for these two functions v(r) and w(θ) comes from [66].

Taking the Fourier series of w(θ), we get

wF (θ) =
∞∑

p=−∞

(
1

2π

∫ ψ

φ

w(θ′)e−ipθ
′
dθ′
)
eipθ. (2.15)

Now, to have a nonradiating source that orbits, we need to make wF (θ) a function of
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both θ and t. Thus, replacing θ with θ − ω0t in the equation above, we get

wTF (θ, t) =
∞∑

p=−∞

(
1

2π

∫ ψ

φ

w(θ′)e−ipθ
′
dθ′
)
eip(θ−ω0t)

=
∞∑

p=−∞

[(
1

2π

∫ ψ

φ

w(θ′)e−ipθ
′
dθ′
)
eipθ
]
e−ipω0t,

(2.16)

the time-dependent Fourier series of w(θ). Thus, we have our field U(r, t) = v(r)wTF (θ, t).

It orbits the center of our annulus at an angular frequency ω0 with a period T = 2π/ω0.

We have that

U(r, t) = v(r)wTF (θ, t)

=
∞∑

p=−∞

[
v(r)

(
1

2π

∫ ψ

φ

w(θ′)e−ipθ
′
dθ′
)
eipθ
]
e−ipω0t

=
∞∑

p=−∞

u(r, pω0)e−ipω0t.

(2.17)

Thus, our field U(r, t) is a multifrequency field with frequencies pω0, where p ∈ Z; our

field U(r, t) is the sum of many monochromatic fields of the form u(r, ω)e−iωt. Every

term of our summation in (2.17) satisfies the boundary conditions needed for us to

have a nonradiating source. And when we put U(r, t) through the wave equation, we

get our nonradiating source Q(r, t).

2.4 Examples and Observations

Here, we consider a few examples. Now, in all of our examples, except where

otherwise stated, c = 1.5 × 1010 cm s−1, a = 2 cm and b = 3 cm, and m = 0, 2 and

n = 0, 2. Now, when our nonradiating source moves about our annulus, we want it

to have a speed v = c/1000 at the outer edge of our annulus. The circumference of

our annulus is C = 2πb. Therefore, our angular frequency is

ω0 =
c

1000b
. (2.18)

With b = 3 cm, our angular frequency usually amounts to 5× 106 rad s−1.
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In our simulations, we first analytically calculate the fields U(r, t) = v(r)<[wTF (θ, t)].

The function wTF (θ, t) is complex-valued. So we need to take the real part of wTF (θ, t)

to make U(r, t) real-valued. The wave equation in polar coordinates is

Q(r, t) = − 1

4π

[
wvTFrr +

1

r
vrw

TF +
1

r2
vwTFθθ −

1

c2
vwTFtt

]
. (2.19)

We put our field U(r, t) through our wave equation to get our nonradiating source

Q(r, t). Thus, we get the graphs in Figures 2.1 and 2.2.

Figure 2.1: Two fields U(r, t). In (a), we have m = n = 0 and t = 0. In (b), we
have m = 2, n = 0, and t = T/4, where T is our period. In both figures φ = 0 and
ψ = π/2.

To confirm that our functions Q(r, t) are, in fact, nonradiating sources, we can

calculate u(r, ω) from q(r, ω), frequency by frequency, using a Green’s formula

u(r, ω) =

∫
D

q(r′, ω)G(|r− r′|, ω) d2r′, (2.20)

where D is the domain of integration and

G(|r− r′|, ω) = iπH
(1)
0 (k|r− r′|), (2.21)

where H(1)
0 is the Hankel function of the first kind.

When p = 0, we get G(|r−r′|, 0) = −2 ln(|r−r′|), the Green’s function for Poisson’s



16

Figure 2.2: Two nonradiating sources Q(r, t). Figures (a) and (b) correspond with
(a) and (b) of Figure 2.1.

equation, which blows up whenever |r − r′| = 0. Thus, to compute u(r, 0), we use a

Fourier transform approach. Thus,

u(r, 0) = 4π

∫
D

q̃(K, 0)

K2 + iε
eiK·rd2K. (2.22)

This comes from the direct Fourier transform of the Poisson equation. ε is a small

(∼ 10−6) regularization parameter. The Fourier transform of q and the inverse Fourier

transform can be done with fast Fourier transforms. Altogether,

U(r, t) = 4π

∫
D

q̃(K, 0)

K2 + iε
eiK·rd2K

+
∑
p6=0

e−ipω0t

∫
D

q(r′, pω0)G(|r− r′|, pω0) d2r′.
(2.23)

We calculate this version of U(r, t) numerically. In Figure 2.3, using equation (2.23)

with the domain of integration D = [−4, 4] × [−4, 4], we reconstruct the U(r, t) of

Figure 2.1b.

Finally, since U(r, t) only has to satisfy certain boundary conditions (which do not

depend on the physical size of the system) for Q(r, t) to be nonradiating, we can have

our nonradiating source be as large or as small as we want, as Figure 2.4 illustrates.
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Figure 2.3: U(r, t) at t = T/4 reconstructed using the Green’s formulas and the
Fourier transform. Our graph here agrees very well with the graph of Figure 2.1b.

Figure 2.4: In (a) and (b), we have m = 2, a = 30 cm, b = 35 cm, φ = 0, ψ = π/4,
and t = 0. In (c) and (d), we havem = 0, n = 2, a = 1 cm, b = 9 cm, φ = 0, ψ = π/4,
and t = 0. The left column represents fields and the right column represents sources.
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2.5 Nonradiating Orbital Motions and Surface Waves

Up to this point, there have been very few experimental demonstrations of non-

radiating sources. Nonradiating anapoles are one sort of nonradiating source where

the fields of an electric dipole and a toroidal dipole destructively interfere. There

have been some experiments done with nonradiating anapoles, as outlined in [24]

and [64]. But these nonradiating anapoles are not the same kind of nonradiating

sources described in our paper. What we would like to see is if it is possible to create

an experimental demonstration that results in the same sort of nonradiating sources

described in our paper.

Since we are concerned with two-dimensional nonradiating sources, we could use

surface waves, like surface plasmons, to demonstrate nonradiating sources. In the

Otto or Kretschmann configuration, an evanescent wave is used to excite a metal

surface, producing propagating surface plasmons. We could have a structured beam

of light that matches one of our nonradiating sources to generate an evanescent spot

on a metal surface. Our structured light beam would be a nonradiating source if the

surface plasmons stay in the area that is being excited by the structured light beam.

And our structured light beam would be an orbiting nonradiating source if we also

move it across the surface in a circle over and over.

Let ωc be the carrier frequency of our structured beam of light. Then the field

resulting from our nonradiating source can be written as

U(r, t) = U0(r, t) cos(ωct), (2.24)

where U0(r, t) is a field of the kind of nonradiating source previously described that

orbits with a frequency of ω0. When we substitute equation (2.24) into equation
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(2.19), we get

Q(r, t) = Q0(r, t) cos(ωct)−
1

4π

ω2
c

c2
U0(r, t) cos(ωct)

+
1

4π

2ωc
c2
∂tU0(r, t) sin(ωct),

(2.25)

where Q0(r, t) is the result of putting U0(r, t) through the wave equation. And we

consider two simulations, one with a carrier frequency of ωc = 600× 106 rad s−1 and

one with ωc = 600× 1012 rad s−1. In both cases, we have m = n = 2.

For the low frequency case with ωc = 600 × 106 rad s−1, our carrier frequency is

comparable to the orbital frequency ω0 = 5 × 106 rad s−1. In our simulation, we

plot the square of our field I(r, t) = |U(r, t)|2 and the square of our source P (r, t) =

|Q(r, t)|2 at t = 0. In our simulation, we find that the last two terms of equation

(2.25) contribute very little to Q(r, t), which indicates that we could just have

Q(r, t) ≈ Q0(r, t) cos(ωct). (2.26)

Thus, in our low frequency case, as our field and source go about the center of our

annulus, they flash on and off. Figure 2.5 shows the results of our low frequency case.

Figure 2.5: The results of our low frequency simulation. In (a) we have the plot of
the square of our field I(r, t), and in (b) we have the plot of the square of our source
P (r, t).
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For the high frequency case with ωc = 600× 1012 rad s−1, our carrier frequency is

about in the range of visible light. Since experiments will only measure the average

over many cycles of the carrier frequency, in this simulation, we calculate the cycle

averages of U(r, t) and Q(r, t). For a period of T = 2π/ωc and two functions A(t)

and B(t), the cycle average of A(t) and B(t) is

〈A(t)B(t)〉 =
1

T

∫ T

0

A(t)B(t) dt. (2.27)

Thus, we calculate and plot the cycle averages

〈I(r, t)〉 = 〈|U(r, t)|2〉

=
1

T

∫ T

0

|U(r, t)|2 dt

=
1

T
|U0(r, t)|2

∫ T

0

cos2(ωct) dt

=
1

2
|U0(r, t)|2,

(2.28)

and

〈P (r, t)〉 = 〈|Q(r, t)|2〉

=
1

T

∫ T

0

|Q(r, t)|2 dt

=
1

T

∫ T

0

(
Q0(r, t) cos(ωct)−

1

4π

ω2
c

c2
U0(r, t) cos(ωct)

+
1

4π

2ωc
c2
∂tU0(r, t) sin(ωct)

)2

dt

=
1

2

[
Q0(r, t)− 1

4π

ω2
c

c2
U0(r, t)

]2

+
1

2

[
1

4π

2ωc
c2
∂tU0(r, t)

]2

.

(2.29)

And in Figure 2.6, we see the results of our high frequency simulation.
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Figure 2.6: The results of our high frequency simulation. In (a) we have the plot of
〈I(r, t)〉, and in (b) we have the plot of 〈P (r, t)〉.

2.6 Conclusions

Thus, we have shown in this chapter how it is at least theoretically possible to

construct nonradiating sources in 2D that can orbit, and that we can make these

nonradiating sources to be of whatever shape and size we want them to be.



CHAPTER 3: CONSTRUCTION OF OBJECTS INVISIBLE FROM MULTIPLE

DIRECTIONS

According to [88], it is impossible to create an object that is totally invisible from

every direction, even in theory. However, it is at least theoretically possible to create

objects that are invisible from a finite number of directions, and that is what we do

in this chapter. The principal result of this chapter is that, the more directions of

invisibility our objects have, the less power their scattered fields are able to radiate.

Thus, we can create objects that are at least practically invisible from every direction.

3.1 Introduction

The inspiration for the material of this chapter comes from three papers: A. J.

Devaney’s 1978 paper [21], Emil Wolf and Tarek Habashy’s 1993 paper [88], and

Gregory Gbur’s 2015 paper [29].

In [21], Devaney defines the inverse scattering problem as consisting of “determining

the functional form of a scattering potential given the scattering matrix A(k0s, k0s0)

for all directions s and one or more values of the wave vector k0s0.” He shows in his

paper, among other things, that the inverse scattering problem defined in this way

does not have a unique solution within the framework of the first Born approximation.

In his paper, he shows how to construct scattering potentials for objects invisible from

one or more directions. These scattering potentials are of the form

F (r) = −(∇2 + 2ik0s0 · ∇)φ(r), (3.1)

where s0 is a unit vector, where k0 is a wave number, and where φ(r) is a contin-

uous function of r with continuous first partial derivatives. Objects with scattering
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potentials like in equation (3.1) are invisible going along the direction of s0. Thus,

if, for a unit vector s, a plane wave exp(ik0s · r) is incident upon our object along a

direction of invisibility s0, the wave will not be scattered. Devaney went on to say

that a scattering potential F ′(r) for an object invisible from the directions k0s0 and

k′0s′0 could be created if we have

F ′(r) = (∇2 + 2ik′0s
′
0 · ∇)(∇2 + 2ik0s0 · ∇)φ(r). (3.2)

Thus, to construct an object invisible from the directions of the unit vectors s1, . . . , sN ,

we can have a scattering potential of the form

F (r) = (∇2 + 2ik0sN · ∇) · · · (∇2 + 2ik0s2 · ∇)(∇2 + 2ik0s1 · ∇)φ(r). (3.3)

Building on Devaney’s work in [21], Habashy and Wolf show in [88] that the inverse

scattering problem has a unique solution if measurements are taken from an infinite

number of directions of incidence of the incident wave. However, they also show in

their paper that “within the accuracy of the first-order Born approximation there are

no bodies that are invisible for all directions of incidence,” not even those bodies

whose scattering potentials are of the form shown in equation (3.3).

And in [29], Gbur creates several invisible objects, “directly from the defining wave

equation,” that are invisible in one direction but not others. He gives the exact

scattering potential for such objects, invisible along the direction of the unit vector

ŝ0, which are of the form

F (r) = − 1

4π

∇2Uloc(r) + 2ikŝ0 · ∇Uloc(r)

1 + Uloc(r)
, (3.4)

which bears some resemblance to equation (3.1). In equation (3.4), Uloc(r) is a

complex-valued function satisfying the boundary conditions of Theorem 2.2.1.

Although Devaney demonstrated the possibility of objects invisible from more than

one direction, he never calculated the behavior of his invisible objects in his paper [21],
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and neither did he generate any examples of such objects. In this chapter, using the

results of [21, 29, 88], we create objects that are totally invisible from a finite number

of directions and practically invisible from all other directions. The principal results

of this chapter are the graphs of Figure 3.5, which show that, the more directions of

invisibility an invisible object of ours has, the less power their scattered fields will

radiate when a plane wave is incident upon our invisible object between directions of

invisibility.

3.2 Deriving the Devaney Operator

In this chapter, we refer to the operator of equation (3.1) as the Devaney operator.

In his derivation of the Devaney operator in [21], Devaney started off with the first

Born approximation in 3D. However, the results of this chapter are in 2D. Thus, it

would be good for us, following the steps outlined in [21], and starting off with the

first Born approximation in 2D, to show how the Devaney operator is derived.

Let U(r) be a scalar field, V (r) a scattering potential potential, and k0 a wave

number. Thus, we have

(∇2 + k2
0)U(r) = −4πV (r)U(r). (3.5)

In the case of weak scattering, we approximate U(r) with the first Born approximation

U(r) ≈ Ui(r) +

∫
E

iπH
(1)
0 (k0|r− r′|)V (r′)Ui(r) d

2r′, (3.6)

where E denotes our finite scattering area, and where

Ui(r) = U0 exp(ik0ŝ0 · r) (3.7)

is our plane wave of amplitude U0, where ŝ0 is a unit vector. We have that

H(1)
p (z) ≈

√
2

πz
exp

(
i
(
z − πp

2
− π

4

))
. (3.8)
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Thus,

H
(1)
0 (z) ≈

√
2

πz
exp

(
i
(
z − π

4

))
=

√
2

πz
exp

(
−iπ

4

)
exp (iz) (3.9)

so that

H
(1)
0 (k0|r− r′|) ≈

√
2

πk0|r− r′|
exp

(
−iπ

4

)
exp (ik0|r− r′|)

≈
√

2

πk0r
exp

(
−iπ

4

)
exp (i(k0r − kŝ · r′))

=

√
2

πk0r
exp

(
ik0r −

iπ

4

)
exp(−ik0ŝ · r′)

(3.10)

for the unit vector ŝ. Thus, as k0r →∞, we get from equation (3.6)

U(r) ≈ Ui(r) +

∫
E

√
2

πk0r
exp

(
ik0r −

iπ

4

)
exp(−ik0ŝ · r′)V (r′)Ui(r

′) d2r′

= Ui(r) +

√
2

πk0r
exp

(
ik0r −

iπ

4

)∫
E

V (r′)Ui(r
′) exp(−ik0ŝ · r′) d2r′

= Ui(r) +

√
2

πk0r
exp

(
ik0r −

iπ

4

)
AB(k0ŝ, k0ŝ0),

(3.11)

where

AB(k0ŝ, k0ŝ0) =

∫
E

V (r′)Ui(r
′) exp(−ik0ŝ · r′) d2r′

=

∫
E

V (r′) exp(ik0ŝ0 · r′) exp(−ik0ŝ · r′) d2r′
(3.12)

is our scattering matrix in the Born approximation.

The Fourier transform of our scattering potential V (r) is

Ṽ (k) =

∫
E

V (r) exp(−ik · r) d2r. (3.13)

Thus, from equations (3.12) and (3.13), we get

AB(k0ŝ, k0ŝ0) = Ṽ [k0(ŝ− ŝ0)]. (3.14)

Thus, the scattering matrix determines Ṽ (k) for all k such that

k = k0(ŝ− ŝ0). (3.15)
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In a scattering experiment, or, in the case of this chapter, in our simulations, when

we use an incident plane wave Ui(r) with a fixed wave vector k0ŝ0, the values of k

satisfying equation (3.15) lie on the surface defined by

k · k = k2 = 2k2
0(1− ŝ0 · ŝ). (3.16)

What we want is a scattering potential F (r) that produces a scattering matrix

that vanishes for all ŝ but only one incident wave vector k0ŝ0. The important thing

to remember is that equation (3.14) holds when equation (3.15) holds. So when we

construct a scattering potential F (r) whose Fourier transform F̃ (k) vanishes for all k

such that k = k0(ŝ− ŝ0), we construct a scattering potential whose scattering matrix

vanishes for a fixed k0ŝ0 and for all ŝ.

Thus, we start off with

F̃ (k) = [k2 − 2k2
0(1− ŝ0 · ŝ)]φ̃(k), (3.17)

where ŝ is as in equation (3.15). We choose φ̃(k) so that it has a Fourier transform

φ(r) that is continuous with continuous first partial derivatives and is localized within

E. Thus, with k0ŝ = k + k0ŝ0, equation (3.17) becomes

F̃ (k) = (k2 − 2k2
0(1− ŝ0 · ŝ))φ̃(k)

= (k2 − 2k2
0 + 2k0ŝ0 · k0ŝ)φ̃(k)

= (k2 − 2k2
0 + 2k0ŝ0 · (k + k0ŝ0))φ̃(k)

= (k2 + 2k0ŝ0 · k)φ̃(k).

(3.18)

Thus, taking the inverse Fourier transform of F (r), we get

F (r) =
1

(2π)2

∫
F̃ (k) exp(ik · r) d2k = (∇2 + 2ik0ŝ0 · ∇)φ(r). (3.19)

And thus we have what we refer to in this chapter as the Devaney operator ∇2 +

2ik0ŝ0 · ∇.
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Now, the last thing we need to do is to show that the Devaney operator works the

way we want for it to, that it gives us a scattering matrix that vanishes. First, we

want to substitute F (r) for V (r) in equation (3.12). Thus, we get

AB(k0ŝ, k0ŝ0) = −
∫
E

[(∇2 + 2ik0ŝ0 · ∇)φ(r)] exp(ik0ŝ0 · r) exp(−ik0ŝ · r) d2r. (3.20)

We have that

(∇2 + k2
0)[φ(r) exp(ik0ŝ0 · r)] ≡ exp(ik0ŝ0 · r)[∇2 + 2ik0ŝ0 · ∇]φ(r). (3.21)

Thus, keeping in mind that

(∇2 + k2
0) exp(−ik0ŝ · r) = 0, (3.22)

when we substitute equation (3.21) into equation (3.20), we get

AB(k0ŝ, k0ŝ0) =

∫
E

[exp(ik0ŝ0 · r)(∇2 + 2ik0ŝ0 · ∇)φ(r)] exp(−ik0ŝ · r) d2r

=

∫
E

[(∇2 + k2
0)(φ(r) exp(ik0ŝ0 · r))] exp(−ik0ŝ · r) d2r

=

∫
E

[φ(r) exp(ik0ŝ0 · r)](∇2 + k2
0) exp(−ik0ŝ · r) d2r

= 0.

(3.23)

Thus, our scattering potential F (r) gives us a scattering matrix AB(k0ŝ, k0ŝ0) that

identically equals zero, just as we wanted.

And from this point forward, for a unit vector ŝ and a wave number k, we denote

the Devaney operator as

D[kŝ] = ∇2 + 2ikŝ · ∇. (3.24)

3.3 Constructing Our Invisible Objects and Our Plan to Test Them

Now that we have our Devaney operator, we can use it to create the scattering

potentials of some invisible objects. Let E = {r = (r, θ) ∈ R2 : 0 ≤ r ≤ r0} ⊂ R2

be the area to which our invisible object is confined. Drawing from [29], we want a
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function Uloc : R2 → C such that Uloc(r) = 0 for r ∈ ∂E and r ∈ R2 \ E, and whose

first partial derivatives are continuous on E. Let ŝ1 be a unit vector, and k a wave

number. Thus, the scattering potential

F (r) = D[kŝ1]Uloc(r) (3.25)

will give us an object confined to E that is invisible along the direction of ŝ1. Now,

say we want an object invisible along the directions of the unit vectors ŝ1 and ŝ2, with

wave number k. Then, for this object, we have the scattering potential

F (r) = D[kŝ2]D[kŝ1]Uloc(r), (3.26)

where D[kŝ1]Uloc(r) has first partial derivatives that are continuous on E, and where

Uloc(r) needs to be at least three times continuously differentiable on E since the

operator D[kŝ2]D[kŝ1] has four derivatives. Thus, say we want an object invisible

along the directions of the unit vectors ŝ1, . . . , ŝN . Then we have the scattering

potential

F (r) = D[kŝN ] · · ·D[kŝ2]D[kŝ1]Uloc(r), (3.27)

where D[kŝN−1] · · ·D[kŝ2]D[kŝ1]Uloc(r) has first partial derivatives that are continu-

ous on E, and where Uloc(r) is at least 2N − 1 times continuously differentiable on E

since the operator D[kŝN ] · · ·D[kŝ2]D[kŝ1] has 2N derivatives.

Next, we need Uloc(r) to be such that F (r) is the scattering potential of a nonscat-

tering scatterer. For an object invisible only along the direction of the unit vector

ŝ1, whose scattering potential is equation (3.25), recalling Theorem 2.2.1, we need for

Uloc(r) to satisfy the boundary conditions

Uloc(r) = ∂nUloc(r) = 0 for r ∈ ∂E, (3.28)

where n is the unit normal vector pointing outward from the boundary of E. But

for an object invisible from the N directions of the unit vectors ŝ1, . . . , ŝN , whose
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scattering potential is equation (3.27), we need D[kŝN−1] · · ·D[kŝ2]D[kŝ1]Uloc(r) to

satisfy the boundary conditions of Theorem 2.2.1, which means that we need Uloc(r)

to satisfy the boundary conditions

Uloc(r) = ∂nUloc(r) = ∂2
nUloc(r) = · · · = ∂2N−1

n Uloc(r) = 0 for r ∈ ∂E. (3.29)

We want Uloc(r) defined according to the rule Uloc(r) = v(r) + iv(r), where

v(r) =

 f(r) r ∈ [−r0, r0],

0 otherwise,
(3.30)

where r0 is the radius of our set E. In our simulations, we test for two kinds of

Uloc(r). The first kind of Uloc(r) is m times continuously differentiable, and, taking

inspiration from [66], f(r) is a polynomial of the form

f(r) =
m+1∑
j=0

cn+2jr
n+2j (3.31)

with m + 2 terms, where n ∈ N0. To find the coefficients cn+2j, in our simulations,

we set up and solve a system of equations. Since we want Uloc(r) to be m times con-

tinuously differentiable, we need v(r) to also be m times continuously differentiable.

Thus, we will need v(r) to satisfy

v(±r0) = v′(±r0) = · · · = v(m)(±r0) = 0. (3.32)

Then, setting up our system of equations consisting of m+ 1 equations

f(r0) = 0,

f ′(r0) = 0,

...

f (m)(r0) = 0,

(3.33)

we solve for our coefficients cn, . . . , cn+2m, where the last coefficient cn+2(m+1) is our

free variable, which we put down as cn+2(m+1) = 1. For an object with N directions
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of invisibility, we need m ≥ 2N + 1. And for the second kind of Uloc(r), v(r) is just

simply the infinitely continuously differentiable bump function, defined as

v(r) =

 exp
(

1
(r/r0)2−1

)
r ∈ (−r0, r0),

0 otherwise.
(3.34)

We want to test for the bump function because, since it is infinitely continuously

differentiable, we can use this one function can give us a scattering potential for an

object that is invisible in as many directions as we want.

In our simulations, we test for six different objects whose scattering potentials are

based on a polynomial, and we test for another six objects whose scattering potentials

are based on the bump function. Let R be the region containing the domain E

of our invisible object. Now, the more times we apply the Devaney operator to a

given Uloc(r), the greater its maxr∈R<[F (r)] and maxr∈R=[F (r)] become. In fact,

for a particular Uloc(r), maxr∈R<[F (r)] and maxr∈R=[F (r)] increase by many orders

of magnitude the more we apply the Devaney operator to Uloc(r), and we do not

want this affecting our results. Thus, we want to control for maxr∈R<[F (r)] and

maxr∈R=[F (r)]; that is, we want maxr∈R<[F (r)] and maxr∈R=[F (r)] to be roughly

about the same for all of our objects for a given Uloc(r). Thus, once we compute our

scattering potentials F (r), we then calculate our normalized scattering potentials

Fnorm(r) =
F (r)

‖F (r)‖L1(R)

(3.35)

using the L1 norm

‖F (r)‖L1(R) =

∫
R

|F (r)| d2r. (3.36)

The wave going through our object is of the form

Ui(r) = U0 exp(ikŝ0 · r), (3.37)

where ŝ0 = 〈cos θi, sin θi〉 is a unit vector pointing at the initial angle θi with respect
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to the x-axis, indicating the direction in which our wave propagates. Our scattered

field for our given scattering potential is given by the Green’s formula

Us(r) =

∫
R

iπH
(1)
0 (k|r− r′|)Fnorm(r′)Ui(r

′) d2r′, (3.38)

where H(1)
0 is the Hankel function of the first kind.

Finally, for each of our objects, we want to see how much power their scattered

fields radiate when we change the angle of incidence θi of Ui(r). Thus, for a set

of values of θi from 0◦ to 360◦, we calculate our scattered field Us(r). And then

we calculate the power radiated by our scattered field for a given incident angle θi

according to the formula

P =

∫ 2π

0

r|Us(r, θ′)|2 dθ′ (3.39)

for a fixed value of r. From these calculations, we get the total power P radiated by

our scattered fields as a function of incident angle θi. And along each direction of

invisibility, we should have P = 0.

Our goal is to see if the maximum power radiated by the scattered fields of each of

our objects goes down the more directions of invisibility our objects have.

3.4 Our Simulations and Results

In our numerical experiments, we refer to as our “polynomial objects” those six

objects whose scattering potentials are based on a polynomial, and we refer to as our

“bump function objects” those other six objects whose scattering potentials are based

on the bump function. In our numerical experiments, an object named Object 1 is

invisible from one direction, an object named Object 2 is invisible from two directions,

and so on so that an object named Object 6 is invisible from six directions.

The first thing we want to do for every object we test is do define our constants.

In all of our experiments, we have U0 = 1, we have the radius of our scatterer to be

r0 = 1, we have our wavelength to be λ = 1, and we have our wave number to be
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k = 2π/λ. And we define all of our functions on the region R = [−2, 2]× [−2, 2]. For

the scattering potentials based on polynomials, we have n = 0, and we let m = 11

be the number of times continuously differentiable we want our Uloc(r) to be. But

for our scattering potentials based on the bump function, there is no need to define

a number of times we want Uloc(r) to be continuously differentiable as the bump

function is infinitely many times continuously differentiable. We have one Uloc(r) for

all six of our polynomial objects and another Uloc(r) for all six of our bump function

objects.

Next, for each of our objects, we want to define our directions of invisibility. Object

1 in both the polynomial and bump function cases is invisible only from the direction

θ = 0◦, or in the direction of the unit vector ŝ1 = 〈1, 0〉. For the rest of the Objects 2

through 6, their directions of invisibility are evenly spaced so that the angle between

directions of invisibility is 360◦/N , where N denotes the number of directions from

which a particular object is invisible. All of our objects are invisible from θ = 0◦.

Next, for each of our objects, we want to create a scattering potential. First, we

compute v(r). For the Uloc(r) based on a polynomial, we take our values r0, n, and

m and construct our system of equations (3.33) and solve it to find the coefficients

of a polynomial suitable to be the f(r) in our v(r). But for our Uloc(r) based on

the bump function, we just to define v(r) according to equation (3.34). Once we

have our Uloc(r), we apply the Devaney operator to it once for every direction our

object is supposed to be invisible to give us our scattering potential F (r), according to

equation (3.27). It should be noted that the gradients and Laplacians in our Devaney

operators are numerically calculated in our experiments using MATLAB’s grad and

del2 functions, respectively.

And for each of our objects, once we have their scattering potentials, we normalize

them according to equation (3.35) to get their corresponding Fnorm(r)’s. Figure 3.1

shows the graphs of the real and imaginary parts of the normalized scattering po-
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tentials for our odd numbered polynomial objects. And Figure 3.2 shows the graphs

of the real and imaginary parts of the normalized scattering potentials for our odd

numbered bump function objects. The red circles in these two figures, and in all of

the rest of the figures of this chapter in which they appear, indicate ∂E, the bound-

aries of our invisible objects. What we can see from Figures 3.1 and 3.2 is that the

<[Fnorm(r)]’s and their corresponding =[Fnorm(r)]’s are mirror images of each other.

Figure 3.1: The graphs of <[Fnorm(r)] and =[Fnorm(r)] of the scattering potentials of
our odd numbered polynomial objects. The top row is for real parts and the bottom
row is for imaginary parts. The grainy rings we see around the edges of our objects
are artifacts due to computational error. Our scattering potentials are symmetrical
along the same directions that our objects are invisible.

Next, for each of our objects, and for each of the initial angles θ = 0◦, 5◦, . . . , 360◦,

we calculate our scattered field Us(r) using the Green’s formula given in equation

(3.38). The total power radiated for each scattered field is given by equation (3.39).

Thus, for every initial angle θ = 0◦, 5◦, . . . 360◦, we calculate P at r = 2 and get

P (θ), the total power radiated as a function of initial angle θ. Figure 3.3 shows the
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Figure 3.2: The graphs of <[Fnorm(r)] and =[Fnorm(r)] for the scattering potentials of
our odd numbered bump function objects. Again, the top row is for the <[Fnorm(r)]’s
and the bottom row is for the =[Fnorm(r)]’s.

graphs of P (θ) for each of our six polynomial objects. Now, due to computational

error, for Objects 4, 5, and 6, we can see that the troughs of our graphs are not

quite at zero like they should be considering that these troughs indicate directions of

invisibility. And Figure 3.4 shows similar graphs for our bump function objects. And

we have a similar issue with these graphs due to computational error as we do with

our polynomial objects in Figure 3.3.

Having our functions P (θ) for all of our objects, we determine the maximum value

of each P (θ) and get Pmax(N), which is the maximum power radiated by our scattered

fields as a function of N , the number of directions of invisibility. Figure 3.5 shows

the graphs of Pmax(N) for our polynomial objects and the graph of Pmax(N) for our

bump function objects. Our graphs in Figure 3.5 show that, the more directions of

invisibility our objects have, the less power their scattered fields radiate when our

plane wave Ui approaches our object between directions of invisibility. This effect is
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Figure 3.3: P (θ) for each of our six polynomial objects.

Figure 3.4: P (θ) for each of our six bump function objects.

even more pronounced for our bump function objects than it is for our polynomial

objects.

Figure 3.6 demonstrates how our objects can be invisible in some directions but

not in others. Figure 3.6 shows for Object 3 of the polynomial objects the real part
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Figure 3.5: The graph of Pmax(N) against N for all six of our objects. The graph
on the left is for the polynomial objects, and the graph on the right is for the bump
function objects. Note how for both the polynomial objects and the bump function
objects Pmax(N) decreases as N increases.

of the total field U(r) = Ui(r) + Us(r) with Ui(r) going in two different directions.

Figure 3.6: Plots of the real part of the total field U(r) = Ui(r)+Us(r) for Object 3 of
the polynomial objects. Here, we have Ui(r) going through Object 3 of the polynomial
objects from two different angles. On the left, we have Ui(r) going through Object 3
with an initial angle of θ = 0◦, which is along one of its directions of invisibility. Note
how the waves pass clean through. On the right, we have Ui(r) going through Object
3 with an initial angle of θ = 45◦, which is not along one of Object 3’s directions of
invisibility. Note how scattered our wave is.

And finally, Figure 3.7 shows |Us(r)|2 for all six of our polynomial with our incident

wave Ui(r) going along with an incident angle of θ = 0◦, and Figure 3.8 shows the
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same thing but with all six of our bump function objects.

Figure 3.7: The graphs of |Us(r)|2 for all six of our polynomial objects. With all six
of our objects, the incident angle of our wave Ui(r) is θ = 0◦.

3.5 Conclusions

Thus, from our simulations and our data, we can make several conclusions: We

can use the Devaney operator to create objects invisible from one or more directions.

When a wave is incident from a direction different from one of our invisible object’s

directions of invisibility, the power radiated by that object’s scattered field decreases

the more directions of invisibility our object has. Thus, if we want to make an object

that is practically invisible, we do not need for it to be invisible from every direction.

Instead it would suffice for our object to be invisible from only a few directions. For

one of our polynomial objects, it would be enough to make it invisible from four

or five directions. And for a bump function object, two directions of invisibility is

enough.

So, as potential follow-ups to this work, we can also see what happens when we use
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Figure 3.8: The graphs of |Us(r)|2 for all six of our bump function objects. With all
six of our objects, the incident angle of our wave Ui(r) is θ = 0◦.

non-weak scatterers, or scatterers beyond the Born approximation, or what happens

when F (r) is real-valued.



CHAPTER 4: A CARLEMAN-PICARD APPROACH FOR RECONSTRUCTING

ZERO-ORDER COEFFICIENTS IN PARABOLIC EQUATIONS WITH LIMITED

DATA

The content of this chapter is reproduced from [4] with permission from the au-

thors/publisher.

We propose a globally convergent computational technique for the nonlinear inverse

problem of reconstructing the zero-order coefficient in a parabolic equation using

partial boundary data. This technique is called the “reduced dimensional method.”

Initially, we use the polynomial-exponential basis to approximate the inverse problem

as a system of 1D nonlinear equations. We then employ a Picard iteration based on

the quasi-reversibility method and a Carleman weight function. We will rigorously

prove that the sequence derived from this iteration converges to the accurate solution

for that 1D system without requesting a good initial guess of the true solution. The

key tool for the proof is a Carleman estimate. We will also show some numerical

examples.

4.1 Introduction

Let d ≥ 2 be the spatial dimension. We aim to solve a coefficient inverse problem

for the following initial value problem ut(x, t) = ∆u(x, t) + c(x)u(x, t) (x, t) ∈ Rd × (0,∞),

u(x, 0) = p(x) x ∈ Rd.
(4.1)

More precisely, we propose a globally convergent method to solve the following inverse

problem.
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Problem 4.1.1. Let R and T be two positive numbers. Define Ω = (−R,R)d, and

Γ = {x = (x′, z) : x′ = (x1, . . . , xd−1), |xi| < R, i = 1, . . . , d− 1, z = ±R} ⊂ ∂Ω.

(4.2)

Assume that |p| > 0 in Ω. Given the boundary measurements

f(x, t) = u(x, t) and g(x, t) = uz(x, t) (4.3)

for all (x, t) ∈ Γ× (0, T ), compute the coefficient c(x), for x ∈ Ω.

Problem 4.1.1 boasts countless real-world applications. Consider a scenario where

the internal points of the medium Ω remain inaccessible. By recording partial bound-

ary data of the function u, specifically the heat and heat flux, over a designated time

frame and by resolving Problem 4.1.1, one can identify the coefficient c(x), x ∈ Ω.

This allows the medium to be examined without causing any damage to it. An impor-

tant example can be drawn from bioheat transfer, where the coefficient c(x) signifies

blood perfusion. Understanding this coefficient is vital for determining the tempera-

ture of blood coursing through tissue, as highlighted in [17]. However, the uniqueness

of Problem 4.1.1, especially when data collection is limited to a specific subset of

∂Ω, remains an open area and is explored within the reduced dimensional frame-

work. Variations of Problem 4.1.1, with some internal data assumed to be known,

have been addressed in [8, 15, 78]. Additionally, the uniqueness can be found in [37]

when provided with the Dirichlet to Neuman map. This chapter assumes the unique-

ness of Problem 4.1.1. Another topic of interest is the inverse challenge of retrieving

other coefficients, such as diffusion or initial conditions, based on the final time mea-

surements or boundary measurements for parabolic equations. This is an intriguing

and critical issue, with theoretical findings and computational methods elaborated in

[1, 52, 55, 57, 61, 68, 79, 87].

Inverse problems of computing the coefficients for parabolic equations have been ex-
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tensively explored. To the authors’ knowledge, the widely-used technique for resolving

such issues is the optimal control approach; see the important works [11, 16, 17, 41, 89]

and other cited references. The researchers in [11] employed the optimal control

method with a preconditioner to achieve high-quality numerical calculations of ther-

mal conductivity. However, a significant limitation of this technique is the necessity

for a reliable initial estimation of the true solution, which is not consistently accessi-

ble. We would like to particularly highlight the convexification method, as described

in [6, 47, 50, 54]. This approach addresses the challenge of obtaining an initial guess.

The studies in [6, 47, 50, 54] suggested to minimize some Carleman weighted strictly

convex functionals. When minimized, the minimizers of these functionals produce

the solution to the problem at hand. Other worthy mentions are [70] and [75], which

respectively present alternative approaches to address Problem 4.1.1 by iteratively

solving a Picard-like approximation and its linearization. The approaches above con-

sider the full boundary observation. Unlike this, our contribution is introducing a

fresh technique that does not rely on prior insights into the actual coefficient and

requests only partial observation.

Our approach to addressing Problem 4.1.1 is split into two phases. In the ini-

tial phase, drawing inspiration from [70, 75], we eliminate the unknown coefficient

c(x) from (4.1). By this, we obtain a partial differential equation. The equation

that emerges from this phase is a complicated one, which involves both nonlocal

and nonlinear terms. On the other hand, the boundary condition of the solution

is only provided on Γ ( ∂Ω. As of now, there is no established numerical method

to address it. During the subsequent phase, we transform this equation into a sys-

tem of nonlinear ordinary differential equations. This transformation is guided by

truncating the Fourier series with respect to a special basis introduced in paper [74].

This basis is named the polynomial-exponential basis. It is the high-dimensional ver-

sion of the 1D polynomial-exponential basis originally introduced in [48]. We then
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deploy a predictor-corrector strategy to solve this nonlinear system. Within this

framework, the preliminary approximation of the true solution is derived without

any prior understanding. Subsequently, the resolution to Problem 4.1.1 is achieved.

The corrector stage in this procedure is executed using the quasi-reversibility method

and a Carleman weight function. The quasi-reversibility method was first intro-

duced by Lattès and Lions in [53] for numerical solutions of ill-posed problems for

partial differential equations. It has been studied intensively since then, see e.g.,

[7, 12, 13, 14, 18, 20, 39, 51, 45, 69, 73]. A survey on this method can be found in

[46]. A question arises immediately whether or not the iteration led by the predictor-

corrector procedure above converges. We will rigorously prove this important result.

The proof is motivated by the one in [55, 57, 71]. However, its advantage is that we

can relax a technical condition in those papers about the smoothness of the noise.

That means the noise model in this chapter is more realistic than in the earlier pub-

lications.

This chapter is organized as follows. In Section 4.2, we introduce our approximation

dimensional model that leads to the dimensional reduction approach. In Section 4.3,

we establish a 1D Carleman estimate. Section 4.4 is for the algorithm and the proof

of its convergence. In Section 4.5, we present our numerical study. Section 4.6 is for

concluding remarks.

4.2 The Reduced Dimension Model

Define

v(x, t) = ut(x, t) for all (x, t) ∈ Ω× (0, T ). (4.4)

Then, by differentiating both sides of the differential equation in (4.1) with respect

to t, we obtain

vt(x, t) = ∆v(x, t) + c(x)v(x, t) for all (x, t) ∈ Ω× (0, T ). (4.5)
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Since u(x, 0) = p(x), we have

v(x, 0) = ut(x, 0) = ∆u(x, 0) + c(x)u(x, 0) = ∆p(x) + c(x)p(x) for all x ∈ Ω. (4.6)

Recall the assumption that |p(x)| > 0 for x ∈ Ω. Due to (4.6)

c(x) =
v(x, 0)−∆p(x)

p(x)
for all x ∈ Ω. (4.7)

Plugging c(x), computed in (4.7), into (4.5) gives

vt(x, t) = ∆v(x, t) +
v(x, 0)−∆p(x)

p(x)
v(x, t) for all (x, t) ∈ Ω× (0, T ). (4.8)

Equation (4.8) is nonlinear and nonlocal. A theory to solve it is not yet available. We

propose the following dimensional reduction approach to solve it in an approximation

context.

Remark 4.2.1. The change of variable in (4.4) and the elimination of c to derive

equation (4.8) were adopted in [70, 75].

For each n ∈ N, define φn(t) = tn−1et for all t ∈ (0, T ) and Φn(x) = xn−1ex for all

x ∈ (−R,R). The sets {φn}n≥1 and {Φn}n≥1 are complete in L2(0, T ) and L2(−R,R)

respectively. Applying the Gram-Schmidt orthonormalization process on these two

sets, we obtain orthonormal bases {ψn} and {Ψn} of L2(0, T ) and L2(−R,R), respec-

tively. For each multi-index n = (n1, . . . , nd−1, nt) ∈ Nd, define the d-dimensional

tensor-valued function Pn as

Pn(x′, t) = Ψn1(x1) . . .Ψnd−1
(xd−1)ψnt(t)

for all x′ = (x1, . . . , xd−1) ∈ (−R,R)d−1, t ∈ (0, T ). It is obvious that the set {Pn :

n ∈ Nd} is an orthonormal basis of the space L2(Ω′× (0, T )). We name this basis the

polynomial-exponential basis. The 1D version of the polynomial-exponential basis

was introduced in [48], and the higher dimension version was defined in [74].

Remark 4.2.2. The one-dimensional version of the polynomial-exponential basis was
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employed to solve a list of inverse problems, including nonlinear inverse problems

with simulated and experimental data [42, 43, 44, 56, 58, 70, 75] and linear inverse

problems [59, 72, 75, 85].

From now on, for all x ∈ Ω we write x = (x′, z) ∈ Ω′ × R, where x′ ∈ Ω′ :=

(−R,R)d−1 consists of the first d−1 coordinates and z ∈ (−R,R) is the last coordinate

of x. Then, by expanding the function v(x′, z, t) using the basis
{
Pn : n ∈ Nd

}
, we

can approximate the function v(x′, z, t) as follows

v(x′, z, t) =
∑
n∈Nd

vn(z)Pn(x′, t) '
∑
n5N

vn(z)Pn(x′, t)

=

N1∑
n1=1

· · ·
Nd−1∑
nd−1=1

Nt∑
nt=1

v(n1,...,nd−1,nt)(z)Ψn1(x1) . . .Ψnd−1
(xd−1)ψnt(t)

(4.9)

for (x′, z, t) ∈ Ω′×(−R,R)×(0, T ), where N = (N1, . . . , Nd−1, Nt) represents a cut-off

vector and

vn(z) =

∫
Ω′×(0,T )

v(x′, z, t)Pn(x′, t)dx′dt. (4.10)

The values of the cut-off numbers N1, . . . , Nd−1, and Nt will be chosen based on

the given data in (4.3). See Section 4.5.2 and Figure 4.1 for an illustration of a

suitable choice of these numbers. In (4.9) and hereafter, we understand n 5 N by

the statement that

n = (n1, . . . , nd−1, nt) 5 N = (N1, . . . , Nd−1, Nt)

is equivalent to

1 ≤ n1 ≤ N1, . . . , 1 ≤ nd−1 ≤ Nd−1, and 1 ≤ nt ≤ Nt.

(4.11)
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We assume that the approximation (4.9) is valid. Plugging (4.9) into (4.8) gives∑
n5N

vn(z)
∂Pn(x′, t)

∂t

=
∑
n5N

v′′n(z)Pn(x′, t) +
∑
n5N

vn(z)∆x′Pn(x′, t)

+
1

p(x)

(∑
n5N

vn(z)Pn(x′, 0)−∆p(x)
)∑

n5N

vn(z)Pn(x′, t)

(4.12)

for all (x′, z, t) ∈ Ω′ × (−R,R) × (0, T ). For each multi-index m 5 N, we multiply

Pm(x′, t) to both sides of (4.12), and then integrate the resulting equation over Ω′ ×

(0, T ) to get ∑
n5N

vn(z)

∫
Ω′×(0,T )

∂Pn(x′, t)

∂t
Pm(x′, t)dx′dt

=
∑
n5N

v′′n(z)

∫
Ω′×(0,T )

Pn(x′, t)Pm(x′, t)dx′dt

+
∑
n5N

vn(z)

∫
Ω′×(0,T )

∆x′Pn(x′, t)Pm(x′, t)dx′dt

+
1

p(x)

(∑
n5N

vn(z)Pn(x′, 0)−∆p(x)
)

×
∫

Ω′×(0,T )

∑
n5N

vn(z)Pn(x′, t)Pm(x′, t)dx′dt

(4.13)

for all z ∈ (−R,R). Defining

smn = −
∫

Ω′×(0,T )

∂Pn(x′, t)

∂t
Pm(x′, t)dx′dt+

∫
Ω′×(0,T )

∆x′Pn(x′, t)Pm(x′, t)dx′dt

and

Fm([vn(z)]n5N) =
1

p(x)

(∑
n5N

vn(z)Pn(x′, 0)−∆p(x)
)
vm(z), (4.14)

we obtain from (4.13) that

v′′m(z) +
∑
n5N

smnvn(z) + Fm([vn(z)]n5N) = 0 (4.15)

for all z ∈ (−R,R) and for all m 5 N, see (4.11) for the definition of 5. Coupling
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all equations (4.15) for m 5 N forms a system second-order ordinary differential

equations for the d-dimensional valued tensor v(z) = [vn(z)]n5N, z ∈ (−R,R). The

Cauchy boundary conditions for the tensor v can be derived from (4.3), (4.4), and

(4.10), read as

v(±R) = [vn(±R)]n5N =
[ ∫

Ω′×(0,T )

ft(x
′,±R, t)Pn(x′, t)dt

]
n5N

(4.16)

and

v′(±R) = [v′n(±R)]n5N =
[ ∫

Ω′×(0,T )

gt(x
′,±R, t)Pn(x′, t)dt

]
n5N

. (4.17)

Combining (4.15), (4.16), and (4.17), we obtain a system of Cauchy problems for

v = [vn(z)]n5N
v′′m(z) +

∑
n5N smnvn(z) + Fm(v) = 0 z ∈ (−R,R),

vm(z) = Pm(z) z = ±R,

v′m(z) = Qm(z) z = ±R,

for m 5 N, (4.18)

where

Pm(z) =

∫
Ω′×(0,T )

ft(x
′, z, t)Pm(x′, t)dx′dt, (4.19)

Qm(z) =

∫
Ω′×(0,T )

gt(x
′, z, t)Pm(x′, t)dx′dt. (4.20)

Introduce the “tensor multiplication” operator

S :: v =
[∑
n5N

smnvn
]
m5N

and the notations

F(v) = [Fm(v)]m5N,

P(z) = [Pm(z)]m5N, z = ±R,

Q(z) = [Qm(z)]m5N, z = ±R.
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We shorten the coupling system in (4.18) as
v′′(z) + S :: v(z) + F(v(z)) = 0 z ∈ (−R,R),

v(z) = P(z) z = ±R,

v′(z) = Q(z) z = ±R.

(4.21)

Remark 4.2.3. Computing the values of v and v′ at z = ±R in (4.16), (4.17), and

(4.21) requires us to differentiate the given data f and g with respect to the time t.

This task is not trivial, especially when the data are corrupted by noise. We employ the

new differentiating technique in [74], in which we approximate the data by eliminating

their high-frequency terms from the Fourier expansion of the given data with respect

to the polynomial-exponential basis before differentiating. It was numerically shown

in [74] that computing derivatives using this new technique is more accurate than

the conventional ones; say the finite difference, the cubic spline, and the Tikhonov

optimization methods.

Remark 4.2.4. The first key point of our dimension reduction approach lies in the

derivation of the approximation model (4.21), a system of first-order ODEs along the

z−axis. The approximation model (4.21) involves

|N| = |(N1, . . . , Nd−1, Nt)| = Nt

d−1∏
i=1

Ni (4.22)

equations versus the same numbers of unknown entries of v = [vm]m5N. This al-

lows for the computation of the tensor-valued function v(z) for z ∈ (−R,R), and

subsequently the function v(x′, z, t) for all (x′, z, t) ∈ Ω′ × (−R,R) × (0, T ). The

solution c(x), x ∈ Ω, to Problem 4.1.1 can be computed via the knowledge of v and

the reconstruction formula (4.7). However, this convenience comes with a trade-off.

The truncation in (4.8) makes system (4.21) not exact. It should be considered as an

approximation context for Problem 4.1.1. Studying the behavior of (4.21) when all

cut-off numbers N2, . . . , Nd, Nt tend towards ∞ presents a significant challenge. We
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do not cover this complex topic, which prioritizes computational aspects. In exchange,

we will show that our dimension reduction method is acceptable in numerics. It can

quickly deliver reliable solutions since we have transferred a high dimensional problem

into a problem along the z−axis, which is a 1D problem.

As noted in Remark 4.2.4, once the system of ODEs in (4.21) with Cauchy boundary

data is solved, the computed solution to Problem 4.1.1 follows. However, this task

is challenging since (4.21) is nonlinear. There are several methods to solve nonlinear

systems of ODEs. The conventional approach is based on optimization. For example,

one can solve (4.21) by minimizing the least squares cost functional

Jlsq(v) =

∫ R

−R

∣∣v′′(z) + S :: v + F(v)
∣∣2dz + a regularization term (4.23)

subject to the endpoint condition in (4.21) and then accepting the minimizer as the

computed solution. This method is effective when a good initial guess of (4.21) is given

because Jlsq might have multiple local minima. The challenge is that such an initial

guess is not always available in practical applications. Consequently, the optimization

approach is not deemed suitable for solving (4.21). There are three approaches to

solve (4.21) without requesting a good initial guess, all based on Carleman estimates.

1. The Carleman convexification method. The key of the Carleman convexification

method is to include a Carleman weight function; e.g., Wλ(z) = e−λz, λ > 1, to

the least squares cost functional in (4.23). That means one can minimize the

Carleman weighted functional

Jconv(v) =

∫ R

−R
Wλ(z)

∣∣v′′(z) + S :: v + F(v)
∣∣2dz + a regularization term,

subject to the boundary conditions in (4.21) where v = [vm]m5N. One can

prove that Jconv is uniformly convex in any bounded subset of the functional

space containing the desired solution provided that λ is sufficiently large. Also,

the unique minimizer is close to the true solution to (4.21). The original con-
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vexification method was first introduced in [49], with subsequent results found

in [6, 44, 50, 58]. Despite its efficacy in producing reliable numerical solutions,

the convexification method has a high computational cost.

2. The Carleman contraction method. The contraction method for solving (4.21)

primarily starts with an initial function v(0) = [v
(0)
m ]m5N. Note that v(0) might

be far away from the true solution to (4.21). From this point, given that v(k) =

[v
(k)
m ]m5N, k ≥ 0, is known, we compute v(k+1) = [v

(k+1)
m ]m5N as the “Carleman-

regularized” solution to
v(k+1)′′(z) + S :: v(k+1)(z) + F(v(k)(z)) = 0 z ∈ (−R,R),

v(z) = P(z) z = ±R,

v′(z) = Q(z) z = ±R.

(4.24)

By Carleman-regularized solution, we mean v(k+1) is the minimizer of

J (k)(v) =

∫ R

−R
Wλ(z)

∣∣v′′(z) + S :: v + F(v(k))
∣∣2dz + a regularization term

subject to the boundary conditions in (4.21). The choice of λ, Wλ(z), and the

regularization term will be specified later. The procedure to compute v(k+1)

above involves the combination of the quasi-reversibility method [53] and an

appropriate Carleman estimated, as in [55, 57, 71]. Thanks to the presence of

the Carleman weight functionWλ(z), one can follow the arguments in [55, 57, 71]

to prove the convergence of the constructed sequence
{
v(k)

}
k≥0

to the true

solution to (4.21).

3. The Carleman-Newton method. The Carleman-Newton method is similar to the

Carleman contraction method. Given an initial solution v(0) that can be chosen

arbitrary, we find v(1) as the Carleman regularized solution to the linearization

of (4.21) about v(0). We refer the reader to [1, 60] for details and the rigorous

proof of the convergence due to the Carleman-Newton method.
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Among the three methods mentioned above, we will choose the second approach;

i.e., we will establish a 1D analog of the Carleman contraction method to solve (4.21).

This choice is appropriate due to the global convergence, the rapid rate of conver-

gence, and the simplicity of the computational implementation. In the previous two

sentences, we mentioned “analog” because F does not satisfy the Lipschitz condition

in [71], which requires some modification in analysis.

In the next section, we establish a Carleman estimate, which plays an important

role in proving the convergence of the Carleman contraction method.

4.3 A 1D-Carleman Estimate

Let z0 < −R be a fixed number. We have the lemma.

Lemma 4.3.1. There is a number λ0 > 1 and a constant C > 0 depending only on

R and z0 such that for all functions w ∈ C2([−R,R]), we have∫ R

−R
e2λ(z−z0)−2|w′′(z)|2dz ≥ −Ce2λ(R−z0)−2

(λ3|w(R)|2 + λ|w′(R)|2)

− Ce2λ(−R−z0)−2

(λ3|w(−R)|2 + λ|w′(−R)|2)

+ Cλ3

∫ R

−R
e2λ(z−z0)−2|w(z)|2dz

+ Cλ

∫ R

−R
e2λ(z−z0)−2|w′(z)|2dz

(4.25)

provided that λ ≥ λ0.

Proof. Step 1. Define

y(z) = eλ(z−z0)−2

w(z) or equivalently w(z) = e−λ(z−z0)−2

y(z) (4.26)

for all z ∈ [−R,R]. We have

w′(z) = e−λ(z−z0)−2 [
2λ(z − z0)−3y(z) + y′(z)

]
(4.27)
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and

w′′(z) = e−λ(z−z0)−2 [
2λ(z − z0)−6[2λ− 3(z − z0)2]y(z) + 4λ(z − z0)−3y′(z) + y′′(z)

]
(4.28)

for all z ∈ [−R,R]. Thus,

e2λ(z−z0)−2|w′′(z)|2

=
[
2λ(z − z0)−6[2λ− 3(z − z0)2]y(z) + 4λ(z − z0)−3y′(z) + y′′(z)

]2
≥ 16λ2(z − z0)−9[2λ− 3(z − z0)2]y(z)y′(z) + 8λ(z − z0)−3y′(z)y′′(z)

= 8λ2(z − z0)−9[2λ− 3(z − z0)2]
d

dz
|y(z)|2 + 4λ(z − z0)−3 d

dz
|y′(z)|2

for all z ∈ [−R,R]. Here, we have used the inequality (a+ b+ c)2 ≥ 2ab+ 2bc. Thus,

(z − z0)8e2λ(z−z0)−2|w′′(z)|2

≥ 8λ2(z − z0)−1[2λ− 3(z − z0)2]
d

dz
|y(z)|2 + 4λ(z − z0)5 d

dz
|y′(z)|2

(4.29)

for all z ∈ [−R,R]. By the product rule in differentiation ab′ = (ab)′ − a′b, we have

(z − z0)8e2λ(z−z0)−2|w′′(z)|2

≥ d

dz

[
8λ2(z − z0)−1[2λ− 3(z − z0)2]|y(z)|2

]
− |y(z)|2 d

dz

[
8λ2(z − z0)−1[2λ− 3(z − z0)2]

]
+

d

dz

[
4λ(z − z0)5|y′(z)|2

]
− |y′(z)|2 d

dz

[
4λ(z − z0)5

]
(4.30)

for all z ∈ [−R,R]. Rearranging terms in (4.30) and simplifying the resulting inequal-

ity, we get

(z − z0)8e2λ(z−z0)−2|w′′(z)|2

≥ d

dz

[
8λ2(z − z0)−1[2λ− 3(z − z0)2]|y(z)|2 + 4λ(z − z0)5|y′(z)|2

]
+
[
16λ3(z − z0)−2 + 24λ2

]
|y(z)|2 − 20λ|y′(z)|2(z − z0)4

(4.31)
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for all z ∈ [−R,R]. Integrating (4.31) over [−R,R] and noting that λ3 � λ2 � λ

as λ gets large, we can find a number λ0 > 1 and a generic constant C > 0, both of

which depend only on z0 and R, such that∫ R

−R
e2λ(z−z0)−2|w′′(z)|2dz

≥ −C(λ3|y(R)|2 + λ|y′(R)|2)− C(λ3|y(−R)|2 + λ|y′(−R)|2)

+ Cλ3

∫ R

−R
|y(z)|2dz − Cλ

∫ R

−R
|y′(z)|2dz.

(4.32)

for all λ ≥ λ0.

Step 2. Recall from (4.26) that y(z) = eλ(z−z0)−2
w(z). We have

y′(z) = eλ(z−z0)−2

[−2λ(z − z0)−3w(z) + w′(z)].

Thus, by the inequality −(a+ b)2 ≥ −2(a2 + b2), we have

−|y′(z)|2 ≥ −2e2λ(z−z0)−2 [
4λ2(z − z0)−6|w(z)|2 + |w′(z)|2

]
(4.33)

for all z ∈ [−R,R]. Combining (4.32) and (4.33) and recalling that C is a generic

constant depending only on z0 and R, we have∫ R

−R
e2λ(z−z0)−2|w′′(z)|2dz

≥ −Ce2λ(R−z0)−2

(λ3|w(R)|2 + λ|w′(R)|2)

− Ce2λ(−R−z0)−2

(λ3|w(−R)|2 + λ|w′(−R)|2)

+ Cλ3

∫ R

−R
e2λ(z−z0)−2|w(z)|2dz − Cλ

∫ R

−R
e2λ(z−z0)−2|w′(z)|2dz.

(4.34)

Step 3. Using the inequality 2ab ≤ a2 + b2, we have∫ R

−R
e2λ(z−z0)−2 d

dz
|w′(z)|2dz = 2

∫ R

−R
e2λ(z−z0)−2

w′(z)w′′(z)dz

≤
∫ R

−R
e2λ(z−z0)−2|w′(z)|2dz +

∫ R

−R
e2λ(z−z0)−2|w′′(z)|2dz.
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Thus, recalling that ab′ = (ab)′ − ba′, we have∫ R

−R
e2λ(z−z0)−2|w′′(z)|2dz

≥
∫ R

−R
e2λ(z−z0)−2 d

dz
|w′(z)|2dz −

∫ R

−R
e2λ(z−z0)−2|w′(z)|2dz

=

∫ R

−R

d

dz

[
e2λ(z−z0)−2|w′(z)|2

]
dz −

∫ R

−R
|w′(z)|2 d

dz
e2λ(z−z0)−2

dz

−
∫ R

−R
e2λ(z−z0)−2|w′(z)|2dz.

As a result,∫ R

−R
e2λ(z−z0)−2|w′′(z)|2dz

≥ −C
[
e2λ(R−z0)−2|w′(R)|2 + e2λ(−R−z0)−2|w′(−R)|2

]
+ 2λ

∫ R

−R
(z − z0)−3e2λ(z−z0)−2|w′(z)|2dz −

∫ R

−R
e2λ(z−z0)−2|w′(z)|2dz.

(4.35)

Adding (4.34) and (4.35) and recalling that λ ≥ λ0 � 1, we obtain (4.25).

4.4 A Picard-like iteration to solve (4.21)

In this section, we employ the Carleman estimate in Lemma 4.3.1 to construct a

sequence that converges to the solution to (4.21), provided that this true solution

exists. We consider the circumstance that the boundary data P and Q of (4.21)

contain noise. Let P∗ and Q∗ be the unknown exact values of the boundary data P

and Q, respectively. Let v∗ be the solution to (4.21) with P and Q being replaced

by P∗ and Q∗, respectively. That means, v∗ solves
v∗′′(z) + S :: v∗(z) + F(v∗(z)) = 0 z ∈ (−R,R),

v∗(z) = P∗(z) z = ±R,

v∗′(z) = Q∗(z) z = ±R.

(4.36)

In this section, we assume the existence of the solution v∗ to (4.36). We now consider

the case when noise is introduced to the data. Let δ > 0 be the noise level. That
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means,

max
z∈{−R,R}

{
|P(z)− P∗(z)|, |Q(z)−Q∗(z)|

}
< δ. (4.37)

Remark 4.4.1 (Noise model). In this section, for simplicity, we assume that noise

is introduced into the indirect data P(±R) and Q(±R) as in (4.37) rather than to

the direct data, f and g. This assumption serves theoretical purposes only. In our

computational study, we study the more realistic case where the direct data f ∗ and g∗

are impacted by noise as in (4.63) and (4.64). Recall that the entries Pm(±R) and

Qm(±R) of indirect data P(±R) and Q(±R) are computed by the knowledge of the

derivatives of f and g via (4.19) and (4.20). Given that differentiating noisy data

presents significant challenges and can greatly amplify errors, even minor noise in f

and g can lead to substantial inaccuracies in Pm(±R) and Qm(±R). To address this

issue, we employ a novel differentiation approach as presented in [74], in which the

data f and g are replaced by appropriately truncated Fourier expansions with respect

to a special basis of L2. The primary goal of this truncation is to eliminate the high-

frequency oscillatory components of the noise, thereby enhancing the stability of the

differentiation process. This method has been demonstrated to have superior stability

compared to traditional methods like finite difference, cubic splines, or the Tikhonov

regularization technique, see [74] for more details.

Consider the space of admissible solutions

H =
{
ϕ = [ϕm]m5N : ϕm ∈ H2(−R,R) for all m 5 N

}
= H2(−R,R)|N|

where |N| is as in (4.22). Fix an arbitrary large number M > 0, define the closed

ball in H

BM = {ϕ : ‖ϕ‖H2(−R,R)|N| ≤M}. (4.38)
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For each v ∈ BM , define the functional

J (λ,ε)
v (ϕ) =

∫ R

−R
e2λ(z−z0)−2

∣∣∣ϕ′′ + S :: ϕ + F(v)
∣∣∣2dz

+ λ4e2λ(R−z0)−2 |ϕ(R)− P(R)|2 + λ4e2λ(−R−z0)−2 |ϕ(−R)− P(−R)|2

+ λ4e2λ(R−z0)−2 |ϕ′(R)−Q(R)|2 + λ4e2λ(−R−z0)−2 |ϕ′(−R)−Q(−R)|2

+ ε‖ϕ‖2
H2(−R,R)|N|

(4.39)

for all ϕ where λ ≥ λ0 and ε > 0 will be chosen later. For all v ∈ BM , the functional

J
(λ,ε)
v is uniformly convex in the closed and convex set BM of H. It has a unique

minimizer. We define the map Φ(λ,ε) : BM → BM that sends v to such a minimizer.

More precisely,

Φ(λ,ε)(v) = arg min
ϕ∈BM

J (λ,ε)
v (ϕ) for all v ∈ BM . (4.40)

We define the sequence {v(k)}k≥0 as follows: v(0) chosen arbitrarily in BM

v(k+1) = Φ(λ,ε)(v(k)) k ≥ 0.
(4.41)

The following theorem guarantees the convergence of the sequence {v(k)}k≥0 to v∗.

Theorem 4.4.1. Let M be a large number such that both v∗ and v(0) are in BM . Let

λ0 be the number in Lemma 4.3.1. Then, there exists λ1 > λ0 depending only on M,
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p, N, R, and [Pm5N] such that∫ R

−R
e2λ(z−z0)−2|v(k+1) − v∗|2dz ≤

(
C

λ3

)k+1 ∫ R

−R
e2λ(z−z0)−2|v(0) − v∗|2dz

+
C/λ3

1− C/λ3

[
λ4e2λ(R−z0)−2|P(R)− P∗(R))|2

+ λ4e2λ(−R−z0)−2|P(−R)− P∗(−R)|2

+ λ4e2λ(R−z0)−2|Q(R)−Q∗(R)|2

+ λ4e2λ(−R−z0)−2|Q(−R)−Q∗(−R)|2

+ ε‖v∗‖2
H2(−R,R)|N|

]

(4.42)

for all λ ≥ λ1, k ≥ 0. Here, C is a positive constant depending only on R and z0.

Remark 4.4.2. Theorem 4.4.1 and its proof are stated and proved using similar

arguments in [55, 57, 71]. However, we still need some important modifications:

1. The nonlinearity F in [55, 57, 71] needs to satisfy the Lipschitz condition.

However, the function F in the current work does not meet this requirement.

To address this issue, it is necessary to confine the computational domain to

a bounded set BM for an arbitrarily large number M . Within this bounded

domain, the Lipschitz condition is automatically satisfied.

2. In [55, 57], the analysis of noise was not explored, whereas it was somewhat

examined in [71]. By “somewhat,” it means that in [71], a technical condition

had to be imposed. The noise in the Dirichlet observations and the noise in the

Neumann measurements are not independent. Specifically, it was assumed that

the noise in the Dirichlet observation is the trace of a function, and the noise

in the Neumann measurement needs to be the trace of that function’s normal

derivative. Given that this circumstance is somewhat impractical, we opt to

relax it in the present research.
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Proof of Theorem 4.4.1. In the proof, we will employ the dot product

ϕ · h =
∑
m5N

ϕmhm

for all ϕ = [ϕm]m≤N and h = [hm]m≤N in H. Fix k ≥ 0. Set

h = v(k+1) − v∗.

Since v(k+1) is the minimizer of Jλ,ε
v(k) in BM and v∗ is in the interior of BM , we have∫ R

−R
e2λ(z−z0)−2(

v(k+1)′′(z) + S :: v(k+1)(z) + F(v(k))
)
·
(
h′′(z) + S :: h(z)

)
dz

+ λ4e2λ(R−z0)−2

(v(k+1)(R)− P(R)) · h(R)

+ λ4e2λ(−R−z0)−2

(v(k+1)(−R)− P(−R)) · h(−R)

+ λ4e2λ(R−z0)−2

(v(k+1)′(R)−Q(R)) · h′(R)

+ λ4e2λ(−R−z0)−2

(v(k+1)′(−R)−Q(−R)) · h′(−R)

+ ε〈v(k+1),h〉H2(−R,R)|N| ≤ 0.

(4.43)

On the other hand, since v∗ is the true solution to (4.36), we have∫ R

−R
e2λ(z−z0)−2 (

v∗′′(z) + S :: v∗(z) + F(v∗)
)
· (h′′(z) + S :: h(z)) dz

+ λ4e2λ(R−z0)−2

(v∗(R)− P∗(R)) · h(R)

+ λ4e2λ(−R−z0)−2

(v∗(−R)− P∗(−R)) · h(−R)

+ λ4e2λ(R−z0)−2

(v∗′(R)−Q∗(R)) · h′(R)

+ λ4e2λ(−R−z0)−2

(v∗′(−R)−Q∗(−R)) · h′(−R)

+ ε〈v∗,h〉H2(−R,R)|N|

= ε〈v∗,h〉H2(−R,R)|N| .

(4.44)
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Subtracting (4.43) from (4.44) gives∫ R

−R
e2λ(z−z0)−2(

v(k+1)′′(z)− v∗′′(z) + S :: (v(k+1)(z)− v∗′′(z))

+ F(v(k))−F(v∗)
)
·
(
h′′(z) + S :: h(z)

)
dz

+ λ4e2λ(R−z0)−2

(v(k+1)(R)− v∗(R)) · h(R)

+ λ4e2λ(−R−z0)−2

(v(k+1)(−R)− v∗(−R)) · h(−R)

+ λ4e2λ(R−z0)−2

(v(k+1)′(R)− v∗′(R)) · h′(R)

+ λ4e2λ(−R−z0)−2

(v(k+1)′(−R)− v∗′(−R)) · h′(−R)

+ ε〈v(k+1) − v∗,h〉H2(−R,R)|N|

≤ λ4e2λ(R−z0)−2

(P(R)− P∗(R)) · h(R)

+ λ4e2λ(−R−z0)−2

(P(−R)− P∗(−R)) · h(−R)

+ λ4e2λ(R−z0)−2

(Q(R)−Q∗(R)) · h′(R)

+ λ4e2λ(−R−z0)−2

(Q(−R)−Q∗(−R)) · h′(−R)

− ε〈v∗,h〉H2(−R,R)|N| .

(4.45)

Recalling h = v(k+1) − v∗, we have∫ R

−R
e2λ(z−z0)−2∣∣h′′(z) + S :: h(z)

∣∣2dz
+ λ4e2λ(R−z0)−2|h(R)|2 + λ4e2λ(−R−z0)−2|h(−R)|2

+ λ4e2λ(R−z0)−2|h′(R)|2 + λ4e2λ(−R−z0)−2|h′(−R)|2 + ε‖h‖2
H2(−R,R)|N|

≤ −
∫ R

−R
e2λ(z−z0)−2(F(v(k))−F(v∗)

)
·
(
h′′(z) + S :: h(z)

)
dz

+ λ4e2λ(R−z0)−2

(P(R)− P∗(R)) · h(R)

+ λ4e2λ(−R−z0)−2

(P(−R)− P∗(−R)) · h(−R)

+ λ4e2λ(R−z0)−2

(Q(R)−Q∗(R)) · h′(R)

+ λ4e2λ(−R−z0)−2

(Q(−R)−Q∗(−R)) · h′(−R)− ε〈v∗,h〉H2(−R,R)|N| .

(4.46)
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Rearranging terms (4.46) and using the inequality |ab| ≤ 1
2
(a2 + b2), we have∫ R

−R
e2λ(z−z0)−2∣∣h′′(z) + S :: h(z)

∣∣2dz
+ λ4e2λ(R−z0)−2|h(R)|2 + λ4e2λ(−R−z0)−2|h(−R)|2

+ λ4e2λ(R−z0)−2|h′(R)|2 + λ4e2λ(−R−z0)−2|h′(−R)|2 + ε‖h‖2
H2(−R,R)|N|

≤ −
∫ R

−R
e2λ(z−z0)−2∣∣F(v(k))−F(v∗)

∣∣2dz
+ λ4e2λ(R−z0)−2|P(R)− P∗(R))|2 + λ4e2λ(−R−z0)−2|P(−R)− P∗(−R)|2

+ λ4e2λ(R−z0)−2|Q(R)−Q∗(R)|2 + λ4e2λ(−R−z0)−2|Q(−R)−Q∗(−R)|2

+ ε‖v∗‖2
H2(−R,R)|N| .

(4.47)

Apply the inequality (a+ b)2 ≥ 1
2
a2 − b2 for the first term of (4.47). We have

1

2

∫ R

−R
e2λ(z−z0)−2∣∣h′′(z)

∣∣2dz
+ λ4e2λ(R−z0)−2|h(R)|2 + λ4e2λ(−R−z0)−2|h(−R)|2

+ λ4e2λ(R−z0)−2|h′(R)|2 + λ4e2λ(−R−z0)−2|h′(−R)|2 + ε‖h‖2
H2(−R,R)|N|

≤ 2

∫ R

−R
e2λ(z−z0)−2|S :: h|2dz −

∫ R

−R
e2λ(z−z0)−2∣∣F(v(k))−F(v∗)

∣∣2dz
+ λ4e2λ(R−z0)−2|P(R)− P∗(R))|2 + λ4e2λ(−R−z0)−2|P(−R)− P∗(−R)|2

+ λ4e2λ(R−z0)−2|Q(R)−Q∗(R)|2 + λ4e2λ(−R−z0)−2|Q(−R)−Q∗(−R)|2

+ ε‖v∗‖2
H2(−R,R)|N| .

(4.48)

Since BM is bounded in H, by the Sobolev embedding theorem in 1D, BM is

bounded in C([−R,R])|N|. We can find a number C depending only on M , F (and

hence p, N , R, [Pm]m5N) such that

|F(v(k)(z))−F(v∗(z))| ≤ C|v(k)(z)− v∗(z)| for all z ∈ (−R,R). (4.49)

Combining (4.48) and (4.49), we can find a constant C depending only on M , p, N ,
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R, [Pm]m5N such that∫ R

−R
e2λ(z−z0)−2|h′′(z)|2dz

+ λ4e2λ(R−z0)−2|h(R)|2 + λ4e2λ(−R−z0)−2|h(−R)|2

+ λ4e2λ(R−z0)−2|h′(R)|2 + λ4e2λ(−R−z0)−2|h′(−R)|2 + ε‖h‖2
H2(−R,R)|N|

≤ C

[∫ R

−R
e2λ(z−z0)−2|h|2dz +

∫ R

−R
e2λ(z−z0)−2|v(k) − v∗|2dz

+ λ4e2λ(R−z0)−2|P(R)− P∗(R))|2 + λ4e2λ(−R−z0)−2|P(−R)− P∗(−R)|2

+ λ4e2λ(R−z0)−2|Q(R)−Q∗(R)|2 + λ4e2λ(−R−z0)−2|Q(−R)−Q∗(−R)|2

+ ε‖v∗‖2
H2(−R,R)|N|

]
.

(4.50)

Applying the Carleman estimate in Lemma 4.3.1 for each entry of h, we have∫ R

−R
e2λ(z−z0)−2|h′′(z)|2dz ≥ −Ce2λ(R−z0)−2

(λ3|h(R)|2 + λ|h′(R)|2)

− Ce2λ(−R−z0)−2

(λ3|h(−R)|2 + λ|h′(−R)|2)

+ Cλ3

∫ R

−R
e2λ(z−z0)−2|h(z)|2dz

+ Cλ

∫ R

−R
e2λ(z−z0)−2|h′(z)|2dz.

(4.51)
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Combining (4.50) and (4.51) and noting that λ4 � λ3 , we have

λ3

∫ R

−R
e2λ(z−z0)−2|h(z)|2dz + λ

∫ R

−R
e2λ(z−z0)−2|h′(z)|2dz

+ λ4e2λ(R−z0)−2|h(R)|2 + λ4e2λ(−R−z0)−2|h(−R)|2

+ λ4e2λ(R−z0)−2|h′(R)|2 + λ4e2λ(−R−z0)−2|h′(−R)|2

≤ C

[∫ R

−R
e2λ(z−z0)−2∣∣h∣∣2dz +

∫ R

−R
e2λ(z−z0)−2∣∣v(k) − v∗

∣∣2dz
+ λ4e2λ(R−z0)−2|P(R)− P∗(R))|2 + λ4e2λ(−R−z0)−2|P(−R)− P∗(−R)|2

+ λ4e2λ(R−z0)−2|Q(R)−Q∗(R)|2 + λ4e2λ(−R−z0)−2|Q(−R)−Q∗(−R)|2

+ ε‖v∗‖2
H2(−R,R)|N|

]
.

(4.52)

It follows from (4.52) and the fact h = v(k+1) − v∗ that∫ R

−R
e2λ(z−z0)−2|v(k+1) − v∗|2dz

≤ C

λ3

[ ∫ R

−R
e2λ(z−z0)−2∣∣v(k) − v∗

∣∣2dz
+ λ4e2λ(R−z0)−2|P(R)− P∗(R))|2 + λ4e2λ(−R−z0)−2|P(−R)− P∗(−R)|2

+ λ4e2λ(R−z0)−2|Q(R)−Q∗(R)|2 + λ4e2λ(−R−z0)−2|Q(−R)−Q∗(−R)|2

+ ε‖v∗‖2
H2(−R,R)|N|

]
.

(4.53)

Recall once again that h = v(k+1) − v∗. Applying (4.53) when k + 1 is replaced by k
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and combining the resulting estimate with (4.53), we have∫ R

−R
e2λ(z−z0)−2|v(k+1) − v∗|2dz

≤ C

λ3

[C
λ3

[ ∫ R

−R
e2λ(z−z0)−2∣∣v(k−1) − v∗

∣∣2dz
+ λ4e2λ(R−z0)−2|P(R)− P∗(R))|2 + λ4e2λ(−R−z0)−2|P(−R)− P∗(−R)|2

+ λ4e2λ(R−z0)−2|Q(R)−Q∗(R)|2 + λ4e2λ(−R−z0)−2|Q(−R)−Q∗(−R)|2

+ ε‖v∗‖2
H2(−R,R)|N|

]
+ λ4e2λ(R−z0)−2|P(R)− P∗(R))|2 + λ4e2λ(−R−z0)−2|P(−R)− P∗(−R)|2

+ λ4e2λ(R−z0)−2|Q(R)−Q∗(R)|2 + λ4e2λ(−R−z0)−2|Q(−R)−Q∗(−R)|2

+ ε‖v∗‖2
H2(−R,R)|N|

]
.

Continuing the procedure, we obtain∫ R

−R
e2λ(z−z0)−2|v(k+1) − v∗|2dz ≤

(C
λ3

)k+1
∫ R

−R
e2λ(z−z0)−2∣∣v(0) − v∗

∣∣2dz
+

k∑
i=1

(C
λ3

)k[
λ4e2λ(R−z0)−2|P(R)− P∗(R))|2

+ λ4e2λ(−R−z0)−2|P(−R)− P∗(−R)|2

+ λ4e2λ(R−z0)−2|Q(R)−Q∗(R)|2

+ λ4e2λ(−R−z0)−2|Q(−R)−Q∗(−R)|2

+ ε‖v∗‖2
H2(−R,R)|N|

]
.

(4.54)

Choose λ > λ1 > λ0 such that C/λ3 ∈ (0, 1) for some λ1 depending only on C and

therefore only on M, p, N, R, and [Pm5N]. Estimate (4.42) is a direct consequence

of (4.54).

Remark 4.4.3. Estimate (4.42) is interesting in the sense that when the data has

noise, although the over-determined problem (4.21) might have no solution, we are

still able to provide a reasonably accurate numerical solution. In fact, the sequence

{v(k)}k≥0 is well-defined regardless whether or not (4.21) is solvable. This sequence is
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defined via minimizing a strictly convex cost functional as in (4.40) when v is replaced

by v(k), k ≥ 0. Given (4.37) and Theorem 4.4.1, estimate (4.42) implies that when

λ > λ1, we achieve the bound

‖v(k+1) − v∗‖2
λ ≤

(C
λ3

)k+1

‖v(0) − v∗‖2
λ +

C/λ3

1− C/λ3

[
λ4
(
e2λ(−R−z0)−2

+ e2λ(R−z0)−2)
δ2

+ ε‖v∗‖2
H2(−R,R)|N|

]
(4.55)

where C is the constant in Theorem 4.4.1 and the norm ‖ · ‖λ is given by

‖ϕ‖λ =
[ ∫ R

−R
e2λ(z−z0)−2|ϕ|2dz

]1/2

for all ϕ ∈ L2(−R,R).

In particular, fix λ > λ1 such that θ = C/λ3 ∈ (0, 1). In this “fixing λ” circumstance,

the norm ‖·‖λ is equivalent to the standard norm in L2(−R,R). Hence, due to (4.55),

we can find a constant C1 depending only on λ, z0, and R such that

‖v(k+1) − v∗‖2
L2(−R,R) ≤ C1

[
θk+1‖v(0) − v∗‖2

L2(−R,R) + δ2 + ε‖v∗‖2
H2(−R,R)|N|

]
. (4.56)

Estimate (4.56) guarantees the global convergence. Although v(0) is not a good initial

guess of v∗, the approximating sequence converges to a numerical solution with the

error O(δ +
√
ε‖v∗‖H2(−R,R)|N|).

Motivated from (4.9), define

v(k)(x′, z, t) =

N1∑
n1=1

· · ·
Nd−1∑
nd−1

Nt∑
nt=1

v(n1,...,nd−1,nt)(z)Ψn1(x1) . . .Ψnd−1
(xd−1)ψnt(t)

for all (x, t) = (x′, z, t) ∈ Ω× (0, T ). Due to (4.7), set

c(k)(x) =
v(k)(x, 0)−∆p(x)

p(x)
(4.57)

for all x ∈ Ω. By Remark 4.4.3 and Theorem 4.4.1, we can find λ1 as in Theorem
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4.4.1 such that for all λ > λ1, we have

‖c(k+1) − c∗‖2
L2(−R,R)

≤ C1

[(C
λ3

)k+1

‖v(0) − v∗‖2
L2(−R,R) +

δ2C/λ3

1− C/λ3
+ ε‖v∗‖2

H2(−R,R)|N|

] (4.58)

where C1 is a constant depending only on λ, z0, R, N, and [Pn]n5N. Here c∗ is the

true coefficient defined by

c∗(x) =
v∗(x, 0)−∆p(x)

p(x)

for all x ∈ Ω.

The analysis above leads to Algorithm 1 to solve the inverse problem under con-

sideration. Having the data f and g in hand, we can follow Algorithm 1 to compute

a numerical solution to the inverse problem under consideration.

4.5 Numerical study

To illustrate our method, we numerically study the inverse problem, Problem 4.1.1,

in 2D. That means, for simplicity, we set d = 2. Let Ω = (−R,R)2 and therefore

Ω = (−R,R). Rather than using the notation x′, we write x for an element of Ω′. In

this section, we set R = 1.

4.5.1 The forward problem

To generate simulated data, we numerically compute the solution to (4.1). Since

we only need the data on Γ, a part of ∂Ω and t ∈ (0, T ), it is not necessary to solve

(4.1) on the whole unbounded domain Rd × (0,∞). Rather, we choose a domain

G = (−R1, R1)2 for some R1 > R, in which Ω is compactly contained, and a positive

number T . We solve ut(x, t) = ∆u(x, t) + c(x)u(x, t) (x, t) ∈ G× (0, T ),

u(x, 0) = p(x) x ∈ G
(4.60)
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Algorithm 1 The procedure to compute the numerical solution to (4.21)
1: Choose cut-off numbers N1, . . . , Nd−1, and Nt. Set N = (N1, N2, . . . , Nd−1, Nt)
2: Choose Carleman parameters z0, and λ, and a regularization parameter ε. Choose

a large number M .
3: Set n = 0. Choose an arbitrary initial solution v(0) ∈ BM .
4: Compute v(k+1) = Φ(λ,ε)(v(k)) where Φ(λ,ε) is defined in (4.40).
5: if ‖v(k+1) − v(k)‖L2(−R,R) > κ0 (for some fixed number κ0 > 0) then
6: Replace k by k + 1.
7: Go back to Step 4.
8: else
9: Set the computed solution vcomp = v(k+1).
10: end if
11: Write vcomp = [v

(k+1)
m ]m5N and set the desired solution as in (4.21).

12: Due to (4.9), compute

vcomp(x, t) = v(x′, z, t)

=

N1∑
n1=1

· · ·
Nd−1∑
nd−1

Nt∑
nt=1

vcomp
(n1,...,nd−1,nt)

(z)Ψn1(x1) . . .Ψnd−1
(xd−1)ψnt(t)

for x ∈ Ω, t ∈ (0, T ).
13: By (4.7), we obtain the reconstructed coefficient c as

ccomp(x) =
vcomp(x, 0)−∆p(x)

p(x)
(4.59)

for all x ∈ Ω.

by the explicit method in the finite difference scheme. More precisely, we discretize

G by arranging a grid of points

G =
{
xi,j = (xi = −R1 + (i− 1)dx, zj = −R1 + (j − 1)dx) : i, j = 1, . . . , N1

x

}
⊂ G.

where N1
x is an integer and dx = 2R1/(N

1
x − 1). On the time domain, we arrange the

partition of [0, T ] as

T =
{
tl = (l − 1)dt : l = 1, . . . , Nt

}
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where Nt is an integer and dt = T/(Nt−1).We set R = 1, R1 = 3, T = 0.5, N1
x = 241,

and Nt = 4001. The finite difference version of (4.60) is read as

u(xi,j, tl+1)− u(xi,j, tl)

dt

=
u(xi+1,j, tl) + u(xi−1,j, tl) + u(xi,j+1, tl) + u(xi,j−1, tl)− 4u(xi,j, tl)

d2
x

+ c(xi,j)u(xi,j, tl)

(4.61)

for all xi,j ∈ G, i, j ∈ {1, . . . , N1
x}, and tl ∈ T , l ∈ {1, . . . , Nt}. It follows from (4.61)

that

u(xi,j, tl+1) = u(xi,j, tl)

+ dt

[u(xi+1,j, tl) + u(xi−1,j, tl) + u(xi,j+1, tl) + u(xi,j−1, tl)− 4u(xi,j, tl)

d2
x

+ c(xi,j)u(xi,j, tl)
]
.

(4.62)

So, given u(xi,j, t1) = p(xi,j) for i, j ∈ {1, . . . , N1
x}, we can compute u(xi,j, t2) via

(4.62), and then continue get u(xi,j, tNt). In our computation, we set p(x) = 2 for all

x ∈ G. We then easily extract the noiseless data f ∗ and g∗ on Γ. We pretend not to

know f ∗ and g∗. We only know the noisy version of f ∗ and g∗ as

f = f ∗(1 + random numbers in [−δ, δ]) (4.63)

and

g = g∗(1 + random numbers in [−δ, δ]) (4.64)

where δ is the noise level. In our computational program, we choose the initial

function u(x, 0) = p(x) = 2, for all x ∈ Ω, R1 = 3 and T = 0.5.
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4.5.2 The implementation of Algorithm 1

Step 1 of Algorithm 1. In 2D, we only need to determine N1 and Nt. These

numbers are chosen by a data-driven procedure. Recall that the data is measured on

Γ defined as in (4.2). The measurement set consists of two parts, namely Γ = Γ+∪Γ−

where

Γ+ = {x = (x, z) : x ∈ (−R,R) and z = R}

and

Γ− = {x = (x, z) : x ∈ (−R,R) and z = −R}.

One can examine the approximation formula

u(x, z, t) '
N1∑
n1=1

Nt∑
nt=1

u(n1,nt)(z)P(n1,nt)(x, t) (4.65)

for the data u(x, t) = u(x, z, t) = f(x, t) on either Γ+ or Γ−. Note that (4.65) is an

analog of (4.9) where v is replaced by the function u. We do so on Γ−. Define the

mismatch function

ϕ(N1,Nt)(x, t) =
∣∣∣u(x,−R, t)−

N1∑
n1=1

Nt∑
nt=1

u(n1,nt)(−R)P(n1,nt)(x, t)
∣∣∣

for (x, t) ∈ Γ− × (0, T ). Then, we test the smallness of ϕ(N1,Nt) by manually and

gradually increasing N1 and Nt until ϕ(N1,Nt) is sufficiently small. For example, we

take the data in the numerical test 1 below. We increase those two numbers so that

‖ϕ(N1,Nt)‖L∞(Γ−×(0,T )) < 5 × 10−4. By this, we find N1 = 15 and Nt = 10. We chose

these two numbers for all of our numerical tests. In Figure 4.1, we display the graphs

of the function ϕ(N1,Nt) for some values of N1 and Nt.

Step 2 of Algorithm 1. In Step 2, we select the parameters through a trial-error

procedure involving experimentation and adjustments. To do so, we begin with a

reference test where the accurate solution is known. Using this reference, we adjust

the parameters until Algorithm 1 produces a satisfactory numerical outcome with
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(a) ϕ(5,5) (b) ϕ(15,8) (c) ϕ(15,10)

Figure 4.1: The difference ϕ(N1,Nt) of the data u(x,−R, t) and its truncated Fourier
approximation

∑N1

n1=1

∑Nt

nt=1 u(n1,nt)(−R)P(n1,nt)(x, t), for some values of (N1, Nt).
The data is taken in Test 1 below. Evidently, for Step 1 in Algorithm 1 during the
calculation of the desired coefficient in Test 1, we can choose N1 = 15 and Nt = 10.

data free of noise, i.e., δ = 0. These chosen parameters are then applied across all

subsequent tests and various noise levels δ. The reference for our adjustments is Test

1, mentioned below. In all our numerical analyses, these values are set as ε = 10−6.5,

κ0 = 10−3, z0 = −10, and λ = 10.

Step 3 of Algorithm 1. We need to choose a function v(0) ∈ H . A convenient

method to compute this function is solving the linear problem obtained by excluding

the nonlinearity F . More precisely, we solve the following problem
v(0)′′(z) + S :: v(0)(z) = 0 z ∈ (−R,R),

v(0)(z) = P(z) z = ±R,

v(0)′(z) = Q(z) z = ±R

(4.66)

for the function v(0). We can compute the numerical solution to (4.66) by the quasi-

reversibility method. We do not present the numerical implementation to solve linear

PDEs using the Carleman quasi-reversibility method. The reader can find the details

about this in [57, 70, 75].
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Step 4 of Algorithm 1. In Step 4, we minimize Jv(k) and set v(k+1) as its

minimizer. The obtained minimizer v(k+1) is actually the solution to
v(k+1)′′(z) + S :: v(k+1)(z) + F(v(k)(z)) = 0 z ∈ (−R,R),

v(k+1)(z) = P(z) z = ±R,

v(k+1)′(z) = Q(z) z = ±R.

(4.67)

The details in implementation to compute the regularized solution v(k+1) to (4.67)

were presented in [57, 70, 75], in which we employ the optimization package already

built in MATLAB. We do not repeat it here.

Steps 5–13. Executing these steps is direct and not complicated. For brevity, we

do not present them here.

4.5.3 Numerical examples

We show in this section three (3) numerical examples computed by Algorithm 1.

One can find that that reconstructed images are just acceptable, not perfect, since

we only measure the data on Γ ⊂ ∂Ω. For the case of full measurement resulting out

of expectation numerical results, we refer the reader to [70, 75].

Test 1. In test 1, the true coefficient c is given by

ctrue(x, z) =

 e
0.35x2+(z−0.4)2

0.552−(0.35x2+(z−0.4)2) 0.35x2 + (z − 0.4)2 < 0.552,

0 otherwise.

for (x, z) ∈ Ω. It is characterized by an “ellipse” inclusion. The true and computed

coefficient c are displayed in Figure 4.2.

It is evident that Algorithm 1 generates a satisfactory numerical solution. It is

evident that the “ellipse inclusion” was successfully detected. The maximum value of

the function c inside the inclusion is 1. The constructed value is 0.952 (relative error

4.8%). Due to Figure 4.2c, the stopping criterion of Algorithm 1 is met after only

seven iterations.
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(a) The true coefficient ctrue (b) The computed coefficient
ccomp

(c) The consecutive relative er-

ror
‖v(k) − v(k−1)‖L∞

‖v(k)‖L∞
.

Figure 4.2: (a) The true coefficient, (b) the computed one from data on Γ corrupted
with 5% of noise, and (c) the relative difference of the reconstructed of the solution v
to (4.21) at the kth iteration, k = 1, . . . , 7. Although the data are missing in ∂Ω\Γ, the
reconstruction is acceptable. The convergence of our method is numerically confirmed.

Test 2. We test the case when the true coefficient is characterized by two horizontal

inclusions. More precisely, we set

ctrue(x, z) =


1 max{0.25|x|, 4|z − 0.6|} < 0.8,

1 max{0.25|x|, 4|z + 0.6|} < 0.8,

0 otherwise,

for all (x, z) ∈ Ω.

The true and computed solutions to Problem 4.1.1 are shown in Figure 4.3

(a) The true coefficient ctrue (b) The computed coefficient
ccomp

(c) The consecutive relative er-

ror
‖v(k) − v(k−1)‖L∞

‖v(k)‖L∞
.

Figure 4.3: (a) The true coefficient, (b) the computed one from data on Γ corrupted
with 5% of noise, and (c) the relative difference of the reconstructed of the solution v
to (4.21) at the kth iteration, k = 1, . . . , 9. Despite the absence of data in ∂Ω \Γ, the
reconstruction remains satisfactory. Our method’s fast convergence has been verified
numerically.

As in Test 1, we can see that Algorithm 1 provides a satisfactory numerical solu-
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tion. It is evident that both horizontal inclusions were successfully identified. The

maximum value of the function c inside each inclusion is 1. The constructed value

of c inside the upper inclusion is 0.963 (relative error 3.7%), and the one inside the

lower inclusion is 0.875 (relative error 12.4%). Due to Figure 4.3c, Algorithm 1 stops

at only nine iterations.

Test 3. Test 3 checks the case when the true coefficient c has a T inclusion. That

means the function ctrue takes the value 1 inside a letter T and 0 otherwise. We refer

the reader to Figure 4.4 for the image of the true and computed coefficients.

(a) The true coefficient ctrue (b) The computed coefficient
ccomp

(c) The consecutive relative er-

ror
‖v(k) − v(k−1)‖L∞

‖v(k)‖L∞
.

Figure 4.4: (a) The true coefficient, (b) the computed one from data on Γ corrupted
with 5% of noise, and (c) the relative difference of the reconstructed of the solution
v to (4.21) at the kth iteration, k = 1, . . . , 13. Despite the absence of data in ∂Ω \ Γ,
the reconstruction of the letter T is acceptable. Our method’s fast convergence has
been verified numerically.

As in Test 1 and Test 2, we can see that the T inclusion was successfully found. The

maximum value of the function c inside each inclusion is 1. The constructed value

of c inside the inclusion is 0.98 (relative error 2%). Due to Figure 4.4c, Algorithm 1

stops at only 13 iterations.

Remark 4.5.1. The computational cost of Algorithm 1 is not expensive. In fact, we

only need to solve several 1D linear over-determined problems in Steps 5-7. We have

used a personal computer iMac with a 3.2GHz Intel Core i5 Processor and memory

of 24GB, not a professional workstation, to compute the numerical solutions above.
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Figure 4.5: Graphs of the basis functions Ψ2, Ψ3, and Ψ4.

It took 46.93, 56.56, and 77.12 seconds to complete all computational tasks for the

inverse problem in Test 1, Test 2, and Test 3, respectively.

Remark 4.5.2. It is worth mentioning that the images of the inclusions in the tests

above are not perfect. The numerical results show some artifacts. In particular,

readers may notice that the artifacts on the right side of the reconstruction in Figures

4.2b–4.4b are more pronounced than those on the left. This is primarily due to the

non-symmetric nature of the basis set {Ψn1}n1≥1 used in the computations. Figure

4.5 shows the graphs of three functions, Ψ2, Ψ3, and Ψ4, where it is visually apparent

that these functions oscillate more on the right side and appear more stable on the

left. Consequently, the reconstruction on the right is likely more sensitive to noise.

However, these errors are acceptable because we solve the inverse problem when the

data are given only on the part Γ of ∂Ω.

4.6 Concluding remarks

In this study, we provide a numerical method to solve a nonlinear coefficient in-

verse problem for parabolic equations. This inverse problem has numerous practical

applications. To obtain these solutions, we employ the polynomial-exponential ba-

sis, converting the inverse problem into a set of 1D nonlinear equations. Next, we

introduce a method to address this nonlinear system. Our method is based on a
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combination of the Picard iteration, the quasi-reversibility method, and a Carleman

estimate. We provide analytic proof of the method’s convergence and demonstrate

its effectiveness through some numerical examples.
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