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ABSTRACT

YIJIANG WANG. Dimension Reduction for Vector Autoregressive (VAR(P )) Models
via Spatial Quantile Regression. (Under the direction of DR. JIANCHENG JIANG)

The Vector Autoregressive (VAR) model is a fundamental tool for analyzing multivariate

time series, capturing the dynamic relationships among variables through their own and

others’ lagged values. we first introduce a novel framework for high-dimensional Vec-

tor Autoregressive (VAR) models by incorporating Spatial Quantile Regression (SQR)

with adaptive Lasso and SCAD regularization. Unlike traditional quantile regression,

SQR extends to the multivariate setting, allowing for more robust inference on con-

ditional quantiles, particularly in the presence of heavy-tailed or non-Gaussian errors.

However, as the dimensionality and lag order increase, VAR models often suffer from

over-parameterization, leading to potential overfitting. Therefore, to address this is-

sue, we employ adaptive Lasso and SCAD penalties, which facilitate both parameter

estimation and automatic variable selection, enforcing sparsity in a data-driven man-

ner. Under mild regularity conditions, we establish the oracle properties of our proposed

estimators, proving their ability to recover the true underlying model structure while

yielding asymptotically normal estimates for significant parameters. To efficiently solve

the resulting non-concave penalized optimization problem, we develop a computation-

ally efficient algorithm based on alternating optimization and the Alternating Direction

Method of Multipliers (ADMM), ensuring scalability for large-scale datasets. Extensive

simulation studies demonstrate the proposed method’s advantages in estimation accuracy,

variable selection, and robustness against various error distributions, including normal,

mixed-normal, Student’s t, and Laplace distributions. Finally, we apply our approach to

real-world data, illustrating its practical utility in high-dimensional time series analysis.

Furthermore, to tackle the curse of dimensionality and enhance model interpretability,

another novel framework is proposed that integrates tensor decomposition with Spatial

Quantile Regression (SQR), restructuring the transition matrices of the VAR model into

a tensor representation for simultaneous parameter reduction while enhancing robust-

ness and flexibility by modeling covariate effects across different quantiles of the response
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distribution. Specifically, we introduce the Multilinear Low-Rank Spatial Quantile Re-

gression (MLRSQR) method for parameter estimation post-tensor decomposition. We

establish the asymptotic properties of the MLRSQR estimator and develop an efficient

alternating spatial quantile regression algorithm for its implementation. To further re-

fine estimation, we extend our approach by incorporating sparsity. We propose the `1-

penalized Sparse Higher-Order Reduced-Rank Spatial Quantile Regression (SHORRSQR)

estimator, which balances dimensionality reduction with sparsity constraints. Theoretical

guarantees for its asymptotic behavior are rigorously derived, and we design an ADMM-

based algorithm for its efficient computation. Through extensive simulations and an

application to real-world data, we demonstrate the advantages of our proposed methods

in mitigating over-parameterization, improving robustness, and enhancing interpretabil-

ity, thereby making them well-suited for high-dimensional time series analysis.
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CHAPTER 1: INTRODUCTION

Quantile regression (QR), first introduced by Koenker and Bassett (1978) (1), has

become a fundamental tool for estimating conditional quantile functions and conduct-

ing inference. Unlike mean regression, QR provides a more comprehensive view of the

stochastic relationship between variables by capturing the entire conditional distribution

rather than focusing solely on the mean (Chaudhuri, Doksum, and Samarov, 1997 (2);

Koenker, 2005 (3)). Moreover, it offers robust and efficient estimation, particularly when

the error distribution deviates from normality, making it a valuable alternative to tradi-

tional least squares methods (Koenker and Bassett, 1978 (1); Koenker and Zhao, 1996

(4)). Due to these advantages, QR has inspired a vast body of research, playing a pivotal

role in statistics and econometrics. While the literature on QR is extensive, this paper

focuses on its application in the context of high-dimensional time series modeling.

Quantile regression (QR) has been extensively studied in time series analysis, with

notable contributions from Koul and Saleh (1995) (5), Davis and Dunsmuir (1997) (6),

Jiang, Zhao, and Hui (2001) (7), and Peng and Yao (2003) (8). However, much of

this research has been centered on univariate time series, leaving a significant gap in the

theoretical development of QR for vector time series. While maximum likelihood and least

squares estimation methods have been widely applied in the multivariate setting—see,

for instance, Bollerslev (1990) (9), Engle and Kroner (1995) (10), Chen and Tsay (1993)

(11), and Pan and Yao (2008) (12)—the extension of QR to multivariate models remains

relatively underexplored. A fundamental challenge in this area is the lack of a universally

accepted definition of multivariate quantiles.

To address this, the notion of spatial quantiles, originally introduced by Chaudhuri

(1996) (13) and subsequently refined by Koltchinskii (1997) (14), provides a geometric

extension of univariate quantiles to multivariate settings through the use of the `1-norm.

Unlike traditional definitions, spatial quantiles define central regions in a multivariate
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distribution that expand with increasing coverage, thereby offering a valuable volume-

based interpretation. This generalization maintains core features of univariate quantiles

while enabling a more nuanced representation of distributional structure in higher di-

mensions. As highlighted by Serfling (2004) (15), spatial quantiles possess a number of

favorable properties, including shift equivariance, resistance to outliers, and invariance

under orthogonal and homogeneous scaling transformations. These attributes make spa-

tial quantiles a compelling choice for multivariate analysis, motivating their integration

into spatial quantile regression (SQR) for vector autoregressive (VAR(P )) models (Sims,

1980 (16)).

According to Chaudhuri (1996) (13) and Koltchinskii (1997) (14), given a sample

{zi}ni=1 of z in RN , the u-th spatial quantiles are defined as

α̂(u) = arg min
α ∈ Rk

n∑
i=1

{
‖zi −α‖+ uT (zi −α)

}
(1.1)

where u ∈ BN = {u|u ∈ RN , ‖u‖ < 1}, and ‖ · ‖ is the Euclidean norm. For N = 1,
the solution to (1.1) reduces to the sample τ -th quantile (τ = (1 + u)/2) based on the

real-valued observations zi’s. Let Qu(t) = ‖t‖+ 〈u, t〉, where 〈·, ·〉 denotes the Euclidean

inner product. Then equation (??) can be rewritten as

α̂(u) = arg min
α

n∑
i=1

Qu(zi −α)

Define the u-th quantile of the distribution of z as

α(u) = arg min
α
E {Qu(z−α)−Qu(z)}

Chaudhuri (1996) (13) established that the spatial quantile estimator α̂(u) is asymptot-
ically normal, specifically,

√
n[α̂(u) − α(u)] → N(0,Σ) for some covariance matrix Σ.

Based on the estimate α̂(·), several multivariate descriptive statistics can be constructed.

For instance, a trimmed mean of a multivariate random vector z can be estimated using∫
S
α̂(u)µ(du), where µ is a properly defined probability measure on the unit ball BN ,

and the integration domain is given by S = {u ∈ RN : ‖u‖ ≤ r} for some r ∈ (0, 1).

Similarly, the multivariate L-estimator can be derived in the same form but with an al-
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ternative choice of region S; see Chaudhuri (1996) (13) for details. This spatial quantile

framework naturally extends to multivariate regression settings. Consider the multivari-

ate linear model:

yi = βxi + εi, i = 1, . . . , n (1.2)

where β is a N × v matrix of unknown parameters and xi are v × 1 vector of covariates
without intercept.

Let {yt ∈ RN}Tt=1 denote an N -dimensional vector time series of length T . A P th-order

vector autoregressive model, VAR(P ), can be expressed as:

yt = A1yt−1 + · · ·+ APyt−P + εt, for t = 1, . . . , T. (1.3)

where {yt} is the observed time series with yt = (y1t, · · · , yNt)′ ∈ RN , The innovations
satisfy εt = Σ1/2at, and Σ1/2 are symmetric positive definite matrices and at is a sequence

of serially uncorrelated random vectors with mean 0 and identity covariance matrix I.

Aj’s are N ×N transition matrices of unknown parameters and T is the sample size.

Then, the model in (1.3) can be reformulated as:

yt = Axt + εt, for t = 1, . . . , T, (1.4)

where xt = (y′t−1, · · · ,y
′
t−P )′ and A = (A1, · · · ,AP ). Then the above model (1.4) has

the form of (1.2). It is straightforward to extend the above spatial quantile notion by

defining the u-th spatial regression quantiles as

(Â, q̂u) = arg min
A,qu

L(A,qu) (1.5)

where L(A,qu) =
∑T

t=1Qu(yt−Axt− qu), and qu is the u-th quantile of ε. Under this
formulation, for any direction u ∈ BN , the estimator Â consistently estimates the true

coefficient matrix A; see Jiang, Jiang, Li, Liu, and Yan (2017) (17). In the special case

where u = 0, the model reduces to the spatial median regression, originally studied by

Bai, Chen, Miao, and Rao (1990) (18). When the response is univariate, i.e., N = 1, the
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spatial quantile regression formulation becomes equivalent to the classical quantile regres-

sion proposed by Koenker and Bassett (1978) (1). Moreover, to obtain affine equivariant

versions of the estimator, one can adopt the transformation-retransformation technique

introduced by Chaudhuri (1996) (13), and further developed by Chakraborty and Chaud-

huri (1998) (19) and Chakraborty (2003) (20).

A standard VAR(P ) model is widely used to characterize temporal dependencies among

multiple time series variables, enabling both forecasting and structural analysis. However,

as the number of variables N and the lag order P grow, estimating the parameters

of VAR models becomes increasingly difficult. Traditional estimation approaches, such

as ordinary least squares (OLS), become computationally burdensome and statistically

inefficient in high-dimensional settings. This issue has been extensively discussed in

the literature (De Mol, Giannone, and Reichlin 2008 (21); Carriero, Kapetanios, and

Marcellino 2011 (22); Koop 2013 (23)), where it is shown that even with moderate values

of N and P , the large number of parameters can lead to overfitting, reduced estimation

accuracy, and unreliable inference—phenomena collectively referred to as the curse of

dimensionality.

Vector Autoregressive (VAR) models are widely employed in multivariate time series

analysis due to their relative simplicity and ease of estimation. While the Vector Au-

toregressive Moving Average (VARMA) model offers a more flexible framework to cap-

ture autocorrelation dynamics, it is often replaced in practice by the VAR model due

to well-known identification issues and numerical instability associated with estimating

high-order polynomials (Chan, Eisenstat, and Koop, 2016 (24); Wilms et al., 2017 (25);

Dias and Kapetanios, 2018 (26)). Nonetheless, the VAR approximation may require a

large lag order P , particularly when the asymptotic conditions T → ∞, P → ∞, and

PT−1/3 → 0 are considered (Said and Dickey, 1984 (27); Li, Leng, and Tsai, 2014 (28)).

This requirement exacerbates the curse of dimensionality, as the number of parameters

increases rapidly with both the number of variables N and the lag order P , resulting in

N2P coefficients to estimate (Ravenna, 2007 (29)).

To address these challenges, imposing structural constraints on the parameter space
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has become an essential strategy in high-dimensional VAR modeling. A primary concern

is overfitting, which is exacerbated in finite samples due to the inflated parameter space.

Sparsity—where a substantial portion of coefficients are effectively zero—is a prevalent

characteristic in high-dimensional data. Regularization methods such as the Lasso and

the Dantzig selector provide a principled approach to exploiting this structure, facilitating

variable selection and enhancing estimation accuracy (Basu and Michailidis, 2015 (30);

Han, Lu, and Liu, 2015 (31); Kock and Callot, 2015 (32); Davis, Zang, and Zheng,

2016 (33); Wu and Wu, 2016 (34)). In addition to sparsity, enforcing stationarity is

crucial to avoid explosive dynamics, which can compromise both inference and forecasting

performance.

Another promising avenue for dimensionality reduction in high-dimensional VAR mod-

els is through low-rank approximations of the transition matrices. Reduced-rank regres-

sion (RRR) imposes a low-rank structure on the parameter matrices, effectively con-

trolling model complexity without sacrificing dynamic structure (Yuan et al., 2007 (35);

Negahban and Wainwright, 2011 (36); Chen, Dong, and Chan, 2013 (37); Basu, Li, and

Michailidis, 2019 (38); Raskutti, Yuan, and Chen, 2019 (39)). In the standard formula-

tion,

yt = A(C)xt + εt, t = 1, . . . , T, (1.6)

where A(C) = (A1, . . . ,AP ), the matrix A(C) is assumed to have low rank (Velu, Reinsel,

and Wichern, 1986 (40); Velu and Reinsel, 2013 (41)). Carriero, Kapetanios, and Mar-

cellino (2011 (22)) proposed a Bayesian framework for forecasting in large-scale macroeco-

nomic systems under this reduced-rank VAR setting. It is worth noting that model (1.6)

and (1.4) are similar in form; however, the transition matrix in model (1.6) emphasizes

a low-rank structure. Therefore, we denote it as A(C) to distinguish it from the matrix

in model (1.4). Similarly, the above model (1.6) has the form of (1.2).

Therefore, in Chapters 2 and 3, we will explore several methods for constraining

the coefficients of VAR models. Chapter 2 focuses on two sparse regularization tech-

niques—adaptive Lasso and SCAD—which impose penalty terms on the coefficients to

effectively identify important variables while shrinking insignificant ones toward zero.



6

This work systematically explores the integration of adaptive penalization techniques

within the spatial quantile regression (SQR) framework for VAR models. Due to the lack

of closed-form solutions and the presence of non-convex objective functions, the resulting

SQR estimators pose both theoretical and computational challenges. In particular, estab-

lishing their asymptotic properties requires careful analysis. In this paper, we rigorously

derive the theoretical guarantees for the proposed estimators, including consistency and

oracle properties. Furthermore, we develop efficient computational algorithms to enable

practical implementation of the methodology. Through extensive simulation studies and

real-world data applications, the proposed approach demonstrates strong performance in

terms of robustness, sparsity, and estimation efficiency.

To better understand the structure of the coefficient matrices, we consider alternative

rearrangements: A(R) = (A′1, . . . ,A
′
P ) and A(L) = (vec(A1)

′, . . . , vec(AP )′)′. These for-

mulations capture the row space and the vectorized coefficient space, respectively. Reinsel

(1983 (42)) introduced an autoregressive index model that imposes a low-rank constraint

on A(R), while low-rank dependencies across lags suggest that A(L) may also exhibit low

effective dimensionality. Importantly, the ranks of A(C), A(R), and A(L) each correspond

to distinct structural interpretations.

Motivated by this observation, we reformulate the transition matrices as a three-way

tensor. In this setting, the mode-1, mode-2, and mode-3 matricizations of the tensor

correspond to A(C), A(R), and A(L), respectively (Kolda and Bader, 2009 (43)). We apply

Tucker decomposition to the transition tensor, which enables simultaneous rank reduction

across all three modes. This leads to the multilinear low-rank VAR model, where the

Tucker ranks—also known as multilinear ranks—determine the model’s complexity and

structure (Wang, Zheng, Lian, and Li, 2022 (44)).

Chapter 3 discusses how to impose structural constraints on the coefficient matri-

ces through tensor decomposition, thereby reducing the dimensionality of the parameter

space. These approaches not only offer favorable statistical properties in theory but also

demonstrate strong predictive performance and interpretability in practice. By com-

bining tensor decomposition with spatial quantile regression, our approach provides a
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robust and scalable framework for analyzing high-dimensional VAR models, addressing

both over-parameterization and computational challenges. Similar challenges also arise

when incorporating sparsity into the tensor-based framework, as it introduces additional

non-convexity and complexity into the estimation process. In particular, deriving the

asymptotic properties of the proposed estimators becomes analytically demanding due to

the high dimensionality of the parameter space and the non-convex nature of the opti-

mization problem. Nevertheless, we provide rigorous theoretical guarantees, establishing

both consistency and asymptotic normality under mild regularity conditions. This inte-

gration of tensor decomposition, quantile-based inference, and sparse regularization yields

a flexible and powerful modeling tool capable of handling large-scale, non-Gaussian time

series data. Besides, An efficient ADMM-based algorithm is developed to solve the result-

ing optimization problem, which enables joint estimation of sparse, low-rank structures

in a computationally feasible manner.

The remainder of this dissertation is organized as follows. In addition to methodolog-

ical development, Chapter 2 and Chapter 3 provide in-depth discussions on the tuning

parameter selection for the respective approaches. Each chapter also includes compre-

hensive simulation studies and real data applications to validate the proposed methods.

Proofs of the main results are given in Appendix A and Appendix B.



CHAPTER 2: ORACLE MODEL SELECTION FOR VAR(P ) MODELS BASED ON

SPATIAL QUANTILE REGRESSION

2.1 Overview

Building upon the challenges outlined in the Introduction, we now turn to methodolog-

ical developments aimed at improving the estimation of high-dimensional VAR models.

In particular, we focus on regularization and dimension reduction techniques that address

the curse of dimensionality by imposing structural constraints on the model coefficients.

Among these, sparsity-inducing methods have shown great promise, as they enable the

identification of a parsimonious subset of relevant parameters while reducing estimation

variance. One of the most widely used approaches is the least absolute shrinkage and

selection operator (LASSO) (Tibshirani, 1996 (45)), which applies an `1-norm penalty to

encourage sparsity. Despite its effectiveness, LASSO tends to produce biased estimates

due to the uniform shrinkage it imposes across all coefficients. To mitigate this drawback,

we consider two alternatives: the smoothly clipped absolute deviation (SCAD) and the

adaptive LASSO. These methods maintain the sparsity-promoting advantages of LASSO

while improving variable selection consistency and reducing estimation bias, making them

better suited for capturing complex temporal structures in VAR models.

The smoothly clipped absolute deviation (SCAD) penalty, proposed by Fan and Li

(2001) (46), introduces a nonconvex regularization function specifically designed to alle-

viate the bias associated with large coefficient shrinkage. By applying less penalization to

large coefficients, SCAD leads to more accurate parameter estimation compared to convex

alternatives. In a similar vein, the adaptive LASSO method developed by Zou (2006) (47)

incorporates data-driven weights into the `1 penalty, allowing it to differentially penalize

coefficients based on their magnitudes. This adaptive weighting mechanism improves the

identification of truly relevant predictors while maintaining model sparsity. Both SCAD

and adaptive LASSO satisfy the oracle property, meaning they can asymptotically recover
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the true model structure of the underlying VAR system with high probability.

Over the past few decades, model selection techniques that assume a fixed number

of parameters have been widely adopted. However, in real-world applications, a large

number of variables are often introduced to reduce potential model misspecification. As

pointed out by Huber (1973 (48), 1988 (49)), Portnoy (1988) (50)), and Donoho (2000)

(51)), the total number of parameters—denoted by N2P—can be substantial and should

be treated as a function of the sample size. Following this perspective, we allow the

number of parameters to grow with T and denote it byN2
TPT . This increasing-dimensional

framework is consistent with the viewpoint of Fan and Peng (2004) (52) and Lam and

Fan (2008) (53), who advocated that in many model selection settings, the number of

parameters should increase with the sample size.

To explicitly reflect this dependence, we rewrite equations (1.4) and (1.5) as:

yt = ATxt + εt, for t = 1, . . . , T (2.1)

(ÂT , q̂u) = arg min
AT ,qu

LT (AT ,qu) (2.2)

where the objective function is defined as LT (AT ,qu) =
∑T

t=1Qu(yt −ATxt − qu).
To emphasize this dependence, we write the parameter vector as vec(AT ), which lies

in a pT -dimensional space with pT = N2
TPT . We further partition it as vec(AT ) =

(vec(AT1)
′, vec(AT2)

′)′, where vec(AT1) ∈ RsT represents the subset of relevant parame-

ters and vec(AT2) ∈ RpT−sT corresponds to parameters assumed to be zero. Accordingly,

we assume that the true coefficient vector takes the form vec(A∗T ) = (vec(A∗T1)′,0′)′,

where the sT nonzero components in vec(A∗T1) are associated with the true underlying

model. For notational convenience, if we reshape these sT active components into a

matrix, we denote it by A∗T1 ∈ RNsT×NsT PsT , implying that sT = N2
sT
PsT .

In this Chapter, we address the issue of variable/parameter selection using SQR with

adaptive LASSO and SCAD penalties. These penalization methods are well suited for

high-dimensional settings, where overparameterization often complicates estimation. The

adaptive LASSO dynamically adjusts penalty weights, addressing the bias issues associ-

ated with traditional LASSO, while SCAD minimizes estimation bias and enhances oracle
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model selection properties. These methods allow us to achieve consistent model selection

and efficient parameter estimation under mild regularity conditions.

Our approach is especially appealing for applications involving non-Gaussian or heavy-

tailed error distributions, as frequently observed in financial and environmental time

series. By integrating SQR with sparsity-inducing regularization, the proposed method-

ology enhances robustness to distributional irregularities while simultaneously achieving

model sparsity, thereby facilitating both interpretability and computational tractability

in high-dimensional regimes.

We systematically explore the incorporation of adaptive regularization techniques within

the SQR framework for VAR modeling. Due to the absence of closed-form solutions and

the presence of nonconvex objective functions, the resulting estimators present both an-

alytical and algorithmic challenges. In particular, establishing asymptotic properties

requires delicate theoretical treatment. We rigorously derive the theoretical guarantees

of the proposed estimators, including consistency and oracle properties, under mild reg-

ularity assumptions. To address the computational aspects, we develop efficient numer-

ical algorithms tailored to the nonconvex optimization landscape of the penalized SQR

problem. Extensive simulation studies and empirical analyses demonstrate the superior

performance of our method in terms of robustness, sparsity, and estimation accuracy.

The rest of this Chapter is organized as follows. In Section 2.2, we develop the oracle

model selection framework for high-dimensional VAR(P) models based on spatial quantile

regression (SQR), incorporating adaptive LASSO and SCAD penalties. In Section 2.3,

we propose a computationally efficient ADMM algorithm to solve the penalized SQR

optimization problem and describe the selection of tuning parameters. In Section 2.4,

we perform simulation studies under various error distributions and apply the proposed

methods to a real-world air pollution dataset to demonstrate their practical effectiveness.

For clarity and focus, the regularity conditions and technical proofs of the main theoretical

results are deferred to Appendix A.
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2.2 Oracle Model Selection Based on SQR

Our methodology is naturally motivated by the model specified in equation (1.4). The

spatial quantile regression (SQR) estimator of A can be obtained by minimizing the

empirical loss function in equation (1.5) over both A and qu. Since we allow the number

of parameters N2P to grow with the sample size T , estimation is conducted by solving

the following optimization problem:

LT (AT ,qu) =
T∑
t=1

Qu(yt −ATxt − qu), (2.3)

where the minimization is taken over AT and qu.

However, the loss function in (2.3) does not account for variable or parameter selection.

To address this limitation, we adopt a penalized estimation approach by minimizing the

following objective:

LT (AT ,qu) + T

NT∑
i=1

NTPT∑
j=1

pλT (|AT ij|), (2.4)

where pλT (·) denotes a generic penalty function and λT ≥ 0 is a regularization parameter

controlling the degree of shrinkage. Various choices for pλT (·) have been proposed in

the literature; in this Chapter, we focus on two widely used and theoretically justified

penalties: the adaptive LASSO and SCAD. The proposed framework, however, can be

extended to accommodate other penalty functions.

To establish the theoretical properties of the proposed penalized estimators, we first

introduce some technical assumptions. A fundamental requirement for the validity of the

vector autoregressive model is the stationarity of the underlying process. The following

assumption provides a necessary and sufficient condition for strict stationarity of the

VAR(P ) process:

Assumption 1. All roots of the matrix polynomial A(z) = IN − A1z − · · · − AP z
P ,

z ∈ C, lie outside the unit circle, where C denotes the set of complex numbers.

Assumption 1 ensures the existence of a unique strictly stationary solution to the model

specified in equation (1.4). This condition forms the basis for deriving the asymptotic

properties of the proposed spatial quantile regression estimators.



12

2.2.1 Model selection with SCAD penalty

The SCAD penalty function pλ(·), proposed by Fan and Li (2001) (46), is defined via

its first-order derivative and is symmetric about the origin. For θ > 0, its derivative is

given by

p′λ(θ) = λ

{
I(θ ≤ λ) +

(aλ− θ)+
(a− 1)λ

I(θ > λ)

}
,

where λ > 0 is a regularization parameter, a > 2 is a shape parameter, and (x)+ =

max(x, 0). This formulation corresponds to a quadratic spline with knots at λ and aλ,

ensuring that large coefficients are not overly penalized, thus reducing bias and yielding

continuous solutions.

The associated thresholding rule takes the following closed-form:

θ̂ =


sgn(z)(|z| − λ)+, if |z| ≤ 2λ,

(a−1)z−sgn(z)aλ
a−2 , if 2λ < |z| ≤ aλ,

z, if |z| > aλ,

which highlights the adaptive nature of the SCAD penalty in treating small and large

values differently.

The SCAD-penalized spatial quantile regression estimator is obtained by minimizing

the penalized objective function:

(Â
SC

T , q̂u) = arg min
AT ,qu

QSC
T (AT ,qu) (2.5)

where QSC
T (AT ,qu) = LT (AT ,qu) + T

∑NT
i=1

∑NTPT
j=1 pλT (|AT ij|). We refer to this estima-

tion procedure as the SQRSCAD method.

We establish both the consistency and asymptotic normality of the SCAD-penalized

estimator under a set of mild regularity conditions. For clarity and conciseness, all

technical assumptions and theoretical details are deferred to the Appendix.

To facilitate theoretical analysis, we vectorize the transition matrix in the model. Let

βT = vec(A′T ) denote the vectorized form of the transition matrix. Using this notation,
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the objective function in equation (2.3) can be rewritten as:

LT (βT ,qu) =
T∑
t=1

Qu(yt − ztβT − qu), (2.6)

where zt = (IN⊗x′t) is the regressor vector formed via Kronecker product. Define the full

parameter vector as θT = (βT ,qu), and let VTt = (zt,yt) denote the observable random

vector at time t.

The penalized estimation problem in equation (2.4) can then be equivalently expressed

as:

LT (θT ) + T

pT∑
j=1

pλT (|βTj|), (2.7)

where pT = N2
TPT is the total number of parameters in βT .

Theorem 1. (Consistency) Suppose that the regression function LT (θT ) satisfies con-

ditions (B1)–(B3) in Appendix A, and the penalty function pλT (·) satisfies conditions

(A2)–(A4) in Appendix A. If p4T/T → 0 as T → ∞, then there exists a local minimizer

vec(Â
SC

T ) of (2.5) such that ‖vec(Â
SC

T )− vec(A∗T )‖ = Op

(√
pT
(
T−1/2 + aT

))
, where aT

is defined in Appendix A.

Let bT =
{
p′λT (|β∗T1|) sgn(β∗T1), . . . , p

′
λT

(|β∗TsT |) sgn(β∗TsT )
}′
,

bT = Pb̃T ,

ΣλT = diag
{
p′′λT (β∗T1), . . . , p

′′
λT

(β∗TsT )
}
.

where b̃T =
{
p′λT (|φ∗T1|) sgn(φ∗T1), . . . , p

′
λT

(|φ∗TsT |) sgn(φ∗TsT )
}′
, φT = vec(AT ), and P is

the permutation matrix. Then we have βT = PφT .

Theorem 2. (Oracle property) Suppose that conditions (A1)–(B4) in Appendix A hold.

If λT → 0,
√
T/pTλT →∞, and p5T/T → 0 as T →∞, then, with probability tending to

1, the
√
T/pT -consistent local minimizer vec(Â

SC

T ) = (vec(Â
SC

T1 )′, vec(Â
SC

T2 )′)′ obtained

in Theorem 1 satisfies:

(i) Sparsity: vec(Â
SC

T2 ) = 0;
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(ii) Asymptotic normality:

√
TCTD

−1/2
T1 {DT1 + ΣλT }

× [vec(Â
SC

T1 )− vec(A∗T1) + {DT1 + ΣλT }−1b̃T ]
D−→ N (0,Σ).

Remark 1. When the sample size T is finite and sufficiently large, ΣλT = 0 and b̃T = 0.

Under this condition, the asymptotic normality result in part (ii) of Theorem 2 simplifies

to
√
TCTD

1/2
T1

(
vec(Â

SC

T1 )− vec(A∗T1)
)

D−→ N (0,Σ). This result implies that vec(Â
SC

T1 )

attains the same asymptotic efficiency as the spatial quantile regression (SQR) estimator

of vec(ÂT1) under the oracle scenario where vec(AT2) = 0 is known a priori.

2.2.2 Model selection with adaptive-LASSO penalty

As a widely used variable selection technique, the LASSO method, introduced by Tib-

shirani (1996) (45), imposes an L1 penalty to encourage sparsity in regression coefficients.

Building on this, Zou (2006) (47) proposed the adaptive LASSO, which improves upon

the traditional LASSO by assigning adaptive, data-driven weights to each parameter,

thereby achieving the oracle property.

In this section, we extend the adaptive LASSO framework to the SQR estimation of

model (2.3). Let ÃT denote the solution to the unpenalized problem min
AT ,qu

LT (AT ,qu).

By applying similar arguments as those used in the proof of Theorem 1, it can be shown

that vec(ÃT ) is
√
T/pT -consistent.

This preliminary estimate ÃT serves as the basis for constructing adaptive weights for

the penalty function. Specifically, define the weight for each coefficient as w̃T ij = |ÃT ij|−γ

for some γ > 0. The adaptive LASSO penalized SQR estimator is then obtained by

solving:
(Â

AL

T , q̂u) = arg min
AT ,qu

QAL
T (AT ,qu), (2.8)

where QAL
T (AT ,qu) = LT (AT ,qu) + ThT

∑NT
i=1

∑NTPT
j=1 w̃T ij|AT ij|), and hT is a non-

negative regularization parameter. For ease of reference, we refer to this estimator as

the SQRADLASSO method.

To facilitate theoretical analysis and derivation of asymptotic properties, we express
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the transition matrix in vectorized form. Following the same transformation as earlier,

equation (2.4) can be reformulated as:

LT (θT ) + ThT

pT∑
j=1

w̃Tj(|βTj|), (2.9)

where θT = (βT ,qu), βT = vec(A′T ), and w̃Tj = |β̃Tj|−γ denotes the adaptive weight

corresponding to the j-th element of βT .

Theorem 3. (Consistency) Suppose that the regression function LT (θT ) satisfies condi-

tions (B1)–(B3) in Appendix A. If p4T/T → 0 and
√
ThT → 0 as T →∞, then there exists

a local minimizer vec(Â
AL

T ) of (2.8) such that ‖vec(Â
AL

T )− vec(A∗T )‖ = Op(
√
pT/T ).

Let dT =
{

sgn(β∗T1)/|β̃T1|γ, . . . , sgn(β∗TsT )/|β̃TsT |γ)
}′
,

dT = Pd̃T

where d̃T =
{

sgn(φ∗T1)/|φ̃T1|γ, . . . , sgn(φ∗TsT )/|φ̃TsT |γ)
}′

and φ̃T = vec(ÃT ).

Theorem 4. (Oracle property) Suppose that the conditions of Theorem 3 and condition

(B5) in Appendix A hold. If (T/pT )(γ+1)/2hT →∞, then, with probability tending to 1,

the
√
T/pT -consistent local minimizer vec(Â

AL

T ) = (vec(Â
AL

T1 )′, vec(Â
AL

T2 )′)′ obtained in

Theorem 3 satisfies:

(i) Sparsity: vec(ÂT2) = 0;

(ii) Asymptotic normality:

√
TCTD

1/2
T1 [vec(Â

AL

T1 )− vec(A∗T1) + D−1T1hT d̃T ]
D−→ N (0,Σ).

Remark 2. It is important to note that when T is finite and sufficiently large, the

bias term d̃T in Theorem 4 is generally nonzero and therefore cannot be ignored. How-

ever, under condition (B5) in Appendix A, we have
√
ThT d̃T → 0 as T → ∞. Thus,

the asymptotic bias vanishes in the limit, and part (ii) of Theorem 4 simplifies to
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√
TCTD

1/2
T1

(
vec(Â

AL

T1 )− vec(A∗T1)
)

D−→ N (0,Σ). When this result is combined with the

conclusion in Remark 1, it confirms that both the SQRADLASSO and SQRSCAD esti-

mators achieve the oracle property asymptotically.

2.3 ADMM-Based Optimization and Tuning Parameter Selection

2.3.1 Using ADMM Algorithm to estimate AT and qu

In this section, we introduce the Alternating Direction Method of Multipliers (ADMM)

to estimate AT and qu in the penalized spatial quantile regression (SQR) model.

To facilitate efficient computation, we introduce an auxiliary variable ZT and reformu-

late the optimization problem in equation (2.4) as:

min
AT ,qu,ZT

T∑
t=1

Qu(yt −ATxt − qu) + T

NT∑
i=1

NTPT∑
j=1

pλT (|ZT ij|) subject to AT = ZT ,

where pλT (·) is a penalty function such as SCAD or adaptive LASSO.

The corresponding augmented Lagrangian function is given by:

L(AT ,qu,ZT ,Λ) =
T∑
t=1

Qu(yt−ATxt−qu)+T

NT∑
i=1

NTPT∑
j=1

pλT (|ZT ij|)+
ρ

2
‖AT −ZT +Λ‖2F ,

where Λ is the dual variable and ρ > 0 is a tuning parameter that controls the penalty

on the constraint violation. This reformulation leads to efficient update steps for AT and

qu, which are iteratively implemented in Algorithm 1.

Note that the AT -update and qu-update steps can be efficiently solved using itera-

tive optimization techniques such as iterative reweighted least squares (IRLS), gradient

descent, or Newton’s method, depending on the structure of the loss function. The ZT -

update corresponds to a proximal operator problem, which admits a closed-form solution

via element-wise soft-thresholding.

As a result, the ADMM algorithm alternately updates AT , qu, ZT , and the dual

variable to iteratively minimize the augmented Lagrangian. This approach not only
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Algorithm 1 ADMM algorithm

1: Initialize: A(0)
T ,q(0)

u ,Z(0)
T ,Λ(0)

2: repeat
3: A(k+1)

T ,q(k+1)
u ← arg min

AT ,qu

{∑T
t=1Qu(yt −ATxt − qu) + ρ

2
‖AT − Z(k)

T + Λ(k)‖2F
}

4: Z(k+1)
T ← arg min

ZT

{
T
∑NT

i=1

∑NTPT
j=1 pλ(|ZT ij|) + ρ

2
‖A(k+1)

T − ZT + Λ(k)‖2F
}

5: Λ(k+1) ← Λ(k) + (A(k+1)
T − Z(k+1)

T )
6: Check Convergence
7: If ‖A(k+1)

T − Z(k+1)
T ‖F < ε and ‖Z(k+1)

T − Z(k)
T ‖F < ε, then stop.

8: until convergence
9: Return: Optimal AT ,qu,ZT ,Λ

enhances computational efficiency but also facilitates the enforcement of sparsity through

penalization. Moreover, the framework is flexible and can be extended to accommodate

alternative penalty functions or additional structural constraints as needed.

2.3.2 Choice of the tuning parameters

For penalized SQR estimators, selecting appropriate tuning parameters λT and hT is

essential for SCAD and adaptive LASSO penalties, respectively. These parameters can

be selected using similar procedures. Here, we focus on the choice of λT for illustration.

Common approaches include the generalized cross-validation (GCV) criterion (Wang,

Li, and Tsai, 2007 (54)) and the Schwarz Information Criterion (SIC), as discussed in

Koenker, Ng, and Portnoy (1994) (55) and Zou and Yuan (2008b) (56).

Since the resulting estimators depend on the tuning parameter λT , we denote them by

(ÂλT , q̂uλT ) to emphasize this dependence. Using the SIC method, we propose selecting

λT by minimizing the following criterion:

SIC(λT ) = log

{
1

T
LT (ÂλT , q̂uλT )

}
+

log(T )

2T
df(λT ),

where df(λT ) is the effective degrees of freedom of the fitted model that calibrates the

complexity of model.

Following Koenker, Ng, and Portnoy (1994) (55), for each given λT we define the index

set

EλT =
{
t : yt − ÂλTxt − q̂uλT = 0

}
,
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and estimate df(λT ) using the cardinality |EλT |, as suggested by Jiang, Jiang, and Song

(2012) (57). Consequently, the tuning parameter λT is estimated by

λ̂T = arg min
λT

{
log

(
1

T
LT (ÂλT , q̂uλT )

)
+

log(T )

2T
|EλT |

}
.

2.4 Simulation Studies and Real Data Application

2.4.1 Simulation studies

In this section, we present simulation results to evaluate the finite-sample performance

of the SQR estimators and their associated model selection capabilities. Specifically, we

consider a stationary VAR(2) model given by:

yt = A1yt−1 + A2yt−2 + εt.

which can be rewritten in compact form as:

yt = Axt + εt.

where A = (A1,A2) is the coefficient matrix, and xt = (y′t−1,y′t−2)′ denotes the stacked

lagged vectors. The innovation process εt follows a specified distribution, to be detailed

later.

The true coefficient matrix is specified as:

A = [A1,A2] =

−0.8 0.6 0 0

−0.7 0.5 0 0


ensuring the stationarity of the VAR(2) process.

We investigate the performance of two penalization methods: with γ = 1, defined

by hT
∑NT

i=1

∑NTPT
j=1 |AT ij|/|ÃT ij|; the SCAD penalty, defined by

∑NT
i=1

∑NTPT
j=1 pλT (|Aij|),

where hT and λT are tuning parameters and ÃT ij’s are consistent estimators of AT ij’s.

For the adaptive LASSO, we adopt γ = 1, corresponding to the nonnegative garrote

(Breiman, 1995 (58)), as discussed in Zou (2006) (59). Although other choices for γ are
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possible, no universally optimal value exists.

The tuning parameters are selected via the Schwarz Information Criterion (SIC), as

described in the previous section.

We generated synthetic data from the working VAR(2) model for sample sizes T =

300, 400, 500, and 600. For each value of T , we conducted 500 Monte Carlo replications.

In each simulation, the time series data were independently generated according to the

VAR(2) specification described earlier.

To assess the robustness of the proposed estimation methods under different distribu-

tional settings, we considered four types of error distributions for the innovation term:

i. εt follows a bivariate normal distribution with mean µ = (0, 0)′ and covariance

matrix Σ =

1.0 0.5

0.5 1.0

.
ii. εt follows a bivariate t-distribution with degree of freedom 3 and covariance matrix

Σ =

1.0 0.5

0.5 1.0

.
iii. 95% of data points follow a bivariate normal distribution with mean µ = (0, 0)′ and

covariance matrix Σ =

1.0 0.0

0.0 1.0

. The remaining 5% follow a normal distribution

with mean µ = (0, 0)′ and covariance matrix Σ =

25.0 0.0

0.0 25.0

.
iv. εt follows a bivariate laplace distribution with mean µ = (0, 0)′ and covariance

matrix Σ =

1.0 0.5

0.5 1.0

.
These different error structures allow us to evaluate the performance of the penalized

SQR estimators under both light-tailed and heavy-tailed scenarios.

We compared five estimation methods: the penalized SQR estimation (SCAD, AD-

LASSO, and LASSO), the oracle maximum likelihood (OML) estimator, and the oracle

unpenalized spatial quantile regression (SQR-Oracle) estimator. In each simulation, the
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"root of mean squared errors (RMSE)" for different coefficient estimators were calculated,

and their average over simulations is reported in Tables 2.1 − 2.4, where Σ denotes the

sum of RMSE for all components in A.

To assess variable selection accuracy, we computed the true positives (TP) and false

positives (FP). Specifically, TP denotes the average number of non-zero coefficients cor-

rectly identified, while FP represents the average number of zero coefficients incorrectly

estimated as non-zero, see Tables 2.1−2.4. A coefficient was considered zero if its estimate

was smaller than 10−8 in absolute value.

Table 2.1: RMSE (multiplied by 103) of penalized estimators under the normal error.

n = 300 n = 400

Estimates Â1,11 Â1,12 Â1,21 Â1,22 Σ TP FP Â1,11 Â1,12 Â1,21 Â1,22 Σ TP FP

OML 63 67 62 67 259 55 57 56 57 224
SQR-Oracle 72 77 71 77 297 62 64 62 65 252
SC-SQR 81 80 87 84 396 4 0.030 67 67 73 68 317 4 0.012
AD-SQR 78 78 86 84 405 4 0.038 66 65 72 68 336 4 0.028
LA-SQR 79 78 81 78 637 4 2.446 67 65 70 65 543 4 2.210

n = 500 n = 600

OML 48 50 50 51 200 43 45 45 47 179
SQR-Oracle 53 56 56 59 224 47 51 50 54 202
SC-SQR 59 58 63 61 252 4 0.002 54 53 57 55 219 4 0.000
AD-SQR 57 57 63 61 254 4 0.004 52 52 57 55 216 4 0.000
LA-SQR 58 58 62 60 485 4 2.076 53 53 55 55 445 4 1.964

Note: SC-SCAD, AD-Adaptive LASSO, LA-LASSO.

Table 2.2: RMSE (multiplied by 103) of penalized estimators under the t(3) error.

n = 300 n = 400

Estimates Â1,11 Â1,12 Â1,21 Â1,22 Σ TP FP Â1,11 Â1,12 Â1,21 Â1,22 Σ TP FP

OML 48 51 47 48 194 39 43 39 42 163
SQR-Oracle 50 53 48 51 202 40 45 40 44 169
SC-SQR 54 56 55 53 244 4 0.008 45 47 45 45 190 4 0.002
AD-SQR 54 56 55 52 250 4 0.008 44 47 45 45 199 4 0.008
LA-SQR 54 56 55 53 449 4 1.948 45 47 45 45 373 4 1.646

n = 500 n = 600

OML 35 38 36 37 145 31 34 32 33 130
SQR-Oracle 36 39 37 39 151 32 36 33 35 135
SC-SQR 39 41 41 39 169 4 0.002 36 36 36 35 143 4 0.000
AD-SQR 39 41 41 39 175 4 0.004 35 36 36 35 143 4 0.000
LA-SQR 39 41 41 40 330 4 1.476 35 36 36 35 292 4 1.322

Note: SC-SCAD, AD-Adaptive LASSO, LA-LASSO.

The simulation results show that the OML estimator achieves the best overall per-

formance, with the lowest RMSE across all settings, serving as a natural performance
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Table 2.3: RMSE (multiplied by 103) of penalized estimators under the mixed normal
error.

n = 300 n = 400

Estimates Â1,11 Â1,12 Â1,21 Â1,22 Σ TP FP Â1,11 Â1,12 Â1,21 Â1,22 Σ TP FP

OML 34 36 33 35 137 29 32 28 31 121
SQR-Oracle 39 40 38 39 156 33 36 32 34 136
SC-SQR 51 51 48 41 210 4 0.006 42 45 39 36 171 4 0.002
AD-SQR 48 48 48 41 214 4 0.014 38 43 39 36 167 4 0.004
LA-SQR 47 50 49 45 414 4 1.902 40 43 40 39 344 4 1.642

n = 500 n = 600

OML 26 28 25 27 107 23 26 23 24 97
SQR-Oracle 29 32 28 30 119 26 29 26 27 108
SC-SQR 37 38 34 33 142 4 0.000 33 34 31 30 129 4 0.000
AD-SQR 35 37 34 33 147 4 0.004 33 33 31 30 132 4 0.002
LA-SQR 36 37 35 35 298 4 1.362 33 34 32 32 269 4 1.208

Note: SC-SCAD, AD-Adaptive LASSO, LA-LASSO.

Table 2.4: RMSE (multiplied by 103) of penalized estimators under the laplace error.

n = 300 n = 400

Estimates Â1,11 Â1,12 Â1,21 Â1,22 Σ TP FP Â1,11 Â1,12 Â1,21 Â1,22 Σ TP FP

OML 44 48 43 47 181 38 42 37 40 157
SQR-Oracle 45 49 44 48 187 39 43 38 41 161
SC-SQR 51 52 50 49 228 4 0.010 43 45 41 41 171 4 0.000
AD-CQR 49 51 47 49 233 4 0.012 42 45 41 42 176 4 0.002
LA-CQR 49 51 49 49 405 4 1.746 42 45 41 42 339 4 1.414

n = 500 n = 600

OML 33 35 32 35 134 30 32 28 31 122
SQR-Oracle 34 36 32 35 136 30 33 29 32 124
SC-SQR 37 38 34 36 145 4 0.000 33 35 31 32 132 4 0.000
AD-SQR 36 37 34 36 151 4 0.002 33 34 31 32 138 4 0.002
LA-SQR 36 37 35 37 293 4 1.236 33 34 31 33 263 4 1.098

Note: SC-SCAD, AD-Adaptive LASSO, LA-LASSO.
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benchmark. SQR-Oracle estimator provides a strong reference point, achieving RMSE

close to OML and illustrating the potential of spatial quantile regression when the true

sparsity structure is known. The SCAD and ADLASSO penalized SQR estimators per-

form comparably to the oracle estimator, demonstrating both low RMSE and strong vari-

able selection ability. In contrast, the LASSO-based SQR method performs the worst,

both in terms of estimation error and variable selection accuracy. As the sample size in-

creases, the number of false positives consistently decreases across all methods, indicating

improved variable selection in larger samples.

In summary, the SCAD and ADLASSO penalized SQR methods demonstrate strong

performance in terms of robustness, estimation accuracy, and sparsity recovery, nearly

matching the oracle estimator under large sample sizes. The results confirm the ad-

vantages of incorporating penalization into spatial quantile regression, particularly in

high-dimensional and heavy-tailed settings.

2.4.2 Real data applications

In this section, we analyze an air pollution dataset comprising multivariate time series

with dimension N = 5. The series includes four key air pollutants—carbon monoxide

(CO), nitric oxide (NO), nitrogen dioxide (NO2), and ozone (O3)—along with solar radi-

ation intensity (R). These variables were measured hourly throughout the year 2006 at

a monitoring station in Azusa, California. The data were obtained from the Air Qual-

ity and Meteorological Information System (AQMIS), resulting in a total of T = 8370

observations.

To facilitate an initial exploration, we compute the daily averages of each component

over the one-year period. The resulting time series plots are presented in Figure 2.1,

providing a visual overview of the temporal patterns and potential interactions among

the variables.

When incorporating regularization techniques such as Adaptive LASSO or SCAD into

the VAR model, standardization becomes an essential preprocessing step. These methods

impose penalties on model coefficients to control complexity and prevent overfitting;

however, the penalties are scale-sensitive. If variables differ substantially in magnitude or
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Figure 2.1: Average of Daily Concentration of CO, NO, NO2, and O3, and the solar
radiation R.

units, the regularization may disproportionately penalize those with larger scales, leading

to biased estimates and distorted model interpretation.

Standardization addresses this issue by rescaling all variables to have zero mean and

unit variance, thereby placing them on a comparable scale. This ensures that the penalty

terms are applied equitably across variables, allowing for a fair assessment of each pre-

dictor’s relative importance. Without standardization, predictors with larger scales may

dominate the penalty term, undermining the effectiveness of regularization and poten-

tially resulting in suboptimal estimates.

By standardizing the variables, we enhance both the stability and interpretability of

the regularized VAR model. Therefore, standardization was applied to the air pollution

dataset described earlier. The standardized time series are shown in Figure 2.2.

We applied four estimation methods—SQR, SQRSCAD, SQRADLASSO, and SQR-

LASSO—to analyze the standardized dataset. Following the approach in Davis, Zang,

and Zheng (2016) (60), we set the lag order to P = 4. After estimating the model

coefficients using each method, we computed daily predictions from hour 4 to hour 23.
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Figure 2.2: Standardized Average of Daily Concentration of CO, NO, NO2, and O3, and
the solar radiation R.

The comparison between the predicted and observed values for each method is pre-

sented in Figures 2.3–2.6. Additionally, Table 2.5 reports the root mean squared errors

(RMSE) corresponding to the different estimation techniques.

Table 2.5: RMSE under Different Estimation Methods.

SQR SQRSCAD SQRADLASSO SQRLASSO
RMSE 1.0 1.2 1.2 1.6

In addition, Figure 2.7 presents the heatmaps of the estimated coefficient matrices for

the four estimation methods. These visualizations provide insight into the structure of

the estimated parameters, particularly in terms of sparsity and the relative importance

of individual coefficients. The color intensity reflects the magnitude of the estimates:

darker shades of blue indicate larger absolute values, whereas lighter shades (closer to

white) correspond to smaller or near-zero estimates.

The four estimation methods, SQR, SQRADLASSO, SQRSCAD, and SQRLASSO,

exhibit distinct characteristics in balancing model sparsity and estimation accuracy.

The SQR method delivers the highest estimation accuracy, with predicted values closely
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Figure 2.3: Comparison between the estimated and true values for SQR.

matching the true observations, as illustrated in Figure 2.3. However, its lack of sparsity

limits interpretability in high-dimensional contexts, as shown in Figure 2.7(a).

To address this issue, SQRSCAD and SQRADLASSO incorporate regularization to

induce sparsity, effectively setting many coefficients to zero while preserving estimation

accuracy. As evidenced by their RMSE values, both methods achieve prediction per-

formance comparable to that of SQR. Among them, SQRADLASSO offers a balanced

trade-off between sparsity and accuracy through adaptive penalization, while SQRSCAD

further reduces the risk of over-shrinkage, resulting in slightly more retained nonzero

coefficients.

In contrast, SQRLASSO yields the sparse model but tends to over-penalize, leading

to the omission of relevant variables and consequently higher estimation errors. The

heatmaps of the estimated coefficients in Figure 2.7 visually underscore these trade-offs.

Overall, both SQRSCAD and SQRADLASSO emerge as the most effective methods,

striking an balance between model interpretability and predictive performance.
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Figure 2.4: Comparison between the estimated and true values for SQRSCAD.

In summary, the empirical analysis demonstrates that while SQR achieves the highest

predictive accuracy, it lacks the sparsity required for interpretability in high-dimensional

settings. Both SQRSCAD and SQRADLASSO effectively introduce sparsity without sac-

rificing much in estimation accuracy, making them well-suited for practical applications

where variable selection is critical. Among these, SQRADLASSO offers a more balanced

trade-off, whereas SQRSCAD provides slightly more flexibility in retaining informative

variables. Although SQRLASSO enforces the sparsity, it may lead to increased estima-

tion error due to over-penalization. Overall, SQRSCAD and SQRADLASSO emerge as

the preferred choices for achieving both interpretability and predictive performance in

penalized spatial quantile regression for VAR models.

An important extension of this work is to incorporate tensor decomposition structures

into the regularized VAR modeling framework. Specifically, representing the coefficient

matrices of a high-dimensional VAR model as low-rank tensors using Tucker or CP decom-

positions can significantly reduce model complexity while preserving the multidimensional
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Figure 2.5: Comparison between the estimated and true values for SQRADLASSO.

dependency structure. By integrating such tensor representations with sparsity-inducing

penalties—such as adaptive LASSO, SCAD, or group penalties—one can achieve simul-

taneous dimensionality reduction and variable selection. This hybrid approach would be

particularly beneficial in settings where the number of variables and lags is very large,

leading to severe overparameterization.

This approach is particularly appealing in large-scale time series analysis, where the di-

mensionality of the coefficient space grows rapidly with the number of variables and lags.

Developing efficient algorithms for penalized tensor-based SQR estimation and study-

ing their theoretical properties—such as estimation consistency and variable selection

consistency—would be a valuable direction for future research.
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Figure 2.6: Comparison between the estimated and true values for SQRLASSO.

(a) (b)

(c) (d)

Figure 2.7: Heatmap of (a) SQR, (b) SARSCAD, (c) SQRADLASSO, and (d) SQR-
LASSO.



CHAPTER 3: SPATIAL QUANTILE ESTIMATION OF HIGH-DIMENSIONAL

VAR(P ) VIA TENSOR DECOMPOSITION

3.1 Overview

As mentioned in the Introduction, it is natural to consider integrating the transition

matrix of the VAR model with a tensor structure. Therefore, in this chapter, we propose

an estimation method that combines spatial quantile regression with tensor decomposi-

tion.

In addition to multilinear structure mentioned in the Introduction, we incorporate spar-

sity into the tensor decomposition for further interpretability and estimation efficiency.

Prior work has explored sparsity in matrix decomposition through various strategies. For

example, Chen and Huang (2012 (61)) and Bunea, She, and Wegkamp (2012 (62)) con-

sidered row-wise sparsity, while Lian, Feng, and Zhao (2015 (63)) imposed element-wise

sparsity on the coefficient matrix. Chen, Chan, and Stenseth (2012 (64)) proposed a

sparse singular value decomposition by relaxing orthogonality constraints, whereas Ue-

matsu et al. (2019 (65)) simultaneously enforced both sparsity and strict orthogonality.

Our method extends these ideas to the tensor framework, enabling a structured and

interpretable representation of the transition matrices.

Our approach is further motivated by recent advances in tensor regression for high-

dimensional data (Zhou, Li, and Zhu, 2013 (66); Li and Zhang, 2017 (67); Sun and Li,

2017 (68); Li et al., 2018 (69); Raskutti, Yuan, and Chen, 2019 (39)). By integrating

tensor decomposition with spatial quantile regression, we propose a novel framework that

achieves both robustness and scalability in high-dimensional VAR analysis.

The proposed model offers the following key advantages:

(i) Multidirectional Dimensionality Reduction: The Tucker decomposition reduces the

parameter space along three structural dimensions, preserving essential dynamic

dependencies and improving estimation robustness.
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(ii) Sparse and Structured Estimation: `1-regularization on the factor matrices induces

sparsity, enhancing model interpretability and efficiency.

(iii) Efficient Optimization via ADMM: The Alternating Direction Method of Multipli-

ers effectively incorporates both sparsity and orthogonality constraints, ensuring

computational efficiency and accurate estimation.

In summary, our framework provides a robust and interpretable approach to high-

dimensional VAR modeling by combining multilinear low-rank tensor decomposition with

spatial quantile regression, effectively addressing both over-parameterization and estima-

tion instability.

The remainder of this article is organized as follows. Section 3.2 provides a detailed

overview of tensor decomposition, and introduces the proposed modeling framework. In

Section 3.3, we establish the asymptotic properties of the MLRSQR estimator and de-

velop an alternating optimization algorithm for its implementation. Section 3.4 extends

the methodology to incorporate sparse higher-order reduced-rank estimation, simultane-

ously addressing orthogonality and sparsity constraints, and derives the corresponding

asymptotic theory. An efficient ADMM-based algorithm is also introduced for estimation.

Section 3.5 presents a consistent procedure for rank selection. Section 3.6 conducts ex-

tensive simulation studies to assess the empirical performance of the proposed estimators,

while Section 3.7 illustrates the practical utility of our method through an application to

real-world data. All technical proofs are provided in the Appendix B.

3.2 Multilinear Low-Rank VAR models with Spatial Quantile Regression

3.2.1 Tensor Decomposition

Tensors, or multidimensional arrays, generalize vectors and matrices to higher dimen-

sions, providing a natural framework for representing multiway data. A tensor of order

K, denoted by X ∈ Rp1×···×pK , consists of elements indexed by K dimensions, commonly

referred to as modes. This work focuses primarily on third-order tensors (K = 3), which

form the foundation of our proposed modeling approach. For a comprehensive review of

tensor operations and notation, we refer readers to Kolda and Bader (2009) (43).
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Throughout this article, we adopt the following notational conventions: lowercase bold-

face letters (e.g., x,y) represent vectors, uppercase boldface letters (e.g., X,Y) denote

matrices, and Euler script letters (e.g., X ,Y) are used for tensors. The `1, `2, and `∞

norms of a vector x are defined as ‖x‖1, ‖x‖2, and ‖x‖∞, respectively. For a matrix X,

we define ‖X‖F as the Frobenius norm, ‖X‖1 = ‖vec(X)‖1 as the vectorized `1 norm,

‖X‖0 as the count of nonzero entries (the `0 norm), ‖X‖2 as the spectral norm, ‖X‖op

as the operator norm, and ‖X‖∗ as the nuclear norm. The notation vec(X) denotes the

column-wise vectorization of X, and X′ or XT represents its transpose. We denote the

j-th largest singular value of a matrix X by σj(X).

For third-order tensors X ∈ Rp1×p2×p3 , we define the Frobenius norm as

‖X‖F =

(
p1∑
i=1

p2∑
j=1

p3∑
k=1

X 2
ijk

)1/2

,

and the `0 norm as

‖X‖0 =

p1∑
i=1

p2∑
j=1

p3∑
k=1

1(Xijk 6= 0),

which counts the number of nonzero elements in X . These definitions establish a unified

notation framework that facilitates clarity and consistency throughout the theoretical

development of the proposed methodology.

To facilitate tensor algebra and analysis, we frequently employ matricization, the pro-

cess of unfolding a tensor into a matrix. For a tensor X ∈ Rp1×p2×p3 , its mode-1 matri-

cization X(1) arranges the mode-1 fibers as columns of a matrix in Rp1×(p2p3), where the

entry at position {i, (k− 1)p2 + j} corresponds to Xijk. Similarly, the mode-2 and mode-

3 matricizations, denoted X(2) and X(3), are formed by reshaping along the second and

third modes, respectively. These matricizations provide a crucial bridge between tensor

operations and classical matrix analysis, enabling efficient computation and theoretical

derivation.

A key operation in tensor analysis is mode-wise multiplication. For instance, the mode-
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1 product between a tensor X ∈ Rp1×p2×p3 and a matrix Y ∈ Rq1×p1 is defined by

X ×1 Y =

(
p1∑
i=1

XijkYsi

)
1≤s≤q1, 1≤j≤p2, 1≤k≤p3

.

Mode-2 and mode-3 multiplications, denoted by ×2 and ×3, are defined analogously.

These multilinear products form the computational foundation of tensor decomposition

methods.

The multilinear rank of a tensor characterizes its low-dimensional structure across

different modes. For a tensor X ∈ Rp1×p2×p3 , the multilinear ranks (r1, r2, r3) are defined

as the ranks of its respective matricizations:

r1 = rank(X(1)) = dim
(
span

{
X[:,j,k] | 1 ≤ j ≤ p2, 1 ≤ k ≤ p3

})
,

r2 = rank(X(2)), r3 = rank(X(3)).

Unlike matrices, where row and column ranks are equal, the ranks across tensor modes

can differ, providing a richer structural characterization. These multilinear ranks serve as

the basis for Tucker decomposition, which enables compact representation and efficient

inference in tensor models.

The Tucker decomposition (Tucker, 1966 (70); De Lathauwer, De Moor, and Vande-

walle, 2000 (71)) expresses a tensor X ∈ Rp1×p2×p3 as a multilinear transformation of a

lower-dimensional core tensor Y ∈ Rr1×r2×r3 :

X = Y ×1 Y1 ×2 Y2 ×3 Y3,

where each factor matrix Yj ∈ Rpj×rj for j = 1, 2, 3 encodes the basis vectors spanning the

mode-j subspace. This decomposition projects the original tensor onto a low-dimensional

multilinear subspace, preserving its essential structure while substantially reducing its

dimensionality.

A more compact notation for the Tucker decomposition is given by

X = [[Y ; Y1,Y2,Y3]],
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which highlights the joint transformation of the core tensor by the factor matrices along

each mode. The Tucker framework plays a central role in high-dimensional modeling,

offering both structural interpretability and computational efficiency. In the context of

our proposed model, it serves as a powerful tool for representing the transition dynamics

of high-dimensional VAR processes under multilinear constraints.

3.2.2 Multilinear Low-Rank Vector Autoregression

To accommodate the complex dynamics of high-dimensional time series, we reformulate

the traditional VAR model using a multilinear low-rank structure. This is achieved by

organizing the set of transition matrices into a third-order tensor and applying Tucker

decomposition for dimensionality reduction and structural regularization.

Consider the VAR(P ) model in (1.1). The P transition matrices A1, . . . ,AP can

be naturally rearranged into a third-order tensor A ∈ RN×N×P , where the first two

modes correspond to spatial dependencies, and the third mode encodes the temporal lag

structure. This tensor representation facilitates the application of tensor decomposition

techniques and offers a compact, structured formulation of the coefficient space. An

illustration of this construction is provided in Figure 3.1.

Let A(j) denote the mode-j matricization of A for j = 1, 2, 3. These matricizations

offer alternative perspectives on the transition structure:

• A(1) = (A1, . . . ,AP ) captures the column space across lags.

• A(2) = (A′1, . . . ,A
′
P ) captures the row space.

• A(3) = (vec(A1)
′, . . . , vec(AP )′)′ encodes the vectorized transition matrices.

Under this formulation, the VAR model can be equivalently written as:

yt = A(1)xt + εt, (3.1)

where xt = (y′t−1, . . . ,y′t−P )′ stacks the lagged responses. To further reduce dimensional-
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ity, we assume that A admits a Tucker decomposition with multilinear ranks (r1, r2, r3):

A = G ×1 U1 ×2 U2 ×3 U3 = [[G; U1,U2,U3]],

where G ∈ Rr1×r2×r3 is the core tensor, and U1 ∈ RN×r1 , U2 ∈ RN×r2 , and U3 ∈ RP×r3

are the factor matrices. Substituting this into (3.1) yields:

yt = (G ×1 U1 ×2 U2 ×3 U3)(1)xt + εt. (3.2)

This formulation defines the multilinear low-rank VAR model, which captures com-

plex spatio-temporal dependencies with far fewer parameters than conventional VAR or

reduced-rank models (Wang, Zheng, Lian, and Li, 2022 (44)). Leveraging the property

that (G ×1 U1 ×2 U2 ×3 U3)(1) = U1G(1)(U3 ⊗ U2)
′, where ⊗ denotes the Kronecker

product, we obtain an equivalent, matrix-based representation:

yt = U1G(1)(U3 ⊗U2)
′xt + εt = U1G(1)vec(U′2XtU3) + εt, (3.3)

where Xt = (yt−1, . . . ,yt−P ) ∈ RN×P is the lagged observation matrix.

To ensure a well-defined decomposition, we adopt the higher-order singular value de-

composition (HOSVD) (De Lathauwer et al., 2000 (71)), which imposes orthonormality

on the factor matrices and mutual orthogonality on the core tensor slices. Specifically,

Uj contains the top rj left singular vectors of A(j), and the core tensor is recovered via:

G = A×1 U′1 ×2 U′2 ×3 U′3.

This formulation ensures that the core tensor G possesses the all-orthogonal property,

which means that for j = 1, 2, 3, the rows of G(j) are mutually orthogonal.

Remark 3. By leveraging the higher-order singular value decomposition (HOSVD), the

multilinear low-rank VAR model in (2.7) achieves substantial dimensionality reduction.

Specifically, the total number of parameters required by the model is r1r2r3+(N−r1)r1+
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(N − r2)r2 + (P − r3)r3, which grows linearly with both N and P ; see Zhang (2019) (72).

This is in stark contrast to the standard VAR model in (1.1), which entails estimating

N2P parameters. Even when compared to the reduced-rank VAR model in (1.2), which

requires (NP + N − r1)r1 parameters where r1 = rank(A(1)), the multilinear formula-

tion offers a significantly more parsimonious parameterization. These results highlight

the efficiency of the multilinear low-rank structure in capturing the essential dynamic

dependencies while substantially mitigating the curse of dimensionality inherent in high-

dimensional VAR modeling.

Moreover, U1 is an orthonormal matrix, multiplying both sides of (3.3) by U′1 yields a

latent factor representation:

U′1yt = G(1)(U3 ⊗U2)
′xt + U′1εt = G(1)vec(U′2XtU3) + U′1εt. (3.4)

Model (2.9) reveals an interpretable dynamic factor structure. The transformed response

U′1yt corresponds to r1 latent response factors, while the bilinear form U′2XtU3 captures

interactions among spatial and temporal predictor factors.

Specifically, the rows of U1 serve as response loadings, mapping the originalN -dimensional

outcomes to r1 latent components. If an entry of U1 is zero, the corresponding response

variable does not contribute to the associated factor. The matrix U2 similarly defines

loadings for spatial predictors, and U3 captures temporal dynamics across lags. For sim-

plicity, refer to r1, r2, and r3 as the response rank, predictor rank, and temporal rank,

respectively. Together, this structure provides both interpretability and parsimony, par-

alleling developments in matrix variate regression and dynamic factor models (Zhao and

Leng, 2014 (73); Ding and Cook, 2018 (74)).

Figure 3.1: Tensor representation of P transition matrices in a VAR model.
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3.3 Spatial Quantile Regression Estimation via Tensor Decomposition

3.3.1 Multilinear Low-Rank Spatial Quantile Regression Estimation

We now introduce the Multilinear Low-Rank Spatial Quantile Regression (MLRSQR)

estimator for the VAR model reformulated in (3.2). Under the assumption that the

transition tensor A admits a multilinear low-rank Tucker structure with known ranks

(r1, r2, r3), we define the MLRSQR estimator as the minimizer of a quantile loss function

over the core tensor, the factor matrices, and the conditional quantile shift:

ÂMLRSQR ≡ {[[Ĝ; Û1, Û2, Û3]], q̂u} = arg min
G,U1,U2,U3,qu

L(G,U1,U2,U3,qu), (3.5)

where the objective function is defined as

L(G,U1,U2,U3,qu) =
T∑
t=1

Qu

(
yt − (G ×1 U1 ×2 U2 ×3 U3)(1)xt − qu

)
. (3.6)

Here, qu represents the u-th quantile of the error term εt, which is estimated as

qu = arg min
qu∈Rk

E
[
Qu(εt − q)−Qu(εt)

]
. (3.7)

While the optimization problem in (3.5) is unconstrained, it inherits the intrinsic non-

uniqueness of Tucker decompositions due to rotational and scaling indeterminacy among

the factor matrices. This non-identifiability does not affect the consistency of the es-

timated transition tensor ÂMLRSQR but may influence the interpretability of individual

components.

To establish the asymptotic properties of the MLRSQR estimator under the assumption

that bothN and P are fixed and the true multilinear ranks (r1, r2, r3) are known, we define

the overparameterized vector of parameters as φ = (vec(G(1))′, vec(U1)
′, vec(U2)

′, vec(U3)
′)′,

and denote its estimator by φ̂MLRSQR. Let the mapping h(φ) = vec(A(1)) = vec(U1G(1)(U3⊗

U2)
′) represent the vectorized mode-1 matricization of the Tucker-form transition tensor.
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We also define the block autocovariance matrix Γ∗ as:

Γ∗ =



Γ0 Γ1 · · · ΓP−1

Γ′1 Γ0 · · · ΓP−2

...
... . . . ...

Γ′P−1 Γ′P−2 · · · Γ0


, where Γj = Cov(yt+j,yt) for j ≥ 0.

Let J = [D1(u)D−12 (u)D1(u)] ⊗ Γ∗, and denote H as the Jacobian matrix of h(φ) with

respect to φ.

Theorem 5. Suppose the time series {yt} follows model (2.7), and Assumption 1 and

condition C4 in Appendix B hold. Assume further that (r1, r2, r3) are known and both

N and P are fixed. Then,

√
T
{
vec((ÂMLRSQR)(1))− vec(A(1))

}
D−→ N (0,ΣMLRSQR), (3.8)

where ΣMLRSQR = H(H′JH)†H′, and † denotes the Moore–Penrose inverse.

The proof of Theorem 5 builds on the asymptotic analysis of overparameterized models

via techniques from Shapiro (1986) (75). Crucially, it does not rely on the uniqueness

of the Tucker components G and Uj, thereby ensuring robustness of the result without

imposing identification constraints.

However, if the objective is to consistently recover the true HOSVD components G

and Uj of the transition tensor A, it becomes necessary to ensure the uniqueness of the

Tucker decomposition. This requirement can be satisfied under the following assumption:

Assumption 2. For j = 1, 2, 3, (i) the singular values of A(j) are distinct; (ii) the first

element in every column of Uj is positive.

Remark 4. Condition (i) in Assumption 2 ensures uniqueness up to permutation and

scaling of the factor matrices, while (ii) provides a standard sign constraint to fix orien-

tation, as commonly adopted in low-rank matrix decomposition (Li et al., 2016 (76)).

Using constraints, one can reconstruct the HOSVD-based estimators as follows: extract

the top rj left singular vectors of the mode-j matricization of ÂMLRSQR to form Ûj,
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ensuring that the first element of each column is positive; then compute the core tensor

by projecting Ĝ = ÂMLRSQR ×1 Û
′
1 ×2 Û

′
2 ×3 Û

′
3. As a result, both estimators Ĝ and Ûj

are consistent and asymptotically normal, thus ensuring statistically efficient estimation

of the underlying multilinear low-rank structure.

Corollary 1. Suppose the conditions in Theorem 5 and Assumption 2 hold, Then,

the estimators of the core tensor and factor matrices satisfy the asymptotic normality

properties:
√
T (vec(Ĝ) − vec(G))

D−→ N(0,ΣG),
√
T (vec(Û1) − vec(U1))

D−→ N(0,ΣU1),
√
T (vec(Û2)− vec(U2))

D−→ N(0,ΣU2), and
√
T (vec(Û3)− vec(U3))

D−→ N(0,ΣU3).

The result in Corollary 2 demonstrates that the estimator ÂMLRSQR is asymptotically

more efficient than the spatial quantile regression (SQR) estimator ÂSQR, which is defined

as

(ÂSQR, q̂u) = arg min
A,qu

Qu (yt −Axt − qu) (3.9)

where A = (A1, . . . ,AP ) denotes the full transition matrix such that A ∈ RN×NP in the

original model (1.4). We denote by ÂSQR the transition tensor constructed from ÂSQR.

Corollary 2. Under the condition of Theorem 1,
√
T{vec((ÂSQR)(1)) − vec(A(1))}

D−→

N(0,ΣSQR), such that ΣMLRSQR ≤ ΣSQR.

The results of Corollary 1 and Corollary 2 highlight both the statistical efficiency and

structural advantages of the proposed MLRSQR estimator over classical methods that

neglect multilinear structure. All technical proofs are provided in Appendix B.

3.3.2 Alternating SQR Algorithm

Let Ft = σ(εt, εt−1, . . .) denote the σ-field generated by the history of the error process

up to time t, and recall that Xt = (yt−1, . . . ,yt−P ) denotes the lagged predictor matrix.

Although the objective function in (3.5) is nonlinear in the parameters G,U1,U2,U3, and

qu, a closer inspection of the model representation in (3.2) reveals a valuable structural

property.
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Specifically, the conditional quantile function Q(yt|Ft−1) can be expressed as

Q(yt|Ft−1) =
(
(x′t(U3 ⊗U2)G ′(1))⊗ IN

)
vec(U1) + qu

= U1G(1) ((U′3X
′
t)⊗ Ir2) vec(U

′
2) + qu

= U1G(1) (Ir3 ⊗ (U′2Xt)) vec(U3) + qu

= (((U3 ⊗U2)
′xt)′ ⊗U1) vec(G(1)) + qu,

(3.10)

which demonstrates that the loss function is linear in each of the parameters G, U1, U2,

and U3 when the others are held fixed. This property facilitates the use of an alternating

optimization procedure.

Given the multilinear ranks (r1, r2, r3), we estimate ÂMLRSQR using the iterative algo-

rithm described in Algorithm 2, which follows an alternating spatial quantile regression

(SQR) scheme. At each iteration, one parameter block is updated while others are fixed,

and the subproblem reduces to a convex quantile regression problem. Numerical opti-

mization techniques, such as gradient descent or Newton-type methods, can be employed

to efficiently solve each subproblem.

Algorithm 2 Alternating SQR algorithm for ÂMLRSQR

1: Initialize: A(0)

2: HOSVD: A(0) ≈ G(0) ×1 U(0)
1 ×2 U(0)

2 ×3 U(0)
3 with multilinear ranks (r1, r2, r3)

3: repeat k = 0, 1, 2, . . .

4: U(k+1)
1 ← arg min

U1

∑T
t=1Qu

(
yt −

(
(x′t(U

(k)
3 ⊗U(k)

2 )G(k)
′

(1) )⊗ IN
)
vec(U1)− qku

)
5: U(k+1)

2 ← arg min
U2

∑T
t=1Qu

(
yt −U(k+1)

1 G(k)(1)

(
(XtU

(k)
3 )′ ⊗ Ir2

)
vec(U′2)− qku

)
6: U(k+1)

3 ← arg min
U3

∑T
t=1Qu

(
yt −U(k+1)

1 G(k)(1) (Ir3 ⊗ (U(k+1)′

2 Xt))vec(U3)− qku
)

7: G(k+1) ← arg min
G

∑T
t=1Qu

(
yt − (((U(k+1)

3 ⊗U(k+1)
2 )′xt)′ ⊗U(k+1)

1 )vec(G(1))− qku
)

8: q(k+1)
u ← arg min

qu

∑T
t=1Qu

(
yt − (G(k+1) ×1 U(k+1)

1 ×2 U(k+1)
2 ×3 U(k+1)

3 )(1)xt − qu
)

9:
A(k+1) ← G(k+1) ×1 U(k+1)

1 ×2 U(k+1)
2 ×3 U(k+1)

3

10: until convergence
11: Finalize: Ûi ← top ri left left singular vectors of Â(i) with positive first elements,

1 ≤ i ≤ 3
12:

Ĝ ← [[Â; Û
′

1, Û
′

2, Û
′

3]]
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In practice, the initialization of the algorithm plays a critical role in achieving good

performance. When the sample size T is large, the ordinary least squares (OLS) estimator

ÂOLS = arg min
A ∈ RN×NP

T∑
t=1

‖yt −Axt‖22 (3.11)

can be used to construct the initial tensor estimate A(0). When smaple size T is small, al-

ternative initialization strategies—such as the reduced-rank regression (RRR) estimator,

ÂRRR = arg min
A∈RN×NP

rank(A)≤r1

T∑
t=1

‖yt −Axt‖22 (3.12)

or the nuclear norm penalized estimator introduced in Section 3.5—may yield improved

results. Note that, A = (A1, . . . ,AP ) in models (3.11) and (3.12) correspond to models

(1.4) and (1.6), respectively. Denote by ÂOLS and ÂRRR the transition tensors formed

by ÂOLS and ÂRRR, respectively. On the other hand, selecting the multilinear ranks

consistently is also crucial, and the details of this selection processare discussed in Section

3.5.

To further guard against local optima, we recommend a randomized initialization strat-

egy: A(0) = Âpre + T−1/2T , where Âpre is a preliminary estimate such as ÂOLS or ÂRRR,

and T ∈ RN×N×P is a tensor with i.i.d. N(0, 1) entries. Among multiple initializations,

the one that yields the lowest objective value is selected.

Importantly, the alternating estimation algorithm does not impose explicit constraints

on the Tucker components G and Uj, and thus the orthogonality conditions are not

enforced during optimization. Nevertheless, as discussed in Proposition 1 of Wang, Zheng,

Lian, and Li (2022) (44), the convergence of the algorithm is guaranteed under mild

regularity conditions, even without identification constraints or uniqueness assumptions

on the Tucker decomposition.

Remark 5. The final estimates Ĝ and Ûj obtained from Algorithm 2 correspond to an

unconstrained minimizer of the MLRSQR objective. As established in Corollary 1, these

estimators are consistent and asymptotically normal. Furthermore, the use of alternating

optimization without enforcing identifiability is widely adopted in the literature on tensor
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decomposition (e.g. Zhou, Li and Zhu, 2013 (66); Li et al., 2018 (69)) and has proven

effective in practice.

3.4 Regularized Spatial Quantile Regression Estimation via Tensor Decomposition

3.4.1 Sparse Higher-Order Reduced-Rank Spatial Quantile Regression Estimation

Section 3.2.2 highlights the model’s capacity to capture multidimensional dynamic

dependencies through the factor loading matrices U1, U2, and U3, which correspond

to the response, predictor, and temporal dimensions, respectively. In high-dimensional

settings, where either the number of variables (N) or the number of lags (P ) is large, it

is often observed that many entries in the estimated loading matrices are close to zero.

This empirical pattern suggests that a substantial proportion of variables or time lags

contribute marginally to the factor structure. For example, when the (i, j)th entry of

U1 is near zero, the ith response variable yit plays a negligible role in forming the jth

response factor (for 1 ≤ i ≤ N and 1 ≤ j ≤ r1). Similar interpretations apply to U2 and

U3.

To explicitly exploit this empirical sparsity, we introduce a structured regularization

framework that encourages sparse solutions for the factor loading matrices. This strategy

not only reduces the effective number of parameters but also enables data-driven variable

selection at the level of individual factor contributions, thereby enhancing interpretabil-

ity and estimation efficiency. The benefits of incorporating sparsity into reduced-rank

frameworks are well-documented in the literature; see, for instance, Chen, Chan, and

Stenseth (2012) (64) and Uematsu et al. (2019) (65).

Motivated by these insights, we propose the Sparse Higher-Order Reduced-Rank Spa-

tial Quantile Regression (SHORRSQR) estimator, defined as the solution to the following

penalized optimization problem:

ÂSHORRSQR ≡ {[[Ĝ; Û1, Û2, Û3]], q̂u} = arg min
G,U1,U2,U3,qu

{L(G,U1,U2,U3,qu)

+ λ‖U3 ⊗U2 ⊗U1‖1}
(3.13)

subject to
G ∈ AO(r1, r2, r3) and U′iUi = Iri , i = 1, 2, 3, (3.14)
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where the loss function L(·) is defined in (3.6), and AO(r1, r2, r3) denotes the set of core

tensors whose mode-i matricizations are row-orthogonal for each i, i.e., AO(r1, r2, r3) =

{G ∈ Rr1×r2×r3 : G(i) is row-orthogonal, i = 1, 2, 3}. These orthogonality conditions are

essential for ensuring identifiability of the sparsity structure in Ui, distinguishing this

formulation from the unconstrained MLRSQR estimator introduced earlier in (3.5). Our

analysis of ÂSHORRSQR and its asymptotic properties assumes fixed dimensions for both

N and P , along with known true multilinear ranks (r1, r2, r3). Section 3.5 will further

elaborate on a consistent methodology for rank selection.

A distinguishing feature of SHORRSQR is its use of a unified sparsity penalty ‖U3 ⊗

U2 ⊗ U1‖1 = ‖U1‖1‖U2‖1‖U3‖1 across all three factor loading matrices, as opposed

to applying separate `1 penalties to each matrix (e.g.,
∑3

i=1 λi‖Ui‖1). This unified for-

mulation avoids the complexity of tuning multiple penalty parameters and provides a

parsimonious structure that integrates all three factor dimensions. The estimator can be

efficiently computed via the alternating algorithm described in Section 3.4.2.

It is worth noting that the joint penalization strategy employed here is conceptually

aligned with the joint Lasso penalties proposed by Zhao and Leng (2014) (73) and the

coordinated penalties for left and right singular vectors in sparse SVD investigations by

Chen, Chan, and Stenseth (2012) (64). Moreover, in cases where the number of lags P is

relatively small, it may be computationally advantageous to apply the sparsity constraint

only to U1 and U2. In such settings, the penalty term ‖U3⊗U2⊗U1‖1 can be replaced

by the reduced form ‖U2 ⊗U1‖1 without loss of modeling fidelity.

Lastly, it is important to distinguish SHORRSQR from conventional row-sparse reduced-

rank regression models. Unlike approaches that enforce row-level sparsity—potentially

excluding entire variables or responses from the model—our method encourages elemen-

twise sparsity. This preserves the flexibility of the VAR model and ensures that all

time series remain forecastable, even when their influence on certain factors is weak.

Such a design choice promotes generalizability while maintaining interpretability in high-

dimensional environments.

To establish the asymptotic properties of the SHORRSQR estimator, we need the
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sparse assumption:

Assumption 3. (Sparsity) Each column of the factor matrices Ui has at most si nonzero

entries, for i = 1, 2, 3.

Assumption 3 imposes a structured sparsity constraint on each factor matrix, which

ensures that the model remains interpretable and identifiable in high dimensions.

Theorem 6. Suppose that the time series {yt} is generated by model (3.2) with condi-

tions C4 in Appendix B, both N and P are fixed, and (r1, r2, r3) are known. Then, under

Assumption 1, and Assumption 3,

√
T{vec((ÂSHORRSQR)(1))− vec(A(1))}

D−→ N (0,ΣSHORRSQR). (3.15)

The proof of Theorem 6 is provided in Appendix B. This result demonstrates that the

SHORRSQR estimator attains
√
T -consistency and asymptotic normality under appro-

priate sparsity and identifiability conditions, thereby establishing its statistical efficiency

in high-dimensional, low-rank, and sparse VAR settings.

3.4.2 ADMM Algorithm

Developing an efficient estimation algorithm for the SHORRSQR model introduces two

significant computational challenges. First, the core tensor G is required to satisfy the all-

orthogonal constraint in (3.14), which is not straightforward to handle. Second, the factor

loading matrices U1, U2, and U3 are simultaneously subject to both `1-regularization and

orthogonality constraints. The former induces nonsmoothness in the objective function,

while the latter introduces non-convexity, thereby complicating the optimization process.

To overcome these difficulties, we adopt an alternating direction method of multipliers

(ADMM) framework (Boyd et al., 2011 (77)) that updates G and Ui alternately; see

Algorithm 3. To facilitate the update of G, we reformulate its all-orthogonal constraint

as three independent constraints on its matricizations. Specifically, for i = 1, 2, 3, each

matricization G(i) is expressed as DiV′i, where Di is a diagonal matrix and Vi is an

orthonormal matrix such that V′iVi = Iri . This decomposition allows us to formulate the
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augmented Lagrangian for the objective function in (3.13) as:

L%(G, {Ui}, {Di}, {Vi},qu; {Ci})

= L(G,U1,U2,U3,qu) + λ‖U3 ⊗U2 ⊗U1‖1

+ 2
3∑
i=1

%i〈(Ci)(i),G(i) −DiV′i〉+
3∑
i=1

%i‖G(i) −DiV′i‖2F ,

(3.16)

where Ci denotes the dual variable for i = 1, 2, 3, and %i is the corresponding penalty

parameter. With this reparameterization, the constraint on G is transferred to the update

of Vi in line of Algorithm 3, enabling an unconstrained update of G in line 7 of Algorithm

3.

The update of each factor loading matrix Ui poses additional challenges due to the

combined presence of the quantile loss, the `1 penalty, and the orthogonality constraint.

Each Ui-update becomes an instance of the following optimization problem:

min
B

{
n−1Qu(y−Xvec(B)− qu) + λ‖B‖1

}
, s.t. B′B = I. (3.17)

where the nonsmoothness of the `1 term and the non-convexity of the orthogonality con-

straint complicate direct optimization. To decouple these components, we apply a nested

ADMM subroutine that introduces an dual variable W to enforce B = W, reformulating

problem (3.17) into the following equivalent form:

min
B,W

{
n−1Qu(y−Xvec(B)− qu) + λ‖W‖1

}
, s.t. B′B = I and B = W. (3.18)

Then the corresponding augmented Lagrangian formulation is

min
B,W

{
n−1Qu(y−Xvec(B)− qu) + λ‖W‖1 + 2κ〈M,B−W〉+ κ‖B−W‖2F

}
. (3.19)

where κ is a regularization parameter. The ADMM subroutine for (3.19) is presented in

Algorithm 4. This yields solutions to the Ui-update subproblems in Algorithm 3.

Note that the B-update step in Algorithm 4 and the Vi-update step in line 11 of

Algorithm 3 are formulated as SQR and least squares problems with an orthogonality

constraint. These steps can be efficiently solved using the splitting orthogonality con-
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Algorithm 3 ADMM algorithm for SHORRSQR estimator

1: Initialize: A(0)

2: HOSVD: A(0) ≈ G(0) ×1 U(0)
1 ×2 U(0)

2 ×3 U(0)
3 with multilinear ranks (r1, r2, r3).

3: repeat
4: U(k+1)

1 ← arg min
U′1U1=Ir1

{
L(G(k),U1,U

(k)
2 ,U(k)

3 ) + λ‖U1‖1‖U(k)
2 ‖1‖U

(k)
3 ‖1

}
5: U(k+1)

2 ← arg min
U′2U2=Ir2

{
L(G(k),U(k+1)

1 ,U2,U
(k)
3 ) + λ‖U(k+1)

1 ‖1‖U2‖1‖U(k)
3 ‖1

}
6: U(k+1)

3 ← arg min
U′3U3=Ir3

{
L(G(k),U(k+1)

1 ,U(k+1)
2 ,U3) + λ‖U(k+1)

1 ‖1‖U(k+1)
2 ‖1‖U3‖1

}
7: G(k+1) ← arg min

{
L(G,U(k+1)

1 ,U(k+1)
2 ,U(k+1)

3 ) +
∑3

i=1 %i‖G(i) −D(k)
i V(k)′

i + (C(k)i )(i)‖2F
}

8: q(k+1)
u ← arg min

{
L(G(k+1),U(k+1)

1 ,U(k+1)
2 ,U(k+1)

3 ) + λ‖U(k+1)
1 ‖1‖U(k+1)

2 ‖1‖U(k+1)
3 ‖1

}
9: for i ∈ {1, 2, 3} do

10: D(k+1)
i ← arg min

Di=diag(di)
‖G(k+1)

(i) −DiV
(k)′

i + (C(k)i )(i)‖2F

11: V(k+1)
i ← arg min

V′iVi=Iri

‖G(k+1)
(i) −D(k+1)

i V′i + (C(k)i )(i)‖2F

12: (C(k+1)
i )(i) ← (C(k)i )(i) + G(k+1)

(i) −D(k+1)
i V(k+1)′

i

13: end for
14: A(k+1) ← G(k+1) ×1 U(k+1)

1 ×2 U(k+1)
2 ×3 U(k+1)

3

15: until convergence

Algorithm 4 ADMM subroutine for sparse and orthogonal regression

1: Initialize: B(0) = W(0),M(0) = 0
2: repeat
3: B(k+1) ← arg min

B′B=I

{
n−1Qu(y−X vec(B)− qu) + κ‖B−W(k) + M(k)‖2F

}
4: W(k+1) ← arg min

W

{
κ‖B(k+1) −W + M(k)‖2F + λ‖W‖1

}
5: M(k+1) ←M(k) + B(k+1) −W(k+1)

6: until convergence
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straint (SOC) method (Lai and Osher 2014 (78)). The W-update step in Algorithm 4

involves `1-regularized minimization, which can be solved explicitly via soft-thresholding.

The G- and Di-update steps in lines 7 and 10 of Algorithm 3 correspond to SQR and

simple least squares problems, respectively.

For general nonconvex problems, it is well established that ADMM algorithms may

fail to converge, and even when they do, there is no guarantee of convergence to an

optimal solution. Conducting a comprehensive convergence analysis for Algorithm 3 is

particularly challenging due to the presence of the nested ADMM subroutine, Algorithm

4, and its interaction with the outer loop of Algorithm 3.

Wang, Yin, and Zeng (2019) (72) provided a rigorous convergence analysis for multi-

block ADMMs applied to nonconvex nonsmooth optimization problems with linear equal-

ity constraints. Their theoretical results would apply to Algorithm 4 if the B-update step

in line 3 were performed exactly. Extending this analysis to the inexact B-update step

would require a detailed examination of the optimization error introduced by the SOC

method. In this article, we do not further explore the development of the convergence

theory. Nevertheless, following a similar approach to the analysis by Uematsu et al.

(2019) (65), and under certain high-level assumptions on L%(·), we can still establish a

convergence result for Algorithm 3, as stated in Proposition 2 of Wang, Zheng, Lian, and

Li (2022) (44). Specifically, the sequence generated by Algorithm 3 converges to a local

solution of problem (3.13).

Remark 6. The initial valueA(0) for Algorithm 3 can be chosen as the nuclear norm (NN)

estimator ÂNN for low-rank VAR models (Negahban and Wainwright 2011 (36)). This

estimator satisfies ‖ÂNN−A‖F = Op(
√
r1NP/T ); see also Section 3.5. As a result, if the

SHORRSQR estimator is searched within a neighborhood of radius O(
√
r1NP/T ) around

ÂNN, all iteratesA(k) will satisfy ‖A‖F ≤ ‖A(k)−ÂNN‖F+‖ÂNN−A‖F = Op(
√
r1NP/T ).

A similar convex relaxation-based initialization approach has been used by Uematsu et

al. (2019) (65) for nonconvex optimization problems involving jointly imposed sparsity

and orthogonality constraints. Since Algorithm 3 does not guarantee convergence to a

global solution, a practical alternative is to use randomized initial values. Specifically,
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one can initialize with A(0) = ÂNN + (NP/T )1/2T , where the entries of the perturbation

T ∈ RN×N×P are independently drawn from N(0, (N2P )−1) such that ‖T ‖F = Op(1).

The final solution is then selected as the one that minimizes the objective function.

Finally, while the algorithm is developed under the assumption of known multilinear

ranks and fixed λ, practical implementation requires data-driven selection of these param-

eters. To this end, we recommend a two-stage procedure: first estimate the ranks via the

consistent method outlined in Section 3.5, then fix these ranks and tune λ using a model

selection criterion such as BIC. Although the degrees of freedom in sparse orthonormal

structures are difficult to quantify exactly, the total number of nonzero entries in G and

Ui offers a reasonable approximation.

3.5 Rank Selection

The theoretical guarantees for both the MLRSQR and SHORRSQR estimators rely

critically on the correctness of the specified multilinear ranks. In this section, we adopt

a rank selection procedure proposed by Xia, Xu, and Zhu (2015) (79) to consistently

estimate the true multilinear ranks (r1, r2, r3) in a data-driven manner.

Suppose that a preliminary estimator Â of the transition tensor A is available and

satisfies a suitable convergence rate. We employ the ridge-type ratio estimator to deter-

mine the multilinear ranks from the singular values of the mode-i matricizations Â(i).

Specifically, for 1 ≤ i ≤ 3, we define:

r̂i = arg min
1≤j≤pi−1

σj+1(Â(i)) + c

σj(Â(i)) + c
, (3.20)

where p1 = p2 = N , p3 = P , and c > 0 is a ridge parameter that must satisfy certain

regularity conditions for consistent rank recovery.

To ensure the validity of this method, the ridge parameter cmust satisfy two conditions:

(i) ‖Â − A‖F/c = op(1),

(ii) c ·max1≤i≤3 ςi = o(1),

where ςi is defined as
ςi =

1

σri(A(i))
· max
1≤j≤ri

σj(A(i))

σj+1(A(i))
. (3.21)
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Condition (i) specifies that the estimation error is bounded by c, while Condition (ii)

requires that c grows significantly slower than the ςi’s. Broadly speaking, Condition

(ii) may fail if the smallest nonzero singular value of A(i) is too small or if there is a

significant drop between σj(A(i)) and σj+1(A(i)) for some 1 ≤ j < ri and 1 ≤ i ≤ 3.

In either scenario, the ridge-type ratio may struggle to select the rank correctly. If all

nonzero singular values are bounded above and away from zero, Condition (ii) reduces to

c = o(1). Under above conditions and the conditions stated in Theorem 6, the probability

of correctly identifying the ranks (r̂1, r̂2, r̂3) as (r1, r2, r3) converges to 1 as T → ∞, i.e.,

P(r̂1 = r1, r̂2 = r2, r̂3 = r3)→ 1 as T →∞ (Wang, Zheng, Lian, and Li, 2022 (44)).

For the initial estimator, we use the nuclear norm (NN) estimator for low-rank VAR

models defined as

ÂNN = arg min
1

T

T∑
t=1

‖yt −A(1)xt‖22 + λ‖A(1)‖∗.

The estimation error rate derived by Negahban and Wainwright (2011) (36) for VAR(1)

models can be straightforwardly extended to VAR(P ) models, resulting in ‖ÂNN−A‖F =

Op(
√
r1NP/T ). Consequently, rank selection consistency can be achieved over a rela-

tively wide range of c. In practice, we recommend setting c =
√
NP log(T )/10T (Wang,

Zheng, Lian, and Li, 2022 (44)), which has been shown to perform well in the first simu-

lation experiment presented in Section 3.6.1.

3.6 Simulation Experiments

3.6.1 Rank Selection Consistency

We adopt the rank selection procedure introduced in Section 3.5 for all subsequent

simulation studies and real data analyses. To assess its empirical performance, we first

conduct a dedicated experiment to examine the consistency of this procedure under var-

ious scenarios.

The data are simulated according to the multilinear low-rank VAR model specified in

model (3.2) with dimensions (N,P ) = (10, 5) and true multilinear ranks (r1, r2, r3) =

(3, 3, 3). To investigate consistency under different distributional settings of the inno-
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vation term εt, we consider three types of error distributions: Case (i) multivariate

normal distribution, εt ∼ N(0,Σ1); Case (ii) multivariate t distribution with 3 de-

grees of freedom, εt ∼ t3(0,Σ2); and Case (iii) multivariate mixed normal distribution,

εt ∼ 0.9 ·N(0,Σ3) + 0.1 ·N(0,Σ4), where Σ4 has substantially larger variance.

To evaluate the influence of singular value structure on rank selection performance, we

consider four cases of the core tensor G, specified as a diagonal tensor with superdiagonal

entries (G111,G222,G333) given by: (case a) (2, 2, 2), (case b) (4, 3, 2), (case c) (1, 1, 1), and

(case d) (1.5, 1, 1). These settings directly determine the nonzero singular values of the

matricizations A(i) for 1 ≤ i ≤ 3. The factor matrices Ui are constructed as the top ri

left singular vectors of independent Gaussian random matrices, and the generated VAR

processes are verified to satisfy the stationarity condition described in Assumption 1.

For rank estimation, we apply the ridge-type ratio method with a tuning parameter

c =
√
NP log(T )/10T , as recommended in Wang, Zheng, Lian, and Li (2022) (44). The

performance metric is the proportion of simulations in which the estimated ranks exactly

match the true ranks, i.e., {(r̂1, r̂2, r̂3) = (r1, r2, r3)}. This is computed across a range of

sample sizes T ∈ [50, 600], with 1000 replications per setting. The results are visualized

in Figure 3.2.

The simulation findings indicate a clear trend: as T increases, the accuracy of rank

improves steadily across all error distributions. In particular, the correct selection rate

approaches unity around T = 400 for the multivariate normal distribution (Case (i)),

T = 600 for the multivariate t distribution (Case (ii)), and T = 500 for the multivariate

mixed normal distribution (Case (iii)). These results demonstrate the consistency of the

proposed selection procedure.

Additionally, the simulation reveals how the singular value structure of A(i) influences

rank consistency. As discussed in Section 3.5, rank selection becomes more challenging

when the smallest nonzero singular value σri(A(i)) is small or when the gap between

successive singular values is large. Accordingly, for all types of errors, cases a and b

demonstrate better performance due to their larger σri(A(i)) compared to cases c and d.

Furthermore, cases a and c outperform cases b and d, likely because the singular values
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G111,G222, and G333 are equal in the former cases, contributing to more stable performance.

Figure 3.2: Proportion of correct rank selection under different singular value structures:
(a) (2, 2, 2), (b) (4, 3, 2), (c) (1, 1, 1), and (d) (1.5, 1, 1), across three types of innovation
errors.

3.6.2 Performance of MLRSQR Estimators

We now conduct a series of simulation experiments to examine the finite-sample per-

formance and verify the asymptotic properties of the proposed MLRSQR estimator under

various settings. In particular, we evaluate its behavior across different spatial quantile

directions u under three different types of innovations, i.e., Case (i), Case (ii), and Case

(iii), are generated as the same as in Section 3.6.1.

The synthetic data are generated from model (3.2) with dimensions (N,P ) = (10, 5),

and multilinear ranks fixed at (r1, r2, r3) = (3, 3, 3). For the core tensor G, we first

draw entries from i.i.d. standard normal distributions and scale the tensor so that

min1≤i≤3 σri(G(i)) = 1. The factor matrices Ui are constructed using the top ri left singu-

lar vectors of Gaussian random matrices, with the stationarity condition in Assumption

1 being satisfied.

The experiment includes 500 Monte Carlo replications per setting. The ranks are

selected using the consistent rank selection method introduced in Section 3.5.
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Throughout this and all the following experiments, the multilinear ranks are selected

by the method in Section 3.5. We first assess the sensitivity of MLRSQR to the choice

of u. We consider the three different cases of u: Case (1) is spatial median regression,

and there are four sub-cases for Case (2) and Case (3), respectively. The details are as

follows:

We consider the following cases for the direction vector u in the spatial quantile re-

gression framework:

Case (1): u = 0, i.e., spatial median regression.

Case (2.1): u = 1√
10
× [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]′.

Case (2.2): u = 1√
10
× [−0.5,−0.5,−0.5,−0.5,−0.5,−0.5,−0.5,−0.5,−0.5,−0.5]′.

Case (2.3): u = 1√
10
× [0.5,−0.5, 0.5,−0.5, 0.5,−0.5, 0.5,−0.5, 0.5,−0.5]′.

Case (2.4): u = 1√
10
× [−0.5, 0.5,−0.5, 0.5,−0.5, 0.5,−0.5, 0.5,−0.5, 0.5]′.

Case (3.1): u = 1√
110
× [0.9, 0.9, 1.8, 1.8, 2.7, 2.7, 3.6, 3.6, 4.5, 4.5]′.

Case (3.2): u = 1√
110
× [−0.9,−0.9,−1.8,−1.8,−2.7,−2.7,−3.6,−3.6,−4.5,−4.5]′.

Case (3.3): u = 1√
110
× [0.9,−0.9, 1.8,−1.8, 2.7,−2.7, 3.6,−3.6, 4.5,−4.5]′.

Case (3.4): u = 1√
110
× [−0.9, 0.9,−1.8, 1.8,−2.7, 2.7,−3.6, 3.6,−4.5, 4.5]′.

Note that, ‖u‖ = 0 for Case (1), ‖u‖ = 0.5 for Case (2), and ‖u‖ = 0.9 for Case (3) are

satisfied with ‖u‖ < 1. Then we compute the mean squared error (MSE) for all entries

in Â and for all replications. See Figure 3.3.
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Figure 3.3: Mean Squared Errors of MLRSQR estimator for different u under different
type of errors.

The results presented in Figure 3.3 clearly illustrate the asymptotic behavior of the

proposed estimator. As the sample size T increases, the mean squared error (MSE) con-

sistently decreases, indicating improved estimation accuracy with larger samples. This

observation is consistent with the fundamental asymptotic property in statistical estima-

tion, in which the estimation error tends to diminish as T increases. Moreover, while

notable differences in performance across various configurations of u are observed for

smaller sample sizes, these discrepancies gradually decrease as T increases. This sug-

gests that the estimator becomes increasingly robust to the specific structure of u in the

asymptotic regime. Another observation from Figure 3.3 is that, within each group of

cases sharing the same norm ‖u‖, the corresponding mean squared error (MSE) curves

are nearly indistinguishable. This indicates that the estimation performance is largely

insensitive to the specific structure or pattern of the direction vector u, such as the ar-

rangement or signs of its components. Instead, the estimation error is primarily governed

by the magnitude of ‖u‖. This finding highlights a desirable property of the proposed

estimator: its robustness with respect to variations in the structure of u, as long as the

overall norm remains unchanged. Such behavior implies that the estimator is more in-
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fluenced by the overall intensity of directional perturbation rather than its orientation,

enhancing its stability and generalizability across different spatial directions. In general,

the convergence of MSE and the reduced sensitivity to u highlight both the consistency

and robustness of the model as it approaches its theoretical performance bounds.

Next, we compare the MLRSQR estimator with four alternatives: OLS, SQR, RRR,

and the multilinear low-rank least squares (MLRLS) estimator. The MLRLS estimator

is defined by the following:

ÂMLRLS ≡ [[Ĝ; Û1, Û2, Û3]] = arg minL(G,U1,U2,U3), (3.22)

where
L(G,U1,U2,U3) =

1

T

T∑
t=1

∥∥yt − (G ×1 U1 ×2 U2 ×3 U3)(1)xt
∥∥2
2
. (3.23)

The data are generated from model (2.7) with (N,P ) = (10, 5) and multilinear ranks

(r1, r2) = (3, 3), with r3 ∈ {2, 3, 4}. We consider three different types of innovation

distributions—Case (i), Case (ii), and Case (iii)—as defined in Section 3.6.1. The core

tensor G is generated by scaling a randomly generated tensor with i.i.d. standard normal

entries such that min1≤i≤3 σri(G(i)) = 1. The factor matrices Ui are generated using the

same procedure as described in Section 3.6.1. Each setting is replicated 500 times.

For each estimator, namely ÂOLS, ÂSQR, ÂRRR, ÂMLRLS, and ÂMLRSQR—we compute

the mean squared error (MSE) across all entries of Â and across all replications. See

Figure 3.4, Figure 3.5, and Figure 3.6.

The MSEs are plotted against the sample size T ∈ [600, 1000] in Figure 3.4, Figure 3.5,

and Figure 3.6, corresponding to the three innovation types, which collectively demon-

strate that all estimators exhibit improved performance as the sample size T increases,

consistent with their asymptotic properties. Across all scenarios, the relative performance

of the estimators remains consistent for different values of r3, further confirming the sta-

bility and adaptability of MLRSQR across varying tensor dimensions and innovation

structures.

On the other hand, under the standard normal errors (Case (i)), the estimator ÂMLRLS

achieves the smallest MSE. However, the MSE of ÂMLRSQR is nearly identical to that of
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Figure 3.4: Case (i): MSE comparison across estimators under standard normal errors.

ÂMLRLS across different values of T , indicating that MLRSQR maintains competitive per-

formance even under Gaussian innovations. In contrast, under the t-distribution (Case

(ii)) and the mixed normal distribution with outliers (Case (iii)), ÂMLRSQR clearly out-

performs all other estimators, exhibiting substantially lower MSEs. These results demon-

strate the robustness of MLRSQR to heavy-tailed and contaminated error distributions,

while still retaining near-optimal efficiency in the Gaussian setting.

3.6.3 Performance of SHORRSQR Estimators

To investigate the effect of sparsity constraints on the factor loading matrices, we

conduct a simulation study comparing the SHORRSQR method—which incorporates

regularization to enforce sparsity—with the MLRSQR method, which does not impose

any sparsity constraints. Specifically, we generate multivariate time series data with

known multilinear low-rank structures and varying degrees of sparsity in the factor loading

matrices.

The data are generated from model (2.7) with (N,P ) = (10, 5), and the multilinear

ranks are set as (r1, r2, r3) = (3, 3, 3). To introduce sparsity, we set (s1, s2, s3) = (2, 2, 2),

where si denotes the number of nonzero rows in the corresponding factor matrix Ui, for
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Figure 3.5: Case (ii): MSE comparison across estimators under t3-distributed errors.

i = 1, 2, 3. This setting ensures that each Ui is row-sparse.

We consider three types of innovation distributions, as defined in Section 3.6.1. The

core tensor G is generated in the same manner as in the previous simulation, and the sparse

orthonormal factor matrices Ui are generated using the procedure described below:

U1 =



a2×1 02×1 02×1

02×1 b2×1 02×1

02×1 02×1 c2×1

04×1 04×1 04×1


∈ R10×3, U2 =



d2×1 02×1 02×1

02×1 e2×1 02×1

02×1 02×1 f2×1

04×1 04×1 04×1


∈ R10×3,

U3 =



1 0 0

0 1 0

0 0 1

02×1 02×1 02×1


∈ R5×3.

Both methods are applied to estimate the underlying tensor parameters, and their

performance is evaluated based on the mean squared error (MSE) of the estimated tensor.
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Figure 3.6: Case (iii): MSE comparison across estimators under mixture normal errors.

The simulation is repeated 500 times for each sample size, and the average MSE is

reported in Figure 7. Unless otherwise specified, the data generation procedures for the

following two simulation experiments are identical to those used in this experiment.

The results presented in Figure 7 demonstrate that the SHORRSQR method not only

enhances estimation accuracy by incorporating sparsity constraints, but also effectively

reduces the number of parameters, making it particularly suitable for high-dimensional

data analysis. Notably, SHORRSQR consistently outperforms MLRSQR across all cases

and sample sizes T , achieving substantially lower mean squared estimation errors (MSEs).

Both methods exhibit decreasing MSE as the sample size T increases, reflecting im-

proved estimation accuracy with more data. However, the decline in MSE is more pro-

nounced for SHORRSQR, underscoring the advantage of leveraging sparsity in the esti-

mation process. Furthermore, the superior performance of SHORRSQR is robust across

different innovation types and settings, highlighting its effectiveness and reliability in

achieving accurate and efficient parameter estimation in sparse multilinear models.

Next, to validate the asymptotic properties discussed in Section 4.2, we conduct a sim-

ulation study comparing the proposed SHORRSQR estimator, denoted by ÂSHORRSQR,
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Figure 3.7: Mean Squared Errors of SHORRSQR estimator and MLRSQR estimator
under different type of errors.

with five alternative estimators under comparable settings. The competing methods are

as follows: (i) The Lasso estimator, ÂLASSO, which employs an `1-penalty for variable

selection and regularization (Tibshirani, 1996 (80); Basu and Michailidis, 2015 (81)). (ii)

The nuclear norm estimator, ÂNN, based on low-rank matrix recovery via nuclear norm

minimization (Negahban and Wainwright, 2011 (36)). (iii) The spatial quantile regres-

sion via Lasso (SQRLASSO) estimator, ÂSQRLASSO, combining spatial quantile regression

with an `1-penalty for sparsity. (iv) The `1-penalized sparse higher-order reduced-rank

least squares (SHORRLS) estimator, ÂSHORRLS (Wang, Zheng, Lian, and Li, 2022 (44)).

In this experiment, we fix the vector u = 0 to eliminate directional effects and focus

solely on evaluating the estimation accuracy and sparsity-inducing capability of each

estimator. All methods are applied under the same data-generating settings described

previously to ensure a fair and consistent comparison.

The spatial quantile regression via Lasso estimator is defined as

(ÂSQRLASSO, q̂u) = arg minL(A,qu) (3.24)
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where

L(A,qu) =
T∑
t=1

{
‖yt −Axt − qu‖+ uT (yt −Axt − qu)

}
+ λ‖A‖1. (3.25)

Note that, ‖A‖1 = ‖vec(A)‖1. Denote by ÂSQRLASSO transition tensors formed by

ÂSQRLASSO.

The `1-penalized sparse higher-order reduced-rank least square (SHORRLS) estimator

is defined as

ÂSHORRLS ≡ [[Ĝ; Û1, Û2, Û3]] = arg min
G,U1,U2,U3

{L(G,U1,U2,U3)

+ λ‖U3 ⊗U2 ⊗U1‖1}
(3.26)

subject to
G ∈ AO(r1, r2, r3) and U′iUi = Iri , i = 1, 2, 3, (3.27)

where L(G,U1,U2,U3) is defined as in (??), and AO(r1, r2, r3) = {G ∈ Rr1×r2×r3 :

G(i) is row-orthogonal, i = 1, 2, 3}. Unlike the unconstrained estimation in (??), the or-

thogonality constraints in (3.27) are necessary; otherwise, the sparsity patterns of Ui

cannot be identified.

Figure 8 presents the mean squared estimation errors (MSEs) of five estimators—LASSO,

SQRLASSO, NN, SHORRLS, and SHORRSQR—across varying sample sizes T under

three different innovation settings: standard normal (Case (i)), t3-distribution (Case (ii)),

and mixed normal distribution (Case (iii)).

In most cases, SHORRSQR consistently achieves the lowest MSE among all methods,

with the performance gap becoming more pronounced as T increases. Notably, under the

heavy-tailed (Case (ii)) and mixed (Case (iii)) error settings, SHORRSQR substantially

outperforms all competing methods, highlighting its robustness to non-Gaussianity and

outliers. Even under the standard normal distribution (Case (i)), SHORRSQR main-

tains highly competitive performance, only marginally higher than SHORRLS in some

instances.

SHORRLS performs well under Case (i) but its performance degrades in Cases (ii) and

(iii), indicating sensitivity to distributional assumptions. SQRLASSO consistently im-



59

Figure 3.8: Mean Squared Errors for ÂLASSO, ÂSQRLASSO, ÂNN, ÂSHORRLS, and
ÂSHORRSQR under different type of errors.

proves over standard LASSO under Cases (ii) and (iii), benefiting from the incorporation

of spatial quantile structure, but remains less effective than the SHORR-based methods.

The performance of the NN estimator is sensitive to the type of error distribution. It

performs relatively poorly under the t3 and mixed normal distributions but demonstrates

moderate accuracy when averaged across all settings.

Overall, these results confirm that SHORRSQR provides the most accurate and reli-

able estimates, particularly in settings with heavy-tailed or heterogeneous errors, while

retaining competitive accuracy in the standard Gaussian setting.

Then, we verify the asymptotic results in Section 4.1 for the proposed SHORRSQR

estimator on different spatial quantiles u. The data is generated in the same way as

above.

The results of Figure 9 clearly demonstrate the asymptotic behavior of the estimation.

What’s more, Figure 9 plots compare the mean squared estimation error (MSE) across

three types of innovations: standard normal distribution (Case i), t3-distribution with

heavy tails (Case ii), and a mixture of normal distributions with differing variances (Case

iii). In all cases, MSE decreases asymptotically as the sample size T increases, demon-



60

Figure 3.9: Mean Squared Errors of SHORRSQR estimator for different u under different
type of errors.

strating improved estimation accuracy with larger samples. The results also compare

different u -th quantiles, the different cases are the same as in Section 6.2, showing that

the spatial quantile regression (SQR) method consistently achieves stable performance

across quantiles, even in the presence of outliers. In particular, in cases (ii) and (iii),

which introduce heavy-tailed errors and heterogeneous variance structures, SQR demon-

strates robustness by maintaining a lower MSE compared to methods sensitive to outliers.

These results highlight the strong asymptotic property, robustness, and flexibility of SQR

in handling outliers, complex error distributions, and different quantile levels, making it

a reliable approach in non-Gaussian innovation settings.

3.7 Real Data Analysis

In this section, we apply the proposed estimation methods to jointly model 40 quarterly

U.S. macroeconomic time series spanning from 1959 to 2007, with 194 observed values for

each variable (Koop, 2013 (23)). Except for financial variables, all series are seasonally ad-

justed, transformed to achieve stationarity, and standardized to have zero mean and unit

variance. These variables capture a broad range of economic activity and are categorized
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into eight groups: (i) GDP and its components, (ii) National Association of Purchasing

Managers (NAPM) indices, (iii) industrial production, (iv) housing, (v) money, credit,

and interest rates, (vi) employment, (vii) prices and wages, and (viii) other indicators.

The vector autoregressive (VAR) model has been extensively used to analyze and fore-

cast such macroeconomic data in empirical studies; see, for example, Stock and Watson

(2009) (82) and Koop (2013) (23). Detailed descriptions of the macroeconomic variables

are provided in Table 1.

Table 3.1: Forty quarterly macroeconomic variables belonging to eight categories.

Short name C T Description Short name C T Description

GDP251 1 5 Real GDP, quantity index (2000=100) FM2 5 6 Money stock: M2 (bil$)
GDP252 1 5 Real personal cons exp, quantity index FMRNBA 5 3 Depository inst reserves: nonborrowed (mil$)
GDP253 1 5 Real personal cons exp: durable goods FMRRA 5 6 Depository inst reserves: total (mil$)
GDP256 1 5 Real gross private domestic investment FSPIN 5 5 S&P’s common stock price index: industrials
GDP263 1 5 Real exports FYFF 5 2 Interest rate: federal funds (% per annum)
GDP264 1 5 Real imports FYGT10 5 2 Interest rate: US treasury const. mat., 10-yr
GDP265 1 5 Real govt cons expenditures & gross investment SEYGT10 5 1 Spread btwn 10-yr and 3-mth T-bill rates
GDP270 1 5 Real final sales to domestic purchasers CES002 6 5 Employees, nonfarm: total private
PMCP 2 1 NAPM commodity price index (%) LBMNU 6 5 Hrs of all persons: nonfarm business sector
PMDEL 2 1 NAPM vendor deliveries index (%) LBOUT 6 5 Output per hr: all persons, business sec
PMI 2 1 Purchasing managers’ index LHEL 6 2 Index of help-wanted ads in newspapers
PMNO 2 1 NAPM new orders index (%) LHUR 6 2 Unemp. rate: All workers, 16 and over (%)
PMNV 2 1 NAPM inventories index (%) CES275R 7 5 Real avg hrly earnings, nonfarm prod. workers
PMP 2 1 NAPM production index (%) CPIAUCSL 7 6 CPI all items
IPS10 3 5 Industrial production index: total GDP273 7 6 Personal consumption exp.: price index
UTL11 3 1 Capacity utilization: manufacturing (SIC) GDP276 7 6 Housing price index
HSFR 4 4 Housing starts: Total (thousands) PSCCOMR 7 5 Real spot market price index: all commodities
BUSLOANS 5 6 Comm. and industrial loans at all comm. Banks PWFSA 7 6 Producer price index: finished goods
CCINRV 5 6 Consumer credit outstanding: nonrevolving EXRUS 8 5 US effective exchange rate: index number
FM1 5 6 Money stock: M1 (bil$) HHSNTN 8 2 Univ of Mich index of consumer expectations

NOTE: Category code (C) represents: 1 = GDP and its decomposition, 2 = national
association of purchasing managers (NAPM) indices, 3 = industrial production, 4 = housing, 5
= money, credit, interest rates, 6 = employment, 7 = prices and wages, 8 = others. Variables
are seasonally adjusted except for those in category 5. All variables are transformed to
stationarity with the following transformation codes (T): 1 = no transformation, 2 = first
difference, 3 = second difference, 4 = log, 5 = first difference of logged variables, 6 = second
difference of logged variables.

To assess forecasting performance, we compare the proposed estimators ÂMLRSQR and

ÂSHORRSQR with the competing methods introduced in Section 6. A rolling one-step-

ahead forecasting procedure is implemented as follows: the models are fitted using his-

torical data with the training endpoint rolling from Q4 2000 to Q3 2007, and forecasts

are generated for the subsequent quarter. The lag order is fixed at P = 4 for all fit-

ted VAR models, as suggested by Koop (2013) (23). The selected multilinear ranks

and tuning parameters for ÂSHORRSQR are inherited from the full-sample analysis and

set as (r1, r2, r3) = (4, 3, 2). For consistency, the same rank configuration is applied to
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MLRSQR, MLRLS, SHORRLS, and RRR estimators in the comparison.

The average `2 and `∞ norms of the forecast errors for various methods are reported in

Table 2. It is evident that the proposed MLRSQR and SHORRSQR estimators yield sub-

stantially smaller forecast errors compared to the competing approaches. This superior

performance can be attributed to their ability to simultaneously reduce dimensionality

along all three tensor modes, thereby capturing the underlying low-rank structure more

effectively.

Table 3.2: Forecasting error for 40 quarterly macroeconomic sequences of the United
States from 1959 to 2007.

Unregularized methods Regularized methods

Criterion OLS SQR RRR MLRLS MLRSQR SHORRSQR SHORRLS SQRLASSO LSLASSO NN

`2 norm 20.13 19.22 12.61 5.80 5.74 5.34 5.43 8.22 8.24 8.30
`∞ norm 8.30 8.18 4.54 2.55 2.53 2.48 2.50 3.28 3.59 3.59

Note: The best cases among (un)regularized methods are marked in bold.

In particular, the advantage of spatial quantile regression (SQR) over ordinary least

squares (OLS) becomes especially prominent in the presence of heavy-tailed, asymmetric,

or heteroscedastic errors. Unlike OLS, which relies on assumptions of homoscedasticity

and symmetric error distributions and is highly sensitive to outliers, SQR minimizes

a quantile loss function, offering greater robustness to non-Gaussian and contaminated

data. Moreover, SQR allows for the modeling of heterogeneous relationships across differ-

ent quantiles, capturing variation in the tails of the conditional distribution that OLS fails

to detect. It is particularly effective in high-dimensional or spatially dependent settings,

especially when integrated with sparsity-inducing regularization.

Among all methods, the SHORRSQR estimator achieves the best overall forecast-

ing performance. By enforcing sparsity in the factor loading matrices, it not only im-

proves interpretability but also mitigates overfitting, making it particularly well-suited for

macroeconomic forecasting and other complex, high-dimensional applications involving

structural heterogeneity.
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APPENDIX A: CONDITIONS and PROOFS of THEOREMS IN CHAPTER 2

A.1 Regularity conditions

(i) Regularity Conditions on the Penalty Function. Let aT = max1≤j≤pT {p′λT (|β∗Tj|) :

β∗Tj 6= 0} and bT = max1≤j≤pT {p′′λT (|β∗Tj|) : β∗Tj 6= 0}. The following conditions are

imposed on the penalty function pλT (·):

(A1) lim inf
T→+∞

lim inf
θ→0+

p′λT (θ)/λT > 0;

(A2) aT = O(T−1/2);

(A′2) aT = o(1/
√
TpT );

(A3) bT → 0 as T → +∞;

(A′3) bT = oP (1/
√
pT );

(A4) There exist constants C and D such that |p′′λT (θ1) − p′′λT (θ2)| ≤ D|θ1 − θ2|, where

θ1, θ2 > CλT .

These conditions are adapted from the regularity assumptions commonly used in the

literature on penalized estimation, particularly those outlined by Fan and Peng (2004)

(52).

(ii) Regularity Conditions on the Regression Function.

(B1) Let p′T = pT + N . For each T , assume that the regression function LT (θT ) is

differentiable and satisfies:

EθT

{
∂LT (θT )

∂θTj

}
= 0,

EθT

{
∂LT (θT )

∂θTj

∂LT (θT )

∂θTk

}
= −EθT

{
∂2LT (θT )

∂θTj∂θTk

}
, for j, k = 1, . . . , p′T ,

which implies

EβT

{
∂LT (θT )

∂βTj

}
= 0,

EβT

{
∂LT (θT )

∂βTj

∂LT (θT )

∂βTk

}
= −EβT

{
∂2LT (θT )

∂βTj∂βTk

}
, for j, k = 1, . . . , pT .
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(B2) The information matrices IT (θT ) and IT (βT ) are defined respectively as:

IT (θT ) = E

[(
∂LT (θT )

∂θT

)(
∂LT (θT )

∂θT

)T]
,

IT (βT ) = E

[(
∂LT (θT )

∂βT

)(
∂LT (θT )

∂βT

)T]
,

with bounded eigenvalues: 0 < C1 ≤ λmin(IT (·)) ≤ λmax(IT (·)) ≤ C2 < ∞. Also,

for j, k = 1, . . . , p′T and j, k = 1, . . . , pT , we assume:

EθT

{(
∂LT (θT )

∂θTj

∂LT (θT )

∂θTk

)2
}
< C3 <∞,

EθT

{(
∂2LT (θT )

∂θTj∂θTk

)2
}
< C4 <∞.

which implies

EβT

{(
∂LT (θT )

∂βTj

∂LT (θT )

∂βTk

)2
}
< C3 <∞,

EβT

{(
∂2LT (θT )

∂βTj∂βTk

)2
}
< C4 <∞.

(B3) There exist sufficiently large open subsets Ω′T ⊂ RpT+N and ΩT ⊂ RpT , such that

ΩT ∈ Ω′T , containing the true parameter points θT and βT , respectively. For

almost all VTt, the regression function admits third derivatives on these subsets.

Additionally, there exist functions MTjkl(VTt) such that:

∣∣∣∣ ∂3LT (θT )

∂θTj∂θTk∂θT l

∣∣∣∣ ≤MTjkl(VTt),

EθT {M2
Tjkl(VTt)} < C5 <∞.
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which implies

∣∣∣∣ ∂3LT (θT )

∂βTj∂βTk∂βT l

∣∣∣∣ ≤MTjkl(VTt),

EβT {M2
Tjkl(VTt)} < C5 <∞.

(B4) β∗T1, β∗T2, . . . , β∗Tj satisfy min1≤j≤sT
|β∗Tj |
λT
→∞ as T →∞.

(B5) β∗T1, β∗T2, . . . , β∗Tj satisfy min1≤j≤sT
|β∗Tj |√
ThT
→∞ as T →∞.

A.2 Proofs of Theorems

Theorem 3 and Theorem 4 can be established by following similar arguments used in

the proofs of Theorem 1 and Theorem 2. Therefore, in what follows, we focus on proving

Theorem 1 and Theorem 2.

To distinguish between the SCAD and adaptive LASSO estimators throughout the

text, we use superscripts ‘SC’ and ‘AL’, respectively. However, for simplicity, these

superscripts maybe omitted in the mathematical derivations and proofs.

Before proceeding to the proofs of the main theorems, we introduce a series of lemmas

that will serve as essential building blocks.

Lemma 1. Suppose conditions (A1) and (B1)–(B4) in Appendix A hold. If λT → 0,√
T/pTλT →∞, and p5T/T → 0 as T →∞, then with probability approaching 1, for any

βT1 such that ‖βT1−β∗T1‖ = Op(
√
pT/T ), and any qu satisfying ‖qu−q∗u‖ = Op(1/

√
T ),

the following holds for any fixed constant C:

QSC
T ((β′T1,0

′)′ ,qu) = min
‖βT2‖ ≤ C

( pT
T

)1/2QSC
T ((β′T1,β

′
T2)

′ ,qu) .

Proof. Let εT = C
√
pT/T for some constant C > 0. It suffices to show that, with

probability tending to 1 as T →∞, for any βT1 such that βT1 −β∗T1 = Op(
√
pT/T ), the
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following inequalities hold for each j = sT + 1, . . . , pT :

∂QSC
T (θT )

∂βTj
< 0, for 0 < βTj < εT , (L.1)

∂QSC
T (θT )

∂βTj
> 0, for − εT < βTj < 0. (L.2)

By applying Taylor’s expansion, we obtain

∂QSC
T (θT )

∂βTj
=
∂LT (θT )

∂βTj
+ Tp

′

λT
(|βTj|) sgn(βTj)

=
∂LT (θ∗T )

∂βTj
+

pT∑
l=1

∂2LT (θ∗T )

∂βTj∂βT l
(βT l − β∗T l)

+

pT∑
l,k=1

∂3LT (θ̃T )

∂βTj∂βT l∂βTk
(βT l − β∗T l)(βTk − β∗Tk)

+ Tp
′

λT
(|βTj|) sgn(βTj)

, I1 + I2 + I3 + I4,

where θ̃T lies between θT and θ∗T . In the following, we analyze the contributions of I1,

I2, and I3.

By a standard argument, we have

I1 = Op(
√
T ) = Op(

√
TpT ). (L.3)

The term I2 can be decomposed as follows:

I2 =

pT∑
l=1

{
∂2LT (θ∗T )

∂βTj∂βT l
− E

[
∂2LT (θ∗T )

∂βTj∂βT l

]}
(βT l − β∗T l)

+

pT∑
l=1

E

[
∂2LT (θ∗T )

∂βTj∂βT l

]
(βT l − β∗T l)

, K1 +K2.
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For the term K1, by the Cauchy–Schwarz inequality, we obtain

|K1| ≤ ‖βT − β∗T‖

[
pT∑
l=1

{
∂2LT (θ∗T )

∂βTj∂βT l
− E

(
∂2LT (θ∗T )

∂βTj∂βT l

)}2
]1/2

.

According to condition (B2) in Appendix A, it is easy to show that

[
pT∑
l=1

{
∂2LT (θ∗T )

∂βTj∂βT l
− E

(
∂2LT (θ∗T )

∂βTj∂βT l

)}2
]1/2

= Op(
√
TpT ).

By ‖θT − θ∗T‖ = Op(
√
pT/T ), it follows that

K1 = Op(
√
TpT ). (L.4)

As for termK2, applying the Cauchy–Schwarz inequality and using the fact that ‖βT1−

β∗T1‖ = Op(
√
pT/T ), we have

|K2| =

∣∣∣∣∣T
pT∑
l=1

IT (β∗T )(j, l)(βT l − β∗T l)

∣∣∣∣∣
≤ T ·Op

(√
pT
T

){ pT∑
l=1

I2T (β∗T )(j, l)

}1/2

.

Since the eigenvalues of the information matrix IT (β∗T ) are bounded by condition (B2)

in Appendix A, we have

pT∑
l=1

I2T (β∗T )(j, l) = Op(1).

It follows that

K2 = Op(
√
TpT ). (L.5)

Combining results from (L.4) and (L.5), we obtain

I2 = Op(
√
TpT ). (L.6)
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Next we consider I3, which can be written as:

I3 =

pT∑
l,k=1

{
∂3LT (θ̃∗T )

∂βTj∂βT l∂βTk
− E ∂3LT (θ̃∗T )

∂βTj∂βT l∂βTk

}
(βTj − β∗Tj)(βTk − β∗Tk)

+

pT∑
l,k=1

E
∂3LT (θ̃∗T )

∂βTj∂βT l∂βTk
(βTj − β∗Tj)(βTk − β∗Tk)

, K3 +K4.

For the term K3, by the Cauchy–Schwarz inequality, we have

K2
3 ≤


pT∑
l,k=1

(
∂3LT (θ̃∗T )

∂βTj∂βTk∂βT l
− E ∂3LT (θ̃∗T )

∂βTj∂βTk∂βT l

)2
 · ‖βT − β∗T‖4.

Under conditions (B3) and (B4) in Appendix A, it follows that

K3 = Op

((
Tp2T ·

p2T
T 2

)1/2
)

= op(
√
TpT ). (L.7)

By condition (B3) in Appendix A, we also have

|K4| ≤ C
1/2
5 · TpT · ‖βT − β∗T‖2 = Op(p

2
T ) = op(

√
TpT ). (L.8)

From (L.3) and (L.6)–(L.8), we obtain

I1 + I2 + I3 = Op(
√
TpT ).

Since
√
pT/T/λT → 0 and lim infT→∞ infθ→0+ p

′

λT
(θ)/λT > 0, we deduce that

∂QSC
T (θT )

∂βTj
= TλT

{
p
′

λT
(|βTj|)
λT

sgn(βTj) +Op

(√
pT/T

λT

)}
.

It is then straightforward to see that the sign of βTj exclusively determines the sign of
∂QSCT (θT )

∂βTj
. Consequently, inequalities (L.1) and (L.2) hold, completing the proof.
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Lemma 2. Under the conditions of Theorem 1, we have

∥∥∥∥ 1

T
∇2LT (β∗T ) + IT (β∗T )

∥∥∥∥ = op

(
1

pT

)
, (L.9)

and

∥∥∥∥∥
{

1

T

T∑
i=1

∂LT i(θ
∗
T1)

∂βTj

∂LT i(θ
∗
T1)

∂βTk

}
− IT (β∗T )

∥∥∥∥∥ = op

(
1

pT

)
. (L.10)

Proof. For any ε > 0, by Chebyshev’s inequality, we obtain

P

(∥∥∥∥ 1

T
∇2LT (β∗T ) + IT (β∗T )

∥∥∥∥ ≥ ε

pT

)
≤ p2T
T 2ε2

E

pT∑
i,j=1

{
∂2LT (θ∗T )

∂βT i∂βTj
− E

[
∂2LT (θ∗T )

∂βT i∂βTj

]}2

=
p4T
T

= o(1).

Therefore, (L.9) holds. The result in (L.10) can be established similarly by applying the

same argument to the empirical covariance expression.

Proof of Theorem 1.

Proof. Let αT =
√
pT (T−1/2 + aT ), uT = α−1T (βT − β∗T ), v = α−1T (qu − q∗u), and define

the set CT = {(uT ,v) : ‖(u′T ,v
′
)
′‖ = C}, where ‖ · ‖ denotes the `2-norm.

We aim to show that, for any δ > 0, there exists a sufficiently large constant C such

that for all sufficiently large T , the following inequality holds:

P

{
inf

(uT ,v) ∈ CT
QSC
T (β∗T + αTuT ,q∗u + αTv) > QSC

T (β∗T ,q
∗
u)

}
≥ 1− δ. (A.1)

This implies that, with probability at least 1 − δ, there exists a local minimizer β̂T

within the ball {(β∗T +αTuT ,q∗u+αTv) : ‖(u′T ,v
′
)′‖ ≤ C}, such that ‖β̂T−β∗T‖ = Op(αT ).
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Using the fact that pλT (0) = 0, we have

DSC
T (uT ,v) = QSC

T (β∗T + αTuT ,q∗u + αTv)−QSC
T (β∗T ,q

∗
u)

≥ LT (β∗T + αTuT ,q∗u + αTv)− LT (β∗T ,q
∗
u)

+ T

sT∑
j=1

{
pλT (β∗Tj + αTuTj)− pλT (β∗Tj)

}
, (I) + (II). (A.2)

For notational simplicity, define θT = (β′T ,q′u)′ and wT = (u′T ,v′)′. Then, expression

(A.2) can be reformulated as

DSC
T (wT ) = QSC

T (θ∗T + αTwT )−QSC
T (θ∗T )

≥ LT (θ∗T + αTwT )− LT (θ∗T )

+ T

sT∑
j=1

{
pλT (β∗Tj + αTuTj)− pλT (β∗Tj)

}
, (I) + (II).

Then, by applying Taylor’s expansion and the Mean Value Theorem, we obtain

(I) = αT∇>LT (θ∗T )wT +
1

2
α2
Tw
>
T∇2LT (θ∗T )wT

+
1

6
α3
T∇>

{
w>T∇2LT (θ̃T )wT

}
wT

, I1 + I2 + I3,

where the intermediate vector θ̃T lies between θ∗T and θ∗T +αTwT , and the second term

(II) can be expressed as

(II) =

sT∑
j=1

[
TαTp

′

λT
(|β∗Tj|) sgn(β∗Tj)uTj + Tα2

Tp
′′

λT
(β∗Tj)u

2
Tj{1 + o(1)}

]
, I4 + I5,

where I4 represents the linear term in uTj and I5 corresponds to the second-order term
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involving u2Tj.

By condition (F) in Appendix A, we obtain the following bound for I1

|I1| =
∣∣αT∇TLT (θ∗T )wT

∣∣ ≤ αT
∥∥∇TLT (θ∗T )

∥∥ ‖wT‖

= Op(αT
√
Tp′T ) ‖wT‖ = Op(Tα

2
T ) ‖wT‖ . (A.3)

Next, we consider the term I2. By Lemma 2, we have

I2 =
1

2
w
′

T

[
1

T

{
∇2LT (θ∗T )− E∇2LT (θ∗T )

}]
wT · Tα2

T

− 1

2
w
′

T IT (θ∗T )wT · Tα2
T

= −Tα
2
T

2
w
′

T IT (θ∗T )wT + op(1) · Tα2
T‖wT‖2. (A.4)

By the Cauchy–Schwarz inequality and condition (B3) in Appendix A, we obtain

|I3| =

∣∣∣∣∣∣16
p
′
T∑

i,j,k=1

∂3LT (θ∗T )

∂θT i∂θTj∂θTk
wT iwTjwTkα

3
T

∣∣∣∣∣∣
≤ 1

6

T∑
t=1

{
pT∑

i,j,k=1

M2
T ijk(VTt)

}1/2

‖wT‖3α3
T .

Since p4T/T → 0 and p2TaT → 0 as T →∞, we have

1

6

T∑
t=1


p
′
T∑

i,j,k=1

M2
T ijk(VTt)


1/2

‖wT‖3α3
T = Op

(
(p
′

T )3/2αT

)
· Tα2

T‖wT‖2

= op(Tα
2
T )‖wT‖2.

Therefore,

I3 = op(Tα
2
T )‖wT‖2. (A.5)

The remaining terms I4 and I5 can be handled as follows. For I4, we apply the
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Cauchy–Schwarz inequality and the definition of aT :

|I4| ≤
sT∑
j=1

∣∣∣TαTp′λT (|β∗Tj|) sgn(β∗Tj)uTj

∣∣∣
≤ TαT · max

1≤j≤sT
p
′

λT
(|β∗Tj|) ·

sT∑
j=1

|uTj|

≤ TαTaT ·
√
sT‖uT‖ ≤ Tα2

T‖uT‖. (A.6)

For I5, using the uniform boundedness of the second derivative of the penalty function,

we have:

I5 =

sT∑
j=1

Tα2
Tp
′′

λT
(β∗Tj)u

2
Tj(1 + o(1))

≤ 2 · max
1≤j≤sT

p
′′

λT
(β∗Tj) · Tα2

T‖uT‖2. (A.7)

It follows from equations (A.3)–(A.7) and condition (A3) in Appendix A that the terms

I1, I3, I4, and I5 are all asymptotically negligible compared to the dominant negative

quadratic term I2, provided that ‖uT‖ and ‖v‖ are sufficiently large. Consequently,

inequality (A.1) holds, which completes the proof.

To prove Theorem 2, we leverage the sparsity property of the non-concave penalized

estimator, namely that β̂T2 = 0, as established in Lemma 1. This allows us to focus the

asymptotic analysis on the subvector β̂T1.

Proof of Theorem 2.

Proof. As established in Theorem 1, there exists a root-(T/pT )-consistent local minimizer

β̂T of QSC
T (βT ,qu). According to Lemma 1, part (i), this estimator satisfies the sparsity

property and can be written in the form (β̂
′
T1,0

′
)
′ . Therefore, to complete the proof of

Theorem 2, it suffices to verify part (ii), which establishes the asymptotic normality of

the penalized non-concave estimator β̂T1.
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If we can show that

{IT (β∗T1) + ΣλT } (β̂T1 − β∗T1) + bT =
1

T
∇LT (β∗T1) + op(T

−1/2),

then it follows that

√
T CT I

−1/2
T (β∗T1) {IT (β∗T1) + ΣλT }

[
β̂T1 − β∗T1 + {IT (β∗T1) + ΣλT }

−1 bT
]

=
1√
T

CT I
−1/2
T (β∗T1)∇LT (β∗T1) + op

(
AT I

−1/2
T (β∗T1)

)
.

Here, CT is an sT × sT matrix such that CTC
′

T → G, where G is an sT × sT symmetric

non-negative definite matrix.

By the conditions of Theorem 2, the last term is op(1). Let

YT i =
1√
T

CT I
−1/2
T (β∗T1)∇LT i(β∗T1), i = 1, 2, . . . , T.

Then, for any ε > 0, we have

T∑
i=1

E‖YT i‖21{‖YT i‖ > ε} = TE‖YT1‖21{‖YT1‖ > ε}

≤ T
{
E‖YT1‖4

}1/2 {P (‖YT1‖ > ε)}1/2 .

Using condition (B2) in Appendix A and the fact that CTC
′

T → G, we obtain

P (‖YT1‖ > ε) ≤ E‖CT I
−1/2
T (β∗T1)∇LT1(β∗T1)‖2

Tε2
= O(T−1),

and

E‖YT1‖4 =
1

T 2
E‖CT I

−1/2
T (β∗T1)∇LT1(β∗T1)‖4

≤ 1

T 2
λmax(CTC

′

T )λmax{In(β∗T1)}E‖∇TLT1(β
∗
T1)∇LT1(β∗T1)‖2

= O

(
p2T
T 2

)
.
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Therefore, we conclude

T∑
i=1

E‖YT i‖21{‖YT i‖ > ε} = O

(
T · pT

T
· 1√

T

)
= o(1).

On the other hand, since CTC
′

T → G, we have

T∑
i=1

cov(YT i) = T · cov(YT1) = cov
{
CT I

−1/2
T (β∗T1)∇LT1(β∗T1)

}
→ G.

Hence, the sequence YT i satisfies the Lindeberg–Feller central limit theorem (see Van

Der Vaart (1998) (83)). This implies that

1√
T

CT I
−1/2
T (β∗T1)∇LT (β∗T1)

converges in distribution to a multivariate normal distribution.

With a slight abuse of notation, let QSC
T (βT1) = QSC

T ((β
′
T1,0

′
)
′
,qu). Since the estima-

tor β̂T1 satisfies the penalized estimating equation ∇QSC
T (β̂T1) = 0, we apply Taylor’s

expansion of ∇QSC
T (β̂T1) around the true value β∗T1 to obtain

1

T

[{
∇2LT (β∗T1)−∇2PλT ( ˜̃βT1)

}
(β̂T1 − β∗T1)−∇PλT (β∗T1)

]
= − 1

T

[
∇LT (β∗T1) +

1

2
(β̂T1 − β∗T1)

′∇2
{
∇LT (β̃T1)

}
(β̂T1 − β∗T1)

]
,

where β̃T1 and ˜̃βT1 lie between β̂T1 and β∗T1.

For convenience, define

L , ∇2LT (β∗T1)−∇2PλT ( ˜̃βT1),

C , 1

2
(β̂T1 − β∗T1)

′∇2
{
∇LT (β̃T1)

}
(β̂T1 − β∗T1).

Under conditions (B3) and (B4) in Appendix A, and by the Cauchy–Schwarz inequality,
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we obtain the following bound for the remainder term C

∥∥∥∥ 1

T
C
∥∥∥∥2 ≤ 1

T 2

T∑
t=1

T‖β̂T1 − β∗T1‖4
sT∑

j,k,l=1

M2
Tjkl(VTt)

= Op

(
p2T
T 2

)
·Op(p

3
T )

= op

(
1

T

)
. (A.8)

At the same time, by Lemma 2 and condition (B4) in Appendix A, it is easy to show

that

λi

{
1

T
L+ IT (β∗T1) + ΣλT

}
= op

(
1
√
pT

)
, for i = 1, 2, . . . , sT ,

where λi(A) denotes the ith eigenvalue of a symmetric matrix A.

Since β̂T1 − β∗T1 = Op

(√
pT/T

)
, we then have

{
1

T
L+ IT (β∗T1) + ΣλT

}
(β̂T1 − β∗T1) = op

(
1√
T

)
. (A.9)

Finally, combining (A.8) and (A.9), we obtain

{IT (β∗T1) + ΣλT } (β̂T1 − β∗T1) + bT =
1

T
∇LT (β∗T1) + op

(
1√
T

)
. (A.10)

Following (A.10), Theorem 2 follows.

Since βT = vec(A′T ), it is necessary to transform the asymptotic normality result

from vec(A′T ) to vec(AT ). This transformation can be accomplished by introducing a

permutation matrix P such that βT = P vec(AT ). The asymptotic results then hold

under this transformation, ensuring consistency in the original parameter space.

The original asymptotic normality result is given by

√
TCT I

−1/2
T (β∗T1){IT (β∗T1) + ΣλT }

× [β̂T1 − β∗T1 + {IT (β∗T1) + ΣλT }−1bT ]
D−→ N (0,G).
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where βT = vec(A
′

T ). To express this result in terms of vec(AT ), we apply a permuta-

tion matrix P such that

vec(A
′

T ) = P vec(AT ),

where P is a sT × sT permutation matrix. Similarly, the corresponding penalty gradient

vector satisfies bT = Pb̃T . Substituting into the asymptotic normality result gives

√
TCT I

−1/2
T (β∗T1){IT (β∗T1) + ΣλT }

×P[vec(Â
∗
T1)− vec(A∗T1) + {IT (β∗T1) + ΣλT }−1b̃T ]

D−→ N (0,G).

Since P is an orthogonal matrix that preserves asymptotic distributional properties,

the result can be rewritten as

√
TCT I

−1/2
T (β∗T1){IT (β∗T1) + ΣλT }

× [vec(Â
∗
T1)− vec(A∗T1) + {IT (β∗T1) + ΣλT }−1b̃T ]

D−→ N (0,P
′
G).

Letting Σ = P
′
G and DT1 = I

−1/2
T (β∗T1), the final form becomes

√
T CTD

−1/2
T1 {DT1 + ΣλT }

[
vec(Â

∗
T1)− vec(A∗T1) + {DT1 + ΣλT }

−1 b̃T
]

D−→ N (0,Σ).

Fact 1. P is a permutation matrix that swaps the elements of vec(AT ) to obtain vec(A
′

T ).

It satisfies:

1. P is an sT × sT square matrix;

2. P consist of only 0′s and 1′s;

3. Each row and each column has exactly one 1;

4. P is orthogonal, meaning PP
′
= I
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A standard way to define P is using the commutation matrix Km,n, which is an mn×mn

matrix satisfying:

Km,nvec(AT ) = vec(A
′

T )

The explicit construction is:

P = Ks,r =
s∑
i=1

r∑
j=1

Eij ⊗ Eji,

where Eij is the elementary basis matrix, which has a 1 at the (i, j) position and 0

elsewhere.

Alternatively, in index notation, P rearranges the vector such that:

Pek = eπ(k),

where π(k) is the index mapping for the transpose operation.
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APPENDIX B: CONDITIONS and PROOFS of THEOREMS IN CHAPTER 3

B.1 Regularity conditions

For any u ∈ BN = {u|u ∈ RN , ‖u‖ < 1}, model (1.1) can be also written as

yt = Axt + εt, (B.1)

where A = (A1, . . . ,AP ), and xt = (y′t−1, . . . ,y′t−P )′. Then, we define the uth spatial

QR estimators of the parameters for model (A.1) by

Â, q̂u = arg min
A, qu

T∑
t=p+1

Qu (yt −Axt − qu) (B.2)

For simplicity, we let Zt = (1,x′t)′ ∈ RNP+1„ and Φ(u) = (Φ1(u),Φ2(u)) ∈ RN×(NP+1),
where Φ1(u) = qu and Φ2(u) = A. We define the u-th quantile of εt as

qu = arg min
qu ∈ Rk

E [Qu(εt − qu)−Qu(εt)] (B.3)

Then
E[ϕu(εt − qu)] = 0. (B.4)

where for any t ∈ RN , define ϕu(t) = t/‖t‖ + u for t 6= 0, and ϕu(0) = u. Since the

first entry in Zt is one, the model (B.2) is equivalent to

Φ̂T (u) = arg min
Φ(u)

T∑
t=p+1

Qu (yt −Φ(u)Zt) (B.5)

Then Φ̂T (u)Zt is the spatial QR estimator of the u-th conditional quantile of yt given
Zt, and Φ̂T (u) is the spatial QR estimator of Φ(u), which is denoted by Φ̂T to stress

dependent on u.

For convenience, we use the following notations throughout the proofs. Let Ψ(t) be

the N ×N Hessian matrix, i.e. Ψ(t) = ‖t‖−1(IN − tt>‖t‖−2) for t 6= 0, and Ψ(0) = 0,

where IN is the N × N identity matrix. Let D1(u) = E[Ψ(εt − qu)] and D2(u) =

E
[
ϕu(εt − qu){ϕu(εt − qu)}>

]
.

To derive asymptotic distributions of the spatial QR estimators, we need the following
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regularity conditions:

C1. limT→∞ T
−1∑T

t=1 ZtZ>t = S, where S is a positive definite matrix.

C2. The processes {εt} are strictly stationary with α-mixing coefficients α(k) such that∑
k α(k)1−2/δ <∞ for some δ > 2 and c > 1− 2/δ.

C3. E[ϕu(εt − qu)|Ft−1] = 0, where Ft−1 is the σ-field generated by (yj+1, εj) for

j ≤ t− 1.

C4. There exists a positive γ > 0 such that E‖εt‖2+γ <∞.

C5. limT→∞ T
−1∑T

t=1 xtx>t = Γ∗, where Γ∗ is a positive definite matrix.

B.2 Proofs of Theorems

Before proceeding to the proofs of the main theorems, we introduce a series of lemmas

that will serve as essential building blocks. We first introduce Lemma 3, which is from

Chakraborty (2003) (20).

Lemma 3. Let φn(β), n = 1, 2, . . . , be a sequence of random functions on Rk and

convex in β. Let φ(β) be a random function such that, for each fixed β, φn(β)→ φ(β)

in probability. Then for each M > 0,

sup
‖β‖≤M

|φn(β)− φ(β)| → 0

in probability.

The above Lemma 3 follows directly from Lemma 3 of Niemiro (1992) (84).

Lemma 4. For any quadratic function g(x) = xTAx + bTx + c, where A is a p × p

positive definite matrix, b is a p× 1 vector, and c is a constant, we have

(i) g(x) achieves the minimum value g(x0) = c− 1
4
bTA−1b at x0 = −1

2
A−1b;

(ii) g(x) = (x− x0)
TA(x− x0) + g(x0).

Proof. Routine.
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Lemma 5. Assume that conditions C1-C4 hold. Then for any u ∈ BN = {u|u ∈

RN , ‖u‖ < 1}, we have the following Bahadur representation of Φ̂T (u)

√
T (Φ̂T (u)−Φ∗(u)) = T−1/2D−11 (u)

[
T∑
t=1

ϕu(εt − qu)Z
′

t

]
S−1 + op(1). (B.6)

Furthermore,
√
T (Φ̂T (u)−Φ∗(u)) converges weakly to a N×(NP+1)-dimensional nor-

mal distribution with mean zero and dispersion matrix Σ∗SQR =
[
D−11 (u)D2(u)D−11 (u)

]
⊗

S−1, where Φ∗(u) = (Φ∗1(u),Φ∗2(u)) is a N × (NP + 1) matrix. The proof follows the

Theorem 4.1 of Chakraborty (2003) (20).

Proof. Fix γ ∈ RN×(NP+1) and define the random variables VTt as

VTt =Qu(εt − qu − T−1/2γZt)−Qu(εt − qu)

+ T−1/2[vec(γ)]
′
[ϕu(εt − qu)⊗ Zt]. (B.7)

Since VT1, . . . ,VTT are independent, it holds that Var
(∑T

t=1 VTt

)
≤
∑T

t=1E(V2
Tt).

Using the convexity of Qu(·) in γ, we obtain

T∑
t=1

E(V 2
Tt) ≤

1

T

T∑
t=1

E([vec(γ)]
′{[ϕu(εt − qu − n−1/2γZt)

−ϕu(εt − qu)]⊗ Zt})2. (B.8)

The random variable E({vec(γ)}′{[ϕu(εt−qu−T−1/2γZt)−ϕu(εt−qu)]⊗Zt}) tends

monotonically to zero almost surely. Since ϕu is bounded and continuous, the Lebesgue-

dominated convergence theorem ensures that the right-hand side of (B.8) tends to zero

as T →∞. Thus, by Chebyshev’s inequality,

T∑
t=1

VTt −
T∑
t=1

E
[
Qu(εt − qu − T−1/2γZt)−Qu(εt − qu)

] P−→ 0. (B.9)
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By a Taylor expansion and under condition C1 in Appendix B, it follows that

T∑
t=1

E
[
Qu

(
εt − qu − T−1/2γZt

)
−Qu (εt − qu)

]
→ 1

2
[vec(γ)]

′
[D1(u)⊗ S] [vec(γ)] . (B.10)

Uniform convergence over compact sets follows from Lemma 3. Hence, for any ε > 0

and M > 0, there exists sufficiently large T such that with probability at least 1− ε/2,

sup
‖γ‖≤M

∣∣∣∣∣
T∑
t=1

Qu(εt − qu − T−1/2γZt)−
T∑
t=1

Qu(εt − qu)

+T−1/2[vec(γ)]
′

[
T∑
t=1

ϕu(εt − qu)⊗ Zt

]

−1

2
[vec(γ)]

′
[D1(u)⊗ S][vec(γ)]

∣∣∣∣∣ < ε. (B.11)

Since, the standardized sums T−1/2[D1(u)⊗S]−1
[∑T

t=1ϕu(εt − qu)⊗ Zt

]
are bounded

in probability, we can select M such that

∥∥∥∥∥T−1/2[D1(u)⊗ S]−1

[
T∑
t=1

ϕu(εt − qu)⊗ Zt

]∥∥∥∥∥ ≤M − 1, (B.12)

with probability exceeding 1− ε/2, too.

Let K = 2
(
inf‖w‖=1 wT [D1(u)⊗ S]w

)−1/2. The quadratic function

−T−1/2[vec(γ)]
′

[
T∑
t=1

ϕu(εt − qu)⊗ Zt

]

+
1

2
[vec(γ)]

′
[D1(u)⊗ S][vec(γ)].

has its minimum value equal to

− 1

2T

[
T∑
t=1

ϕu(εt − qu)⊗ Zt

]T
[D1(u)⊗ S]−1

[
T∑
t=1

ϕu(εt − qu)⊗ Zt

]

at T−1/2[D1(u) ⊗ S]−1
[∑T

t=1ϕu(εt − qu)⊗ Zt

]
. Whenever (B.11) and (B.12) hold, the
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convex function
∑T

t=1Qu(εt−qu−T−1/2γZt)−
∑T

t=1Qu(εt−qu) assumes at T−1/2[D1(u)⊗

S]−1
[∑T

t=1ϕu(εt − qu)⊗ Zt

]
a value less than its value on the sphere

∥∥∥∥∥vec(γ)− T−1/2[D1(u)⊗ S]−1

[
T∑
t=1

ϕu(εt − qu)⊗ Zt

]∥∥∥∥∥ = Kε1/2.

The minimum point of this function is
√
T (Φ̂T (u) − Φ∗(u)), so except for an event of

probability ε, we have

∥∥∥√T (Φ̂T (u)−Φ∗(u))− T−1/2[D1(u)]−1

×

[
T∑
t=1

ϕu(εt − qu)Z
′

t

]
S−1
∥∥∥∥∥ < K

√
ε. (B.13)

Define Vt = ϕu(εt−qu)Z
′

t. Since function ϕ is bounded and smooth, Zt has mean zero.

Hence, we know {Vt}; t = 1, . . . , T , is also a strictly stationary and α-mixing process.

Since εt and Zt are uncorrelated, we have E(Vt) = E[E(Vt|Zt)] = 0.

In the following we show the asymptotic normality of MT =
∑T

t=1 Vt, following the

Theorem 1 of Jiang (2017) (17). Since {Vt, t = 1, . . . , T} are dependent, we employ the

standard small-block and large-block arguments to complete this task. To this end, we

partition the set {1, . . . , T} into 2kT + 1 subsets with large blocks of size lT and small

blocks of size sT . A large block is followed by a small block, and the last remaining set

has size T − kT (lT + sT ), where lT and sT are selected such that sT → ∞, sT/lT → 0,

lT/T → 0, and the number of the blocks kT = [T/(lT +sT )] = O(sT ). Let lT = O(T (r−1)/r)

and sT = O(T 1/r) for any r > 2, then kT = O(T 1/r) = O(sT ).

For j = 1, . . . , kT , define

ξj =

jlT+(j−1)sT∑
t=(j−1)(lT+sT )+1

Vt, ηj =

j(lT+sT )∑
t=jlT+(j−1)sT+1

Vt, ζ =
T∑

t=kT (lT+sT )+1

Vt.

Note that α(T ) = o(T−1) and kT sT/T → 0. It follows from Proposition 2.7 of Fan and
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Yao (85) that

1

T
E

(
kT∑
j=1

ηj

)2

→ 0 and
1

T
E(ζ2)→ 0.

This means that the summations over the small blocks and the residual block are

asymptotically negligible. Thus,

1√
T

Mt =
1√
T

(
kT∑
j=1

ξj +

kT∑
j=1

ηj + ζ

)
=

1√
T

kT∑
j=1

ξj + op(1).

It follows from Proposition 2.6 of Fan and Yao (85) that, as T →∞,

∣∣∣∣∣E
{

exp

(
it√
T

kT∑
j=1

ξj

)}
−

kT∏
j=1

E
{

exp
(
itξj/

√
n
)}∣∣∣∣∣ ≤ 16(kT − 1)α(sT )→ 0,

which implies the summations over the large blocks {ξj} are asymptotically independent.

Now, by stationarity, we have

1

T
Var(MT ) =

1

T

n∑
j=1

Var(Vj) +
2

T

∑
1≤t<j≤T

Cov(Vt,Vj) = γ(0) + 2
T−1∑
l=1

(
1− l

T

)
γ(l),

where γ(k) = Cov(Vt+k,Vt) is the autocovariance function of Vt. Define Σ1 = D2(u)⊗S.

It is straightforward to show that Σ1 = D2(u) ⊗ S = γ(0) + 2
∑∞

j=1 γ(j). Applying

Theorem 2.20 of Fan and Yao (85), we have l−1T E(ξ21) → Σ1, which implies the Feller

condition
1

T

kT∑
j=1

E(ξ2j) =
kT lT
T

1

lT
E(ξ21)→ Σ1.

Note that, for any ε > 0,

E[ξ21I(|ξ1| >
√
Tε|Σ1|1/2)] ≤ E(ξ41)

1/2P [|ξj| >
√
Tε|Σ1|1/2] ≤ ClT

1

Tε2
|Σ1|−1E(ξ21) = O(l2T/T ).

It follows that

1

T

kT∑
j=1

E[ξ2jI(|ξj| ≥
√
Tε|Σ1|1/2)] = O(kT l

2
T/T

2) = O(lT/T )→ 0,
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which is the Lindberg condition. Then by the central limit theorem, we have

kT∏
j=1

E[exp(itξj/
√
T )]→ exp{−tΣ1t

′
/2},

for any t. That is, T−1/2MT → N(0,Σ1) in distribution as T →∞.

Then, we have
√
T (Φ̂T (u)−Φ∗(u)) converges weakly to a N×(NP +1)-dimensional nor-

mal distribution with mean zero and dispersion matrix Σ∗SQR = [D−11 (u)D2(u)D−11 (u)]⊗

S−1, where Φ∗(u) = (Φ∗1(u),Φ∗2(u)) is a N × (NP + 1) matrix.

Fact 2. By the definition of Φ∗(u), Φ∗1(u) is the first column of Φ∗(u), and Φ∗2(u) are

the remaining columns of Φ∗(u) which do not depend on u. We also partition Φ̂T (u)

as Φ̂T (u) = (Φ̂1T (u), Φ̂2T (u)) in the same way as that for Φ∗(u). Then, Φ̂2T (u) are al-

ways consistent estimators of Φ∗2(u) for different u, i.e.,
√
T (Φ̂2T (u)−Φ∗2(u)) converges

weakly to a N ×NP -dimensional normal distribution with mean zero and dispersion ma-

trix ΣSQR =
[
D−11 (u)D2(u)D−11 (u)

]
⊗ (Γ∗)−1. Since, Φ∗1(u) = q∗u and Φ∗2(u) = A∗, then

we have
√
T (vec(ÂSQR)−vec(A∗)) converges weakly to aN×NP -dimensional normal dis-

tribution with mean zero and dispersion matrix ΣSQR =
[
D−11 (u)D2(u)D−11 (u)

]
⊗(Γ∗)−1.

Lemma 6. Suppose that α ≥ 1. if λ/
√
T → λ0 ≥ 0 and under condition C1 in Appendix

B then √
T (Φ̂T (u)−Φ∗(u))

D−→ arg min(V), (B.14)

where, if α > 1,

V(γ) = T−1/2[D1(u)]−1

[
T∑
t=1

ϕu(εt − qu)Z
′

t

]
S−1 + λ0

N∑
i=1

NP∑
j=1

γijsgn(Aij)|Aij|α−1
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if α = 1,

V(γ) = T−1/2[D1(u)]−1

[
T∑
t=1

ϕu(εt − qu)Z
′

t

]
S−1

+ λ0

N∑
i=1

NP∑
j=1

[γijsgn(Aij)I(Aij 6= 0) + |γij|I(Aij = 0)]

Proof. Define VT (γ) by

VT (γ) =
T∑

t=p+1

[Qu(εt − qu − T−1/2γZt)−Qu(εt − qu)]

+ λ

N∑
i=1

NP∑
j=1

[|Aij + γij/
√
T |α − |Aij|α].

where γ = [γij]N×(NP+1) and note that VT is minimized at
√
T (Φ̂T (u) − Φ∗(u)). First

note that

T∑
t=p+1

[Qu(εt − qu − T−1/2γZt)−Qu(εt − qu)]
D→ T−1/2[D1(u)]−1

[
T∑
t=1

ϕu(εt − qu)Z
′

t

]
S−1.

which is already proved in Lemma 5. if α > 1 then

λ
N∑
i=1

NP∑
j=1

[|Aij + γij/
√
T |α − |Aij|α]→ λ0

N∑
i=1

NP∑
j=1

γijsgn(Aij)|Aij|α−1,

while for α = 1 , we have

λ

N∑
i=1

NP∑
j=1

[|Aij + γij/
√
T |α − |Aij|α]→ λ0

N∑
i=1

NP∑
j=1

[γijsgn(Aij)I(Aij 6= 0) + |γij|I(Aij = 0)]

Thus VT (γ)
D→ V(γ) (as defined above) with the finite-dimensional convergence hold-

ing trivially. Since VT is convex and V has a unique minimum, it follows Geyer (1996)

(86) that

argmin(VT ) =
√
T (Φ̂T (u)−Φ∗(u))

D→ argmin(V).

Note that when λ0 = 0, argmin(V) = T−1/2D−11 (u)
[∑T

t=1ϕu(εt − qu)Z
′
t

]
S−1. Then,
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we have
√
T (Φ̂T (u) −Φ∗(u)) converges weakly to a N × (NP + 1)-dimensional normal

distribution with mean zero and dispersion matrix Σ∗SQRLASSO = [D−11 (u)D2(u)D−11 (u)]⊗

S−1. By the notations from Lemma 5 and explanations from Fact 2, Φ∗1(u) = q∗u and

Φ∗2(u) = A∗, then we have
√
T (vec(ÂSQRLASSO)−vec(A∗)) converges weakly to aN×NP -

dimensional normal distribution with mean zero and dispersion matrix ΣSQRLASSO =[
D−11 (u)D2(u)D−11 (u)

]
⊗ (Γ∗)−1.

Proof of Theorem 4.

Proof. The proof generally follows from Proposition 4.1 in Shapiro (1986) (75) for over-

parameterized models. let h(φ) denote the true parameter vec(A(1)) = vec(U1G(1)(U3⊗

U2)
′), and let ĥSQR denote the vectorized SQR estimates vec(ÂSQR) without constraint.

By the Fact 2,
√
T (ĥSQR−h∗) D−→ N (0,ΣSQR), where ΣSQR =

[
D−11 (u)D2(u)D−11 (u)

]
⊗

(Γ∗)−1. Consider the discrepancy function for any h(φ),

F (ĥSQR,h) =
T∑
t=1

Qu(yt − hxt − qu)−
T∑
t=1

Qu(yt − ĥSQRxt − q̂u)

Obviously, F (ĥSQR,h) is a nonnegative and twice continuously differentiable function,

and equals to zero if and only if ĥSQR = h.

To calculate the Jacobian matrix H, we define the tensor matricization transformation

operator Tij(N,N, P ) which is an N2P × N2P matrix and satisfies that vec(A(j)) =

Tij(N,N, P )vec(A(i)) for any tensor A ∈ RN×N×P . In fact, Tij(N,N, P ) is a full-rank

matrix indicating the corresponding position in vec(A(i)) of A’s each entry in vec(A(j)),

and can be regarded as the natural extension of the permutation matrix for matrix

transpose. Also note that Tij(N,N, P ) only depends on the value of N and P , and since

we consider fixed N and P in this part, we simplify it to Tij.
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Therefore,

vec(A(1)) = vec(U1G(1)(U3 ⊗U2)
′)

= T21vec(U2G(2)(U1 ⊗U3)
′)

= T31vec(U3G(3)(U1 ⊗U2)
′),

and the Jacobian matrix of h is

H =
∂h
∂φ

= {(U3 ⊗U2 ⊗U1),[
(U3 ⊗U2)G ′(1)

]
⊗ IN ,

T21

{[
(U1 ⊗U3)G ′(2)

]
⊗ IN

}
,

T31

{[
(U1 ⊗U2)G ′(3)

]
⊗ IP

}}
.

Then, by Proposition 4.1 in Shapiro (1986) (75), we know that the minimizer of

F (ĥSQR, ·), namely the MLRSQR estimator, has the asymptotic normality,

√
T (h(φ̂MLRSQR)− h∗) D−→ N (0,ΣMLRSQR).

i.e.,
√
T{vec((ÂMLRSQR)(1))− vec(A∗(1))}

D−→ N (0,ΣMLRSQR).

and ΣMLRSQR = PΓP
′
, where P = H(H′JH)†H′J is the projection matrix, J is the

Fisher information matrix of h as T goes to infinity, H is the Jacobian matrix of h with

respect to the overparameterized model parameters φ, Γ =
[
D−11 (u)D2(u)D−11 (u)

]
⊗

(Γ∗)−1 is the asymptotic covariance matrix for ĥSQR and † denotes the Moore-Penrose

inverse. Since Γ = J−1, we have ΣMLRSQR = H(H′JH)†H′.

Fact 3. Consider (B.5), we vectorize the estimated parameters. Then the (B.5) can be

written as
vec(Φ̂

′

T (u)) = arg min
Φ

T∑
t=p+1

Qu[yt − (IN ⊗ Z
′

t)vec(Φ
′
(u))], (B.15)
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By Lemma 5 and the uniform convergence theory, for every ε and M > 0, the inequality

sup
‖γ‖≤M

∣∣∣∣∣
T∑
t=1

Qu(εt − qu − T−1/2(IN ⊗ Z
′

t)γ)−
T∑
t=1

Qu(εt − qu)

+T−1/2γ
′

[
T∑
t=1

(IN ⊗ Zt)ϕu(εt − qu)

]

−1

2
γ
′
[(IN ⊗ Zt)D1(u)(IN ⊗ Z

′

t)]γ

∣∣∣∣∣ < ε. (B.16)

holds with probability at least 1 − ε/2 for a fixed γ ∈ RN×(NP+1) and for large T . We

have the following Bahadur representation of Φ̂T (u)

√
T [vec(Φ̂

′

T (u))− vec(Φ∗
′
(u))] = T−1/2[(IN ⊗ Zt)D1(u)(IN ⊗ Z

′

t)]
−1

×

[
T∑
t=1

(IN ⊗ Zt)ϕu(εt − qu)

]
+ op(1). (B.17)

Suppose that limT→∞ T
−1∑T

t=1 vec([IN⊗Zt])vec([IN⊗Zt])
> = Q∗, where Q∗ is a positive

definite matrix, and limT→∞ T
−1∑T

t=1 vec([IN ⊗ xt])vec([IN ⊗ xt])> = Q, where Q is a

positive definite matrix. Then, we have
√
T [vec(Φ̂

′

T (u))− vec(Φ∗
′
(u))] converges weakly

to a N×(NP +1)-dimensional normal distribution with mean zero and dispersion matrix

Σ∗ = [(IN⊗Zt)D1(u)(IN⊗Z
′

t)]
−1[Tr[D2(u)]Q∗][(IN⊗Zt)D1(u)(IN⊗Z

′

t)]
−1. By the Fact

2,
√
T (vec(Â

′

)−vec(A∗′)) converges weakly to aN×NP -dimensional normal distribution

with mean zero and dispersion matrix Σ = [(IN⊗xt)D1(u)(IN⊗x′t)]−1[Tr[D2(u)]Q][(IN⊗

xt)D1(u)(IN ⊗ x′t)]−1.

Proof of Theorem 2.

Proof. Consider the `1-penalized sparse higher-order reduced-rank with SQR (SHORRSQR)

estimator:
ÂSHORRSQR ≡ [[Ĝ; Û1, Û2, Û3; q̂u]]

= arg min
G,U1,U2,U3,qu

{
T∑
t=1

Qu

(
yt −A(1)xt − qu

)
+ λ‖U3 ⊗U2 ⊗U1‖1

} (B.18)

whereA(1) = (G×1U1×2U2×3U3)(1) and note that ‖U3⊗U2⊗U1‖1 = ‖U3‖1‖U2‖1‖U1‖1.
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Then, by Section 3.2.2, we have

yt =
(
(x′t(U3 ⊗U2)G ′(1))⊗ IN

)
vec(U1) + qu = Atvec(U1) + qu

= U1G(1) ((U′3X
′
t)⊗ Ir2) vec(U

′
2) + qu = Btvec(U′2) + qu

= U1G(1)(Ir3 ⊗ (U′2Xt))vec(U3) + qu = Ctvec(U3) + qu

= (((U3 ⊗U2)
′xt)′ ⊗U1)vec(G(1)) + qu = Dtvec(G(1)) + qu

(B.19)

We show asymptotics using vec(U1) as an example, and a similar process for vec(U2) and

vec(U3). Since vec(G(1)) does not involve a penalty term, the proof of the asymptotics of

vec(G(1)) follows the Fact 3.

Define R1 by

R1(γ) = T−1/2[AtD1(u)A
′

t]
−1

[
T∑
t=1

A
′

tϕu(εt − qu)

]

+
λ‖U3‖1‖U2‖1√

T

N∑
i=1

r3∑
j=1

[γijsgn(γij)I(U1ij 6= 0) + |γij|I(U1ij = 0)

Define R1T (γ) by

R1T (γ) =
T∑

t=p+1

[Qu(εt − qu − T−1/2Atγ)−Qu(εt − qu)]

+ λ‖U3‖1‖U2‖1
N∑
i=1

r1∑
j=1

[|U1ij + γij/
√
T | − |U1ij|].

where γ = [γij] corresponds to the element in vec(U1) and note that R1T is minimized

at
√
T (vec(Û1)− vec(U∗1)). First note that

T∑
t=p+1

[Qu(εt − qu − T−1/2Atγ)−Qu(εt − qu)]
D−→ T−1/2[AtD1(u)A

′

t]
−1

[
T∑
t=1

A
′

tϕu(εt − qu)

]
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According to the Fact 3, we have

λ‖U3‖1‖U2‖1
N∑
i=1

r1∑
j=1

[|U1ij + γij/
√
T | − |U1ij|]→

λ‖U3‖1‖U2‖1√
T

N∑
i=1

r1∑
j=1

[γijsgn(γij)I(U1ij 6= 0) + |γij|I(U1ij = 0)

Let λ‖U3‖1‖U2‖1√
T

→ λ1 ≥ 0. When λ1 = 0,
√
T (vec(Û1) − vec(U∗1))

D−→ argmin(R1).

Then argmin(R1) = T−1/2[AtD1(u)A
′

t]
−1
[∑T

t=1 A
′

tϕu(εt − qu)
]
. By the Fact 3, let

limT→∞ T
−1∑T

t=1 vec(A
′

t)vec(A
′

t)
> = Q1, where Q1 is a positive definite matrix. There-

fore,
√
T (vec(Û1)−vec(U∗1)) converges weakly to aN×r1-dimensional normal distribution

with mean zero and dispersion matrix Σ1 = [AtD1(u)A
′

t]
−1[Tr(D2(u))Q1][AtD1(u)A

′

t]
−1.

For vec(U2), by the Fact 3, let limT→∞ T
−1∑T

t=1 vec(B
′

t)vec(B
′

t)
> = Q2, where Q2 is

a positive definite matrix, and let λ‖U3‖1‖U1‖1√
T

→ λ2 ≥ 0, when λ2 = 0,
√
T (vec(Û

′

2) −

vec(U∗
′

2 )) converges weakly to a N × r2-dimensional normal distribution with mean zero

and dispersion matrix Σ∗2 = [BtD1(u)B
′

t]
−1[Tr(D2(u))Q2][BtD1(u)B

′

t]
−1. Let K be the

permutation matrix such that vec(U2) = Kvec(U
′

2). K is a sparse matrix of size Nr2 ×

Nr2 with full rank where each row and each column has only one element equal to 1, and

all other elements are 0. Then,
√
T (vec(Û2) − vec(U∗2)) converges weakly to a N × r2-

dimensional normal distribution with mean zero and dispersion matrix Σ2 = KΣ∗2K
′ .

For vec(U3), by the Fact 3, let limT→∞ T
−1∑T

t=1 vec(C
′

t)vec(C
′

t)
> = Q3, where Q3 is

a positive definite matrix, and let λ‖U2‖1‖U1‖1√
T

→ λ3 ≥ 0, when λ3 = 0,
√
T (vec(Û3) −

vec(U∗3)) converges weakly to a P × r3-dimensional normal distribution with mean zero

and dispersion matrix Σ3 = [CtD1(u)C
′

t]
−1[Tr(D2(u))Q3][CtD1(u)C

′

t]
−1.

For vec(G(1)), by the Fact 3, let limT→∞ T
−1∑T

t=1 vec(D
′

t)vec(D
′

t)
> = Q4, where Q4

is a positive definite matrix, we have
√
T (vec(Ĝ(1)) − vec(G∗(1))) converges weakly to a

r1× r2× r3-dimensional normal distribution with mean zero and dispersion matrix Σ4 =

[DtD1(u)D
′

t]
−1[Tr(D2(u))Q4][DtD1(u)D

′

t]
−1.
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By the definition of HOSVD, we have

Â = [[Ĝ; Û1, Û2, Û3]], and A = [[G; U1,U2,U3]].

Then, we have

vec(Â(1) −A(1))

=(Û3 ⊗ Û2 ⊗ Û1)vec(Ĝ(1))− (U3 ⊗U2 ⊗U1)vec(G(1))

=(Û3 ⊗ Û2 ⊗ Û1)vec(Ĝ(1))− (U3 ⊗U2 ⊗U1)vec(Ĝ(1))

+ (U3 ⊗U2 ⊗U1)vec(Ĝ(1))− (U3 ⊗U2 ⊗U1)vec(G(1))

=(Û3 ⊗ Û2 ⊗ Û1 −U3 ⊗U2 ⊗U1)vec(Ĝ(1)) + (U3 ⊗U2 ⊗U1)vec(Ĝ(1) − G(1))

=[(Û3 −U3)⊗U2 ⊗U1]vec(Ĝ(1)) + [U3 ⊗ (Û2 −U2)⊗U1]vec(Ĝ(1))

+ [U3 ⊗U2 ⊗ (Û1 −U1)]vec(Ĝ(1)) + (U3 ⊗U2 ⊗U1)vec(Ĝ(1) − G(1))

=[(Û3 −U3)⊗U2 ⊗U1]vec(G(1)) + [U3 ⊗ (Û2 −U2)⊗U1]vec(G(1))

+ [U3 ⊗U2 ⊗ (Û1 −U1)]vec(G(1)) + (U3 ⊗U2 ⊗U1)vec(Ĝ(1) − G(1)) + op(T
−1/2)

=[IP ⊗ ((U2 ⊗U1)G
′

(3))]vec(Û3 −U3) + [IN ⊗ ((U3 ⊗U1)G
′

(2))]vec(Û2 −U2)

+ [IN ⊗ ((U3 ⊗U2)G
′

(1)]vec(Û1 −U1) + (U
′

3 ⊗U
′

2 ⊗U
′

1)vec(Ĝ(1) − G(1)) + op(T
−1/2).

Therefore,
√
T vec(Â(1) − A(1)) is also normally distributed with mean zero, as T →

∞.

B.3 A: Proofs of Corollaries

Proof of Corollary 1.

Proof. We now demonstrate the asymptotic normality for vec(Û1), as the same reasoning

applies to vec(Û2) and vec(Û3). In this section, we simplify ÂMLRSQR to Â. Note that

Û1 and U1 are the eigenvectors of Â(1)Â′(1) and A(1)A′(1), respectively. By Theorem 4,
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we have
√
Tvec(Â(1) −A(1))

D−→ N (0,Σh), where Σh = ΣMLRSQR. Note that

√
T (Â(1)Â′(1) −A(1)A′(1))

=
√
T (Â(1) −A(1))A′(1) +

√
TA(1)(Â(1) −A(1))

′ +
√
T (Â(1) −A(1))(Â(1) −A(1))

′

=
√
T (Â(1) −A(1))A′(1) +

√
TA(1)(Â(1) −A(1))

′ +Op(T
−1/2)

Then, we have

√
Tvec(Â(1)Â′(1) −A(1)A′(1))

=(A(1) ⊗ IN)
√
Tvec(Â(1) −A(1)) + (IN ⊗A(1))

√
Tvec(Â(1) −A(1)) +Op(T

−1/2)

=[(A(1) ⊗ IN) + (IN ⊗A(1))]
√
Tvec(Â(1) −A(1)) +Op(T

−1/2)

Therefore,
√
Tvec(Â(1)Â′(1) −A(1)A′(1)) is asymptotically normal.

Using the matrix perturbation theory (Izenman, 1975 (87); Velu and Reinsel, 2013 (88)),

√
T (Û1k −U1k)

=
∑
i6=k

1

d2k − d2i
(U′1i ⊗U1iU′1i)

√
Tvec(Â(1)Â′(1) −A(1)A′(1)) +Op(T

−1/2)

=
∑
i6=k

1

d2k − d2i
(U′1i ⊗U1iU′1i)[(A(1) ⊗ IN) + (IN ⊗A(1))]

√
Tvec(Â(1) −A(1)) +Op(T

−1/2)

Let M1 =
∑

i6=k
1

d2k−d
2
i
(U′1i ⊗U1iU′1i)[(A(1) ⊗ IN) + (IN ⊗ A(1))]. Then, we have ΣU1 =

M1ΣhM
′

1. Thus,
√
T (Û1 − U1) → N(0,ΣU1) in distribution as T → ∞. Similarly,

Let M2 =
∑

i6=k
1

d2k−d
2
i
(U′2i ⊗U2iU′2i)[(A(1) ⊗ IN) + (IN ⊗ A(1))]. Then, we have ΣU2 =

M2ΣhM
′

2. Thus,
√
T (Û2 −U2) → N(0,ΣU2) in distribution as T → ∞, and let M3 =∑

i6=k
1

d2k−d
2
i
(U′3i ⊗U3iU′3i)[(A(1) ⊗ IP ) + (IP ⊗ A(1))]. Then, we have ΣU3 = M3ΣhM

′

3.

Thus,
√
T (Û3 −U3)→ N(0,ΣU3) in distribution as T →∞.

For vec(Ĝ(1)), by the definition of HOSVD, we have

Ĝ = [[Â; Û
′

1, Û
′

2, Û
′

3]], and G = [[A; U
′

1,U
′

2,U
′

3]].
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Then, we have

vec(Ĝ(1) − G(1))

=(Û
′

3 ⊗ Û
′

2 ⊗ Û
′

1)vec(Â(1))− (U
′

3 ⊗U
′

2 ⊗U
′

1)vec(A(1))

=(Û
′

3 ⊗ Û
′

2 ⊗ Û
′

1 −U
′

3 ⊗U
′

2 ⊗U
′

1)vec(A(1)) + (U
′

3 ⊗U
′

2 ⊗U
′

1)vec(Â(1) −A(1))

=[(Û
′

3 −U
′

3)⊗U
′

2 ⊗U
′

1]vec(A(1)) + [U
′

3 ⊗ (Û2 −U2)]
′ ⊗U

′

1vec(A(1))

+ [U
′

3 ⊗U
′

2 ⊗ (Û
′

1 −U
′

1)]vec(A(1)) + (U
′

3 ⊗U
′

2 ⊗U
′

1)vec(Â(1) −A(1)) + op(T
−1/2)

=[Ir3 ⊗ ((Û
′

2 ⊗ Û
′

1)A
′

(3))]vec(Û3 −U3) + [Ir2 ⊗ ((U
′

3 ⊗ Û
′

1)A
′

(2))]vec(Û2 −U2)

+ [Ir1 ⊗ ((U
′

3 ⊗U
′

2)A
′

(1))]vec(Û1 −U1) + (U
′

3 ⊗U
′

2 ⊗U
′

1)vec(Â(1) −A(1)) + op(T
−1/2).

Let L1 = [Ir1⊗((U
′

3⊗U
′

2)A
′

(1))], L2 = [Ir2⊗((U
′

3⊗Û
′

1)A
′

(2))], L3 = [Ir3⊗((Û
′

2⊗Û
′

1)A
′

(3))],

and L4 = (U
′

3⊗U
′

2⊗U
′

1). Therefore, ΣG = L1ΣU1L
′

1 +L2ΣU2L
′

2 +L3ΣU3L
′

3 +L4ΣhL
′

4.

Thus,
√
Tvec(Ĝ(1) − G(1))→ N(0,ΣG) in distribution as T →∞.

Proof of Corollary 2.

Proof. From Lemma 4 and Theorem 4, we have ΣSQR = Γ = J−1. Since ΣMLRSQR =

PΓP
′

= PJ−1P
′
, where P = H(H′JH)†H′J is a projection matrix. Note that J−1 −

H(H′JH)†H′ = J−1/2QJ1/2HJ−1/2, where QJ1/2H is the projection matrix onto the or-

thogonal of span(J−1/2). Then, we have J−1 ≥ H(H′JH)†H′.
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