
STATIONARY OPTIMAL TRANSPORT PLANS AND THE
THERMODYNAMIC FORMALISM

by

Shengwen Guo

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Applied Mathematics

Charlotte

2025

Approved by:

Dr. Kevin McGoff

Dr. Michael Grabchak

Dr. Xingjie Li

Dr. Russell Keanini



ii

©2025
Shengwen Guo

ALL RIGHTS RESERVED



iii

ABSTRACT

SHENGWEN GUO. Stationary Optimal Transport Plans and The Thermodynamic
Formalism. (Under the direction of DR. KEVIN MCGOFF)

Optimal Transport (OT) and Thermodynamic Formalism are two famous linear

optimization problems. In optimal transport problem, researchers are curious about

the minimization of transportation cost and in thermodynamic formalism, problems

are centered on the minimization of ‘free energy’ in thermodynamic physics system.

In this Ph.D. project, we consider constrained versions of these two problems. That

is, given Z ⊂ C(X) a closed subset and denote by MZ(X,T ) the set of invariant

measures which equals 0 on Z, when probability measure µ ranges over MZ(X,T ),

we explored the properties of optimal plan such as existence, convexity and ergodicity

in the framework of optimal transport and thermodynamic formalism respectively. In

addition, other topics including uniqueness of optimal plan, Lagrangian approach to

optimization, optimization as zero temperature, realization and duality problem also

have been studied.

In the first two chapters, project background, basic settings, and related references

are introduced. Generally speaking, we are interested in the properties of optimal

plans for linear optimization problems in the framework of optimal transport and

thermodynamic formalism. In Chapter 3, we talk about the existence and character-

ization of optimal plans. When MZ(X,T ) is nonempty and satisfies the ‘property

(E)’ which ensures that the extreme points inMZ(X,T ) are ergodic, optimal plans

have some nice properties.

From Chapters 4 to 8, we studied different problems related to optimal plans.

Chapter 4 studies the uniqueness property of optimal plan. In the framework of

optimal transport, we have the ‘generic’ uniqueness property; and in the framework

of thermodynamic formalism with entropy term, there is a unique optimal solution if
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marginal given distributions are Bernoulli. Chapter 5 explores ‘Lagrangian approach’

to optimization. Such result is based on the famous Isreal[1]’s theorem. It is named

as ‘Lagrangian approach’ because a restricted linear optimization problem can be

transformed into an unrestricted problem through this approach. In Chapter 6 we

studied optimization as zero temperature. In thermodynamic formalism, if potential

function φ is replaced to tφ and then let t → ∞, what is the behavior of optimal

solution µtφ? This problem has a background in thermodynamic physics, t is called an

‘inverse temperature’ of a system. Chapter 7 explores ‘realization’ problem: if a subset

of measures E in MZ(X,T ) is given, can we fund a function φ such that the set of

optimal plans is exactly co(E) or co(E)? We have results in both types of optimization

problems. And Chapter 8 talks about duality problems. For optimization problems,

its duality is always good to study. We have both Kantorovich duality and Fenchel

duality with respect to the linear optimization problem in the framework of optimal

transport and thermodynamic formalism.

Finally, in Chapter 9, we list several open problems. These problems are interesting

and valuable enough to be explored in the future.
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CHAPTER 1: INTRODUCTION

The Optimal Transport (OT) problem originates from the basic transportation

problem in real life: if we want to move some goods from one or more places (ware-

houses) to one or more destinations, is it possible to find an ‘optimal’ transport plan

which minimizes transportation cost? The usual setting for the OT problem consists

of a fixed-cost function with some nice properties, the distribution of goods in different

warehouses and the distribution of demand in different destinations. Thermodynamic

Formalism is a famous topic in mathematical statistical physics, which studies the ‘free

energy’ in certain thermodynamical systems and states that minimize system’s free

energy, such states are called ‘equilibrium states’ since systems with minimized free

energy achieve an equilibrium. The key issue of general Thermodynamic Formalism

is ‘pressure’ function, which consists of two parts: potential function that represents

system’s total energy and entropy that measures the disorder of a system. Both Op-

timal Transport and Thermodynamic Formalism are linear optimization problems.

In this Ph.D. project, we focus on the linear optimization problem with restrictions

under the framework of Optimal Transport and Thermodynamic Formalism. In the

following, we will firstly introduce some basic concepts which are preliminaries of this

Ph.D. project, and then the basic settings and problems studied in this project will

be listed, finally structure of this dissertation will be given.

1.1 Preliminaries

1.1.1 Optimal Transport

The earliest Optimal Transport theory[2] only considers discrete cases that moving

between finite number of places, while our work focuses on the problem under more
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general settings. Suppose X and Y are compact metrizable spaces, cost function

c : X × Y → R a real valued continuous function defined on the product space

X × Y := {(x, y) : x ∈ X, y ∈ Y }, M(X) and M(Y ) denote the set of Borel

probability measures defined on X and Y . The classical Optimal Transport Theory

deals with the following optimization problem:

inf
π∈Π(µ,ν)

∫
X×Y

c(x, y)dπ(x, y)

This problem, initiated by Monge[3] and generalized by Kantorovich[4], is also called

Monge-Kantorovich problem, where Π(µ, ν) is the set of couplings with its marginals

on X and Y are µ ∈ M(X) and ν ∈ M(Y ) respectively. In other words, for any

measure π ∈ Π(µ, ν), (projX)#π = π ◦proj−1
X = µ, (projY )#π = π ◦proj−1

Y = ν, where

projX and projY respectively stand for projection maps (x, y) 7→ x and (x, y) 7→ y,

the subscription ‘#’ is read as ‘push-forward’.

1.1.2 Measure-Preserving System and Invariant Measures

To study the stationarity of optimal transport plan, we introduce the notions of

measure preserving and ergodicity. Given a probability space (X,A, µ), where X is

sample space, A is the Borel σ-algebra on X (in some papers it is denoted as B(X))

and µ is a probability measure defined on A. A transformation T : X → X is called

measure-preserving if for any A ∈ A, T#µ(A) = µ ◦ T−1(A) = µ(A), the measure

µ ∈ M(X) is called T -invariant. The probability space (X,A, µ) together with a

measure-preserving operator T is called measure-preserving system. Let M(X,T )

be the set of all T -invariant probability measures defined on B(X). The invariance

property listed above represents stationarity, and in ergodic theory, M(X,T ) is an

important object of study. M(X,T ) is nonempty by the following Krylov-Bogolioubov

theorem[5]:

Theorem 1.1 (Krylov-Bogolioubov). If T : X → X is a continuous transformation
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of a compact metric space X thenM(X,T ) is nonempty.

We have the following properties ofM(X,T ):

Theorem 1.2 (properties ofM(X,T )[5]). If T is a continuous transformation of a

compact metric space X then

(i) M(X,T ) is a compact subset ofM(X).

(ii) M(X,T ) is convex.

(iii) µ is an extreme point ofM(X,T ) iff T is an ergodic measure-preserving trans-

formation of (X,B(X), µ).

(iv) If µ, ν ∈M(X,T ) are both ergodic and µ 6= ν then they are mutually singular.

1.1.3 Ergodicity

Definition 1.1 (Ergodicity). Suppose (X,A, µ, T ) is a measure-preserving system, a

measure-preserving transformation T is called ergodic if for any set E ∈ A satisfies

T−1E = E implies µ(E) = 0 or µ(E) = 1.

Example 1.1. In the dynamical system ({0, 1}Z, σ):

• µ = 1
2
δ0∞ + 1

2
δ1∞ is not ergodic.

• The Bernoulli measure µ given by µ([0]) = p, µ([1]) = 1− p is ergodic.

1.1.4 Joinings

The notion ‘joinings’ was firstly introduced by Furstenburg[6] and now widely stud-

ied in ergodic theory[7, 8]. Given two measure-preserving Borel systems (X,A, µ, T )

and (Y,B, ν, S), where T : X → X and S : Y → Y are two transformations,

µ ∈ M(X,T ) and ν ∈ M(Y, S) are Borel invariant probability measures. The prod-

uct operator T × S : X × Y → X × Y is defined by (T × S)(x, y) = (T (x), S(y)) for

any x ∈ X, y ∈ Y . If a probability measure λ is defined on product space X × Y ,
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is (T × S)-invariant and is a coupling of µ and ν (λ ∈ Π(µ, ν)), then it is called

the joining of two dynamical systems (X,A, µ, T ) and (Y,B, ν, S). We use J(µ, ν) to

denote the set of all joinings of (X,A, µ, T ) and (Y,B, ν, S).

1.1.5 Measure-Theoretic Entropy

Entropy is a well-known concept in physics, it quantifies the disorder of systems.

In this project entropy quantifies the disorder of dynamical systems. Before we talk

about entropy, some necessary concepts will be introduced.

Suppose that (X,A, µ, T ) is a measure-preserving system.

Definition 1.2 (Partition). A finite measurable partition of (X,A, µ, T ) is a collec-

tion of disjoint elements of A. In other words, if P = {A1, A2, · · · , An} is a finite

measurable partition of (X,A, µ, T ), then it satisfies the following properties

• Ai ∈ A for any i = 1, 2, · · · , n, Ai ∩ Aj = ∅ for i, j ∈ {1, 2, · · · , n}, i 6= j,

•
⋃n
i=1Ai = X.

The basic definition of entropy is based on measurable partitions:

Definition 1.3 (Entropy of a partition). Let P = {A1, · · · , Ak} be a finite partition

of (X,A, µ), the entropy of P is given by

H(P) = −
k∑
i=1

µ(Ai) log µ(Ai)

where 0 log 0 = 0 by regulation.

Let T−1P = {T−1Ai : 1 ≤ i ≤ n}, and for any n finite partitions P1, · · · ,Pn, define

their join as
n∨
i=1

Pi = {C1 ∩ C2 ∩ · · · ∩ Cn : Ci ∈ Pi}

For n ∈ N, let Pn =
∨n−1
i=0 T

−iP , now we are ready to define the measure-theoretic

entropy with respect to P :
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Definition 1.4 (Measure-theoretic entropy). Suppose (X,A, µ, T ) is a measure-preserving

system, P = {A1, · · · , Ak} is a finite partition, the entropy of T w.r.t P is given by

h(T,P) = lim
n→∞

1

n
H

(
n−1∨
i=0

T−iP

)
= lim

n→∞

1

n
H(Pn)

the existence of limit above is ensured by subadditivity. Then the measure-theoretic

entropy h(µ) = hµ(T ) := sup
P
h(T,P). The supremum is taken over all finite partitions

of (X,B, µ).

1.1.6 General Thermodynamic Formalism

General Thermodynamic Formalism is centered on ‘topological pressure’, which

consists of two parts: potential function and metric along the orbits.

The concept of tolpological pressure, defined by Ruelle[9] and Walters[10] firstly,

relies on Bowen’s metric: If (X, d) is a compact metric space, the map T : X → X

is continuous, then for n ∈ N, a new metric dn on X is defined by dn(x, y) :=

max
0≤i≤n−1

d(T ix, T iy). For ε > 0, a subset E ⊂ X is called (n, ε)-spanning set if ∀x ∈ X,

∃y ∈ E s.t. dn(x, y) < ε. Now let C(X) be the space of real-valued continuous

functions on X and for f ∈ C(X) and n ≥ 1, Snf(x) =
∑n−1

i=0 f ◦ T i(x), define

Pn(T, f, ε) := inf

{∑
x∈E

eSnf(x) : E is a (n, ε)-spanning set for X

}

then we put

P (T, f) := lim
ε→0

lim sup
n→∞

1

n
Pn(T, f, ε)

the existence of limit above is again assured by subadditivity, and P (T, f) is called

the topological pressure for f . Specifically, when f ≡ 0, the value

P (T, 0) = lim
ε→0

lim sup
n→∞

1

n
inf{|E| : E is a (n, ε)-spanning set for X}
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is named ‘topological entropy’, denoted by htop(T ).

The variational principle is an important result in Thermodynamic Formalism,

which builds a relationship between pressure and measure-theoretic entropy:

Theorem 1.3 (Variational Principle). Suppose that X is a compact metrizable space

and T : X → X is a continuous transformation, for f ∈ C(X)

P (T, f) = sup
µ∈M(X,T )

(∫
fdµ+ h(µ)

)

whereM(X,T ) = {µ ∈ M(X) : T#µ = µ} andM(X) is the set of Borel proba-

bility measures on X. Proof of the variational principle please refer to[5].

The variational principle offers a way to pick out some members of M(X,T ): If

µ ∈ M(X,T ) satisfies P (T, f) =
∫
fdµ + h(µ), then µ is called an equilibrium state

for function f (called potential function) w.r.t T .

Note that when f ≡ 0 from Theorem 1.3 we obtain a special case of the variational

principle:

Corollary 1.4. Suppose that X is a compact metrizable space and T : X → X is a

continuous transformation. Then htop(T ) = sup
µ∈M(X,T )

h(µ).

1.1.7 Shift of Finite Type and Gibbs measure

Gibbs measure is a special form of equilibrium state as it is based on a special

dynamical system: Shift of Finite Type (SFT). The topics for SFTs are in the field

of symbolic dynamics widely introduced by [11].

We firstly define SFT. Assume that {1, 2, · · · , n} is a set of possible states in a

system, is it named as alphabet in symbolic dynamic theory. Let Σn = {1, 2, · · · , n}Z

be the space of infinite sequences x = {xn}∞n=−∞ with xn ∈ {1, 2, · · · , n}. A transfor-

mation on Σn is given by σ : Σn → Σn, σ(x)n = xn+1, such transformation σ is called
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‘left-shift’ map. If A is an n× n matrix with its entries either 0 or 1, define

ΣA = {x ∈ Σn : Axixi+1
= 1 for all i ∈ Z}

That is, any sequence x in ΣA is an member of Σn and for any i ∈ Z, the (xi, xj)-th

entry of matrix A is 1. In other words, the matrix A rules out all the sequences

x in Σn with Axixi+1
= 0 for some i ∈ Z. ΣA define above is a SFT. The set

F(ΣA) = {x ∈ ΣA : Axixi+1
= 0 if ∃i ∈ Z} is called the set of forbidden words

for ΣA. The forbidden words is an important component of a SFT, if F(ΣA) = ∅,

then A is a matrix of all 1’s and ΣA = Σn is called a full shift (on the alphabet

{1, 2, · · · , n}). When {1, 2, · · · , n} is given the discrete topology and ΣA (thus Σn)

the product topology, ΣA is closed, compact and metrizable. The metric on ΣA is

given by dn(x, y) = 2−n(x,y), n(x, y) = sup{N : xi = yi for |i| < N}.

Mixing property of SFTs is also required there. Let Lm be the set of words of

length m (elements of Am) in ΣA, L =
⋃
m≥1 Lm is known as a dictionary for ΣA.

For u ∈ Lm, u = u0u1 · · ·um−1 := um−1
0 , define [u] = {x ∈ ΣA : xm−1

0 = u} a cylinder

set in ΣA. An SFT ΣA is mixing if for u, v ∈ L, there exists N > 0 and for some

n > N , we can find w ∈ Ln s.t. w ∈ [u] ∩ σ−n[v]. Equivalently, ΣA is mixing if and

only if there exists an N > 0 s.t. AN contains all positive entries.

Gibbs measure is a special equilibrium states for potential function φ with proper

regularity conditions, for detailed introduction please refer to [12]. Denote C(ΣA) the

set of real valued continuous functions on ΣA, for φ ∈ C(ΣA) define

varnφ := sup{|φ(x)− φ(y)| : xi = yi ∀|i| ≤ n}

and

FA = {φ ∈ C(ΣA) : varnφ ≤ βαn for β > 0, α ∈ (0, 1)}
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Assume ΣA a mixing SFT and φ ∈ FA, the Gibbs measure[12] on ΣA with potential

φ satisfies: ∃C1, C2 > 0

C1 ≤
µφ([xm−1

0 ])

exp(Snφ(x)−mP (φ))
≤ C2

for any x ∈ ΣA and m ≥ 1. P (φ) is the pressure of φ. µφ is an equilibrium state for

potential φ with respect to σ, i.e.

P (φ) =

∫
φdµφ + h(µφ)

and µφ is the unique equilibrium states for φ ∈ FA.

1.2 Settings and Problems

1.2.1 Settings

In this project, we suppose that X is a compact metric space, T : X → X is a

continuous transformation. Let C(X) be the set of real-valued continuous functions

defined onX andM(X) be the set of Borel probability measures onX. M(X) can be

seen as a subset of C∗(X) by defining µ(f) =
∫
fdµ for any µ ∈M(X) and f ∈ C(X),

M(X) is closed in weak* topology. Denote M(X,T ) := {µ ∈ M(X) : T#µ = µ}

the set of T -invariant Borel probability measures on X. For A the Borel σ-algebra

on X and given µ ∈ M(X,T ), we call (X,A, µ, T ) a measure-preserving dynamical

system.

The following example fits for the settings above:

Example 1.2 (Shift Space). (X,A, µ, T ) is a measure-preserving system if

• X = {0, 1}Z, every element x ∈ X is a sequence consists of 0s and 1s.

• Borel σ-algebra A is generated by all the cylinder sets over X.

• T = σ : X → X is called ‘left shift’, for any sequence x := {xi}∞i=−∞ (σ(x))i =
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xi+1. It is continuous if the metric d on X is given by d(x, y) = 2−N(x,y), where

N(x, y) := max{N : xi = yi for |i| < N} when x 6= y

and N(x, y) = 0 when x = y.

• The Bernoulli measure µ defined as µ([0]) = p and µ([1]) = 1 − p is measure-

preserving.

1.2.2 Problems

Let the ‘restriction set’ Z be a closed subset of C(X) and defineMZ(X,T ) := {µ ∈

M(X,T ) : µ(h) = 0 for all h ∈ Z}. In this project we have studied the following two

problems:

Problem 1.1 (Problem (I) - Linear Optimization for Dynamical Systems). Suppose

that (X,A, µ, T ) is a measure-preserving systems defined as the settings, Z ⊂ C(X)

closed such that MZ(X,T ) is nonempty. Given φ ∈ C(X), the linear optimization

problem for dynamical systems is

max
µ∈M(X,T )

∫
X

φdµ

subject to
∫
X

ψdµ = 0,∀ψ ∈ Z
(I)

which is equivalent to

max
µ∈MZ(X,T )

∫
X

φdµ

Problem 1.2 (Problem (II) - Linear Optimization for Dynamical Systems with En-

tropic Regularization). Suppose that (X,A, µ, T ) is a measure-preserving systems de-

fined as the settings, Z ⊂ C(X) closed such that MZ(X,T ) is nonempty. Given

φ ∈ C(X), the linear optimization problem for dynamical systems with entropic regu-
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larization is

max
µ∈M(X,T )

∫
X

φdµ+ h(µ)

subject to
∫
X

ψdµ = 0, ∀ψ ∈ Z
(II)

which is equivalent to

max
µ∈MZ(X,T )

∫
X

φdµ+ h(µ)

where h(µ) is the measure-theoretic entropy for (X,A, µ, T ).

1.3 Statement of main results

At the level of generality, problems of interests are: (i) existence and characteriza-

tion of the set of optimal solutions; (ii) uniqueness of optimal solutions for problem

(I) and (II); (iii) duality problems for problem (I) and (II); (iv) Lagrangian approach

to optimization; (v) optimization as zero temperature and (vi) realization problem.

In this section we will list our main results which may cover one or more problems of

interests above.

Before the statement of main results, an important property (named ‘property (E)’)

which ensures thatMZ(X,T ) contains ergodic measures is given below:

(E) If for any µ ∈MZ(X,T ), its ergodic decomposition is

µ =

∫
Me(X,T )

νdτ(ν)

whereMe(X,T ) denotes the set of all ergodic measures ofM(X,T ) and τ is a proba-

bility measure defined on the Borel subsets ofM(X,T ) and supported onMe(X,T ).

Then ν ∈MZ(X,T ) for τ - almost everywhere of ν.

Theorem 1.5 (Lagrangian approach to optimization). Suppose that there are n dy-

namical systems {(Xi, Ti)}ni=1, where each Xi and Ti : Xi → Xi satisfy our basic

settings in section 1.2.1. Let φ ∈ C(
∏n

k=1Xk) and πi :
∏n

k=1Xk → Xi be the projec-
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tion map onto the ith space. Given µi ∈Me(Xi, Ti) and let

Z =

{
n∑
i=1

(
fi ◦ πi −

∫
Xi

fidµi

)
: ∀fi ∈ C(Xi), i = 1, · · · , n

}

there exists (f̂1, · · · , f̂n) ∈ C(X1)× · · · × C(Xn) s.t.

λ̂ ∈ argmax
λ∈M(

∏n
k=1Xk,

∏n
k=1 Tk)

∫ [
φ+

n∑
i=1

(
f̂i ◦ πi −

∫
Xi

f̂idµi

)]
dλ+ h(λ)

⇐⇒ λ̂ ∈ argmax
λ∈MZ(

∏n
k=1Xk,

∏n
k=1 Tk)

∫
φdλ+ h(λ)

Note that

MZ(
n∏
k=1

Xk,
n∏
k=1

Tk) = {µ ∈M(
n∏
k=1

Xk,
n∏
k=1

Tk) : µ ◦ π−1
i = µi for i = 1, · · · , n}

The next two results are about the uniqueness of optimal solution in the framework

of problem (I) and (II). In problem (I), we are interested in ‘generic’ uniqueness

property. Denote M(X,T, f) the set of measures maximize
∫
fdµ over MZ(X,T ).

The ‘generic’ uniqueness property is, given E ⊂ C(X), the set

U(E) := {f ∈ E :M(X,T ; f) is a singleton}

is ‘topologically large’ in E:

Theorem 1.6 (Uniqueness of optimal solutions in problem (I)).

Let X be a compact metric space, and T : X → X a continuous map on X. Let E

be a topological vector space which is densely and continuously embedded in C(X). If

Z is closed in C(X) and satisfies property (E), then U(E) is a residual set. Moreover,

if E is a Baire space, then U(E) is dense in E.

In the uniqueness result of problem (II), we will consider the problem defined on a
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product dynamical system with its optimal solution has specified marginal distribu-

tion, so in the following result we let

Z =

{
ϕ ◦ πX −

∫
X

ϕdµ+ ψ ◦ πY −
∫
X

ψdν : ∀ϕ ∈ C(X), ψ ∈ C(Y )

}

where µ, ν are given in advance.

Theorem 1.7 (Uniqueness of optimal solutions in problem (II)).

(i) Let (X,T ) and (Y, S) be shift spaces, and let µ ∈ M(X,T ), ν ∈ M(Y, S) be

i.i.d. invariant measures. The continuous function φ : X × Y → R is given by

φ(x, y) = φ0(x0, y0), and Z is as above. Then problem (II) has unique optimal

solution λ = (λ0)⊗N, where

λ0 = argmax
λ′0∈Π(µ0,ν0)

∫
φ0dλ

′
0 +Hλ′0

(P)

(ii) Let (X,A, µ, T ) and (Y,B, ν, S) are measure preserving systems. φ ∈ C(X × Y )

and Z is given as above. By Theorem 1.5, there exists a measure λ̂ ∈MZ(X ×

Y, T × S) and χ ∈ Z s.t.

λ̂ ∈ argmax
λ∈M(X×Y,T×S)

∫
(φ+ χ)dλ+ h(λ) =⇒ λ̂ ∈ argmax

λ∈MZ(X×Y,T×S)

∫
φdλ+ h(λ)

If φ + χ is regular enough (Hölder, Lipschitz, locally constant or Walters[13]),

then problem (II) has unique optimal solution.

Define `τ,f (µ) :=
∫
fdµ+ τ · h(µ) and Lτ (f) := supµ∈MZ(X,T ) `τ,f (µ) for τ ∈ {0, 1}.

Denote byM(X,T ;φ) ⊂MZ(X,T ) andR(X,T ;φ) ⊂MZ(X,T ) the set of measures

maximize `τ,φ(µ) over MZ(X,T ) for τ = 0 and τ = 1 respectively (that is, µ′ ∈

M(X,T ;φ) ⇐⇒ `0,φ(µ′) = L0(φ) and µ′ ∈ R(X,T ;φ) ⇐⇒ `1,φ(µ′) = L1(φ)).
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Denote Me
Z(X,T ) the set of ergodic measures in MZ(X,T ), when Z satisfies

property (E),Me
Z(X,T ) is nonempty. We have the following realization result, which

generalizes Jenkinson[14]:

Theorem 1.8. Assume that Z satisfies property (E). Let E be a non-empty subset of

Me
Z(X,T ) which is weak* closed inMZ(X,T ). Let co(E) denote its closed convex hull

inMZ(X,T ). There exists a continuous function φ : X → R such thatM(X,T ;φ) =

co(E). Furthermore, if h|co(E) is continuous, then there exists a continuous function

ψ : X → R such that R(X,T ;ψ) = co(E).

For the linear optimization problems (I) and (II), we derived their duality problems.

Let Z ⊂ C(X) be a linear subspace. ν is a bounded linear functional defined on Z,

1 ∈ Z and ν(1) = 1, and denote

Mν(X,T ) := {µ ∈M(X,T ) : µ|Z = ν}

we have the Kantorovich duality problem for problem (I):

Theorem 1.9. Let W = {g ◦ T − g : g ∈ C(X)}, define

ΠW (ν) = {µ ∈ P(X) :

∫
wdµ = 0,∀w ∈ W and µ|Z = ν}

easy to see that ΠW (ν) = Mν(X,T ). The Kantorovich-form duality for problem (I)

is:

inf
µ∈ΠW (ν)

∫
cdµ = sup

f+w≤c
w∈W

ν(f)

where f ∈ Z.

The rest of this dissertation are organized as follows: In chapter 2 we organized

related works of problem (I) and (II) for different selections of Z. Main results of

this Ph.D. project were listed from chapters 3 to 8, including existence and charac-
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terization of optimal solutions, uniqueness of optimal solutions, optimization as zero

temperature, realization problem, Lagrangian approaches to optimization and dual-

ity problem. In chapter 9 we summarized all the obtained outcomes and listed some

future potential work.



CHAPTER 2: RELATED WORK

For different selections of Z in problems (I) and (II), there will be different famous

existing works. In the following we will list related existing works associated with

frameworks (I) and (II) respectively.

2.1 Related work for problem (I)

Firstly, when T is an identity map (Id), that is, T (x) = x for all x ∈ X, there is

no dynamic in problem (I), then

• When X is finite, problem (I) is called ‘Linear Programming’ problem, it is a

classical optimization problem and was widely introduced in [15]. The famous

Sinkhorn’s Algorithm in solving Optimal Transport problem is based on the

techniques of Linear Programming; see [2] for details.

• When we have two compact metric spaces X, Y and let πX : X × Y → X, πY :

X × Y → Y be projection maps. Given µ ∈M(X), ν ∈M(Y ) fixed and set

Z =

{
ϕ ◦ πX −

∫
X

ϕdµ+ ψ ◦ πY −
∫
Y

ψdν : ∀ϕ ∈ C(X), ψ ∈ C(Y )

}

we recover the Optimal Transport (OT) problem from (I). The optimal trans-

port problem was first introduced by Monge[3] and generalized by Kantorovich[4],

see Villani[16] for detailed work.

There is a famous result for duality of the Optimal Transport problem: Kan-

torovich duality, which was proved by Kantorovich[4] and later generalized by

Kantorovich and Rubinstein[17]. Some modern treatments (X, Y are compact,

Polish spaces) have been appeared in recent years, see Villani[18] for a classical
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duality result.

When T : X → X is a general continuous transformation, problem (I) is based on

a general dynamical system, then

• When Z = {0}, there is no restriction on µ, problem (I) is called ‘Ergodic

Optimization’ problem, it is a famous topic in ergodic theory and dynamical

systems and has been studied in many aspects. The equivalence of ergodic

optimization and time average for φ continuous was established by [19]. The

generic uniqueness result was proved by Bousch [20], a similar version for X

Banach was given by [21]. Jenkinson[14] showed that for any ergodic measure µ

inM(X,T ), there exists a continuous function such that µ is the unique solution

for problem(I). A good reference for Ergodic Optimization is Jenkinson[22].

• When Z = {ψ1, ψ2, · · · , ψm} is of m dimensions (m is any finite integer), define

Ψ = (ψ1, · · · , ψm) ∈ C(X,Rm), we denote by Rot(Ψ) = {rv(µ) : µ ∈ M(X,T )}

the (generalized) rotation set of Ψ, where rv(µ) is called ‘rotation vector’ of the

measure µ ∈M(X,T ) and given by

rv(µ) =

(∫
ψ1dµ, · · · ,

∫
ψmdµ

)

The constraint µ ∈MZ(X,T ) in problem (I) can be written as µ ∈MΨ(0), for

MΨ(0) = {µ ∈ M(X,T ) : rv(µ) = 0}, which is non-empty when 0 ∈ Rot(Ψ).

In this setting, problem (I) is an optimization problem over rotation sets. The

rotation set was firstly defined in the context of degree-one circle maps[23], and

was studied by Geller and Misiurewicz[24] and Ziemian[25].

• In problem (I) if we have another dynamical system (Y, S) where Y is compact

matrizable space and S : Y → Y continuous, ν ∈ M(Y, S) is given. Moreover,

there is a factor map π : X → Y between two dynamical systems, that is, π is
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a surjection and satisfies π ◦ T = S ◦ π. When the restriction set is defined as

Z =

{
ψ ◦ π −

∫
ψdν : ψ ∈ C(Y )

}

then MZ(X,T ) = {µ ∈ M(X,T ) : π#µ = ν} := Mν(X,T ) and problem

(I) is called relative ergodic optimization problem. Tuncel[26] proved that if

(Y,B, S, ν) is a Markov shift, (X,T ) is a topological Markov chain and π : X →

Y a bounded to one factor map, then Mν(X,T ) contains only one point. A

related problem, known as measures of maximal relative entropy, is a famous

optimization problem which focuses on the maximal measure-theoretic entropy

overMν(X,T ).

2.2 Related Work for problem (II)

When T is an identity map, the measure-theoretic entropy h(µ) = 0 and problem

(II) is reduced to problem (I). So we only need to consider T : X → X is a general

continuous transformation.

• When Z = {0}, problem (II) is called ‘thermodynamic formalism’, a topic of

statistical mechanics. At the beginning, problem’s setting was born in statistical

mechanics directly, a special case thatX is one-dimension lattice was introduced

by Dobrushin[27, 28, 29] and the optimizer was named ‘Gibbs states’. Unique-

ness of Gibbs states was given by Ruelle[30] and the variational principle for

Gibbs states was established in the work of Lanford and Ruelle[31]. When X

is shift of finite type, the thermodynamic formalism and the variational prin-

ciple was given by Ruelle[32], in this more general case the equilibrium states

is called ‘Gibbs measure’. In general thermodynamic formalism, X is compact

and metrizable space. For expansive T the topological entropy and variational

principle was given by Ruelle[9], and for general T , related results were proved

by Goodwyn[33] and Goodman[34, 35]. Uniqueness of equilibrium states was
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proved by Bowen[36] firstly, in achieving uniqueness, the regularity conditions

that potential function satisfies is named ‘specification’ condition. Bowen’s

result was improved by several scholars like Climengaha and Watson[37, 38],

Pavlov[39] and so on.

• When Z = {ψ1, . . . , ψm}, Ψ = (ψ1, · · · , ψm) ∈ C(X,Rm). Let Rot(Ψ) =

{rv(µ) : µ ∈ M(X,T )} where rv(µ) is the rotation vector for µ and is given

by (
∫
ψ1dµ, · · · ,

∫
ψmdµ). A good reference for rotation set is Jenkinson[40].

In further discussion, Kucherenko and Wolf[41] studied geometric properties for

rotation set and analytical properties for entropy function over rotation sets.

Assume that 0 ∈ Rot(Ψ) (soMZ(X,T ) is non-empty), problem (II) is called

‘localized relative equilibrium states’ problem. This is another restricted ver-

sion of thermodynamic formalism, was studied by Kucherenko and Wolf[42]. In

Kucherenko and Wolf[43], the ground states for a family of localized equilibrium

states {µt} associated with potential functions tφ was studied.

• Suppose Y is another compact metric space and S : Y → Y continuous, C(Y )

andM(Y, S) are defined accordingly. Let π : X → Y be a factor map, measure

ν ∈ M(Y, S) is fixed. If the restriction set Z = {ψ ◦ π −
∫
ψdν : ψ ∈ C(Y )},

then MZ(X,T ) = {µ ∈ M(X,T ) : π#µ = ν} and problem (II) is called

‘relative equilibrium states’, it was studied from different aspects by many re-

searchers. Based on Bowen’s definition for topological entropy[44], Ledrappier

and Walters[45] gave the definitions of relative measure-theoretic entropy and

relative topological pressure, and proved the relativised version of variational

principle. In Walters[13], detailed analysis for relative topological pressure and

relative equilibrium states is given, so as the discussion of compensation func-

tion. Uniqueness of measures of maximal relative equilibrium states was given

by several scholars in different settings: when π : X → Y is a 1-block factor
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map from a 1-step SFT X to a sofic shift Y and ν is ergodic, Petersen, Quas and

Shin[46] gave an upper bound of number of maximal relative entropy (φ = 0);

such upper bound was given in the form of class degree by Allahbakhshi and

Quas[47]; furthermore, Allahbakhshi, Antonioli and Yoo[48] proved that num-

ber of maximal relative equilibrium states is bounded by the class degree of ν,

so when the class degree of ν is 1, problem (II) has a unique optimizer. The

uniqueness result for a more general factor map π was proved by Yoo[49].



CHAPTER 3: EXISTENCE AND CHARACTERIZATION OF OPTIMAL PLANS

In this chapter, we will firstly focus on the properties of restriction set -MZ(X,T )

especially the nonemptyness property. Then we will introduce some facts for existence

and characterization of optimal plans in Problem (I) and (II).

3.1 Properties ofMZ(X,T )

By the famous result of Krylov and Bogolioubov (see [5], p.152), M(X,T ) is

nonempty under the settings in section 2.1, however, MZ(X,T ) may be empty for

some selections of Z, a simple example is Z = C(X). The following is another example

ofMZ(X,T ) = ∅:

Example 3.1 (Circle Rotations). Let S1 = [0, 1]/ ∼ be the unit circle, where ∼

indicates that 0 and 1 are identified, and mod 1 makes S1 an abelian group. The

natural distance on [0, 1] induces a distance on S1:

d(x, y) = min(|x− y|, 1− |x− y|)

Lebesgue measure on [0, 1] gives a natural measure λ on S1.

For α ∈ R irrational, let Rα be the rotation of S1 by angle 2πα, i.e.

Rαx = x+ α mod 1

(S1,B([0, 1]), λ, Rα) is a measure-preserving system. If f = −(1−x)(1−α−x)1[1−α,1] ∈

Z, then for any element inMZ(X,T ), whose support must avoid [1−α, 1]. However,

such measures cannot be measure-preserving since for any interval I = [a, b] with pos-

itive measure and b− a < α, there exists an n ∈ N s.t. Rn
αI = [Rn

αa,R
n
αb] ⊂ [1− α, 1]
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(this is because the orbit {Rn
α}n is dense in S1), thus RnI = 0. So MZ(X,T ) is

empty in this setting.

To make problem(I) and (II) meaningful, we give a sufficient condition for the

nonemptyness ofMZ(X,T ):

Theorem 3.1. Let X be a compact metric space and T : X → X a continuous

transformation. If there exist a Borel probability measure µ satisfies µ(f) = 0 for all

f ∈ Z, and for any f ∈ Z, f ◦ T ∈ Z, thenMZ(X,T ) is nonempty.

Proof. The proof refers to Krylov-Bogolioubov. As X is a compact and metric space,

the Banach space (C(X), ‖ · ‖max) is separable and so as its closed subset Z. Define

ψn(f) =

∫
X

[
1

n

n−1∑
i=0

f ◦ T i
]
dµ ∀n ∈ N and f ∈ C(X)

It is obvious that |ψn(f)| ≤ ‖f‖max for all f ∈ C(X), n ∈ N. So {ψn} is a bounded

sequence in [C(X)]∗. As C(X) is a separable Banach space with norm ‖ · ‖max, by

Helly’s theorem, there exists a subsequence {ψnk} that converges, w.r.t. the weak*

topology, to a bounded functional ψ ∈ [C(X)]∗:

lim
k→∞

ψnk(f) = ψ(f) ∀f ∈ C(X)

Note that

ψnk(f ◦ T )− ψnk(f) =

∫
X

[
1

nk
(f ◦ T nk − f)

]
dµ

so if we take k →∞:

ψ(f ◦ T ) = ψ(f),∀f ∈ C(X)

which ensures the invariance of ψ. ψ is positive, such property is inherited from µ.

And for any f ∈ Z, we have ψ(f) = 0, as ψn(f) = 0 and any n ∈ N.
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By Riesz-Markov Theorem, there is a Borel measure µ̂ for which

ψ(f) =

∫
X

fdµ̂ ∀f ∈ C(X)

µ̂ is invariant because

∫
X

f ◦ Tdµ̂ = ψ(f) = ψ(f ◦ T ) =

∫
X

fdµ̂

and for f ≡ 1, ψ(f) = 1 because ψn(f) = 1 for all n ∈ N. For any f ∈ Z,

µ̂(f) = ψ(f) = 0. Therefore, µ̂ ∈MZ(X,T ).

Example 3.2. This example is again the rotation map dynamical system. When

f = −(1 − x)(1 − α − x)1[1−α,1] ∈ Z and µ(f) = 0. We claim that where exist an

n ∈ N s.t. f ◦ Rn
α /∈ Z, or µ must be supported on [0, 1] but not on any Rn

α[1− α, 1],

however, it is impossible since µ is an probability measure and ∪∞n=0R
n
α[1−α, 1] = [0, 1].

Example 3.3. This example is about the relative equilibrium states: the closed subset

Z = {g ◦ π −
∫
Y
gdν : g ∈ C(Y )}, here (Y, S) is another dynamical system and

ν ∈ M(Y, S) is an ergodic measure, π : X → Y is a factor map, π ◦ T = S ◦ π. We

have already known thatMZ(X,T ) is nonempty. Note that for any g ∈ C(Y ):

(g ◦ π −
∫
Y

gdν) ◦ T = g ◦ π ◦ T −
∫
Y

gdν = g ◦ S ◦ π −
∫
Y

(g ◦ S)dν ∈ Z

Example 3.4. Consider for X a compact metrizable set, we have continuous trans-

formation T1 : X → X and T2 : X → X.Let

Z = {f − f ◦ T2 : f ∈ C(X)}

Then I claim that MZ(X,T1) is equal to the set of measures that are invariant under

both T1 and T2. If T1 ◦ T2 = T2 ◦ T1, MZ(X,T1) is nonempty, as for f − f ◦ T2 ∈ Z



23

we have

(f − f ◦ T2) ◦ T1 = f ◦ T1 − (f ◦ T1) ◦ T2 ∈ Z

In this project, the existence of ergodic measures inMZ(X,T ) is important. How-

ever, sometimesMZ(X,T ) does not contain ergodic members even if it is nonempty.

The following example from Kucherenko and Wolf[42] verifies this fact:

Example 3.5 (MZ(X,T ) may not contain ergodic members[42]). Let a, b, c, d ∈ R

with a < b < c < d. Let X = [a, b] ∪ [c, d] and T : X → X continuous with entropy

map µ 7→ h(µ) upper-semi-continuous. In addition, assume that T ([a, b]) ⊂ [a, b],

T ([c, d]) ⊂ [c, d], T (a) = a, T (d) = d, and htop(T[a,b]) = htop(T[c,d]) 6= 0. For w ∈

(b, c), let Z = {idX − w}, the setMZ(X,T ) does not contain any ergodic measure.

To ensure thatMZ(X,T ) contains ergodic measures, we may assume thatMZ(X,T )

satisfies the following property (E):

(E) If for any µ ∈MZ(X,T ), its ergodic decomposition is

µ =

∫
Me(X,T )

νdτ(ν)

whereMe(X,T ) denotes the set of all ergodic measures ofM(X,T ) and τ is a proba-

bility measure defined on the Borel subsets ofM(X,T ) and supported onMe(X,T ).

Then ν ∈MZ(X,T ) for τ - almost everywhere of ν.

Remark 3.1. IfMZ(X,T ) satisfies property (E), then every extreme point inMZ(X,T )

is ergodic.

Example 3.6 (Some examples ofMZ(X,T ) satisfies property (E)).

(i) Z = {0} (case of ergodic optimization[22])

(ii) Z =
{
ψ ◦ π −

∫
ψdν : ψ ∈ C(Y )

}
(given ν ergodic) (case of relative ergodic op-

timization)
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(iii) Z =
{
ϕ ◦ πX −

∫
X
ϕdµ+ ψ ◦ πY −

∫
Y
ψdν : ∀ϕ ∈ C(X), ψ ∈ C(Y )

}
(given µ and

ν ergodic), where πX : X × Y → X and πY : X × Y → Y are projection maps.

(case of ergodic optimization over product dynamical system)

Now we give some properties ofMZ(X,T ):

Theorem 3.2. If T is a continuous transformation of a compact metric space X,

Z ⊂ C(X) is a closed subset of C(X) such thatMZ(X,T ) is nonempty, then

(i) MZ(X,T ) is a compact subset ofM(X).

(ii) MZ(X,T ) is convex.

(iii) If T is an ergodic measure-preserving transformation of (X,B, µ), then µ is an

extreme point ofMZ(X,T ).

(iv) If µ, ν ∈MZ(X,T ) are both ergodic and µ 6= ν then they are mutually singular.

Proof.

(i) As M(X,T ) is compact in weak* topology, we claim that MZ(X,T ) is also

compact in weak* topology: given a sequence of measures {µn}n ⊂ M(X,T ),

we can find a sebsequence {nj}j s.t. µnj → µ ∈M(X,T ), and for any ψ ∈ Z:

∫
ψdµ = lim

j

∫
ψdµnj = 0

so µ ∈MZ(X,T ), which meansMZ(X,T ) is compact.

(ii) Convexity is obvious.

(iii) It is clear because the extreme points inM(X,T ) are also the extreme points

inMZ(X,T ), and together with the fact that the extreme points inM(X,T )

are ergodic.
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(iv) This is because of Theorem 1.2(iv).

If Z1 ⊂ C(X) and Z2 ⊂ C(X), define

Z1 + Z2 = {h1 + h2 : h1 ∈ Z1, h2 ∈ Z2}

then we have the following results:

Lemma 3.3 (Additivity properties ofMZ(X,T )).

(i) If Z1 and Z2 are subspaces of C(X) satisfying property (E), then Z1 + Z2 is a

subspace of C(X) that satisfies property (E).

(ii) Let CT (X) = {f ∈ C(X) : f ◦ T−1 = f}. If Z1 and Z2 are subspaces of CT (X),

then Z1 + Z2 ⊂ CT (X).

(iii) If Z1 and Z2 are subspaces of C(X), then

MZ1(X,T ) ∩MZ2(X,T ) =MZ1+Z2(X,T )

3.2 Existence and characterization of optimal plans for problem (I) and (II)

The existence of optimal solutions in problem (I) is ensured by extreme value

theorem of upper-semi-continuous (u.s.c) function:

Theorem 3.4. If f ∈ C(X) is upper-semi-continuous, i.e. ∀x ∈ E, a convex set

lim sup
x→x0

f(x) ≤ f(x0)

then f is bounded above and the supremum of f is attained.

The next result is very classical, see Jenkinson[22]:
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Proposition 3.5. If φ is u.s.c., the map µ 7→
∫
φdµ,M(X,T )→ [−∞,+∞) is also

u.s.c.: if µn → µ inM(X,T ), then
∫
φdµ ≥ lim supn→∞

∫
φdµn.

The constraint set MZ(X,T ) := {µ ∈ M(X,T ) :
∫
ψdµ = 0 ∀ψ ∈ Z} is convex.

As if µ1, µ2 ∈MZ(X,T ), then for any ψ ∈ Z:

∫
ψd[αµ1 + (1− α)µ2] = 0⇒ αµ1 + (1− α)µ2 ∈MZ(X,T )

All the facts above ensure the existence of optimal solutions. IfMZ(X,T ) is nonempty,

define

M(X,T ;φ) := {µ∗ ∈MZ(X,T ) :

∫
φdµ∗ ≥

∫
φdµ,∀µ ∈MZ(X,T )}

the collection of optimal plans for problem (I) (measures that maximizes
∫
φdµ in

problem (I)).

Theorem 3.6 (Existence, characterization of optimal plans for problem(I)). If the

settings are as section 2.1 and the restriction set MZ(X,T ) is nonempty, then the

set of optimal solutions for problem(I), denoted byM(X,T ;φ), satisfies

(i) M(X,T ;φ) is nonempty, compact and convex.

(ii) If property (E) holds, then the extreme points ofM(X,T ;φ) are ergodic.

(iii) If property (E) holds, thenM(X,T ;φ) contains an ergodic measure.

(iv) If f, g ∈ C(X) and if there exists c ∈ R s.t. f − g − c belongs to the closure of

the set {h ◦ T − h : h ∈ C(X)}, thenM(X,T ; f) =M(X,T ; g).

Proof.

(i) • Nonemptyness. Nonemptyness is established because by Proposition 3.4,

µ 7→
∫
X
φdµ is u.s.c., and the restriction set MZ(X,T ) is convex (by
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Theorem 3.2 (ii)). Thus, by Theorem 3.3,M(X,T ;φ) := {µ ∈MZ(X,T ) :

µ maximizes (I)} is nonempty.

• Compactness. If (µn)n is a sequence of optimal solutions inMmax(φ), then

by the compactness ofMZ(X,T ), there is a subsequence (µnk)k → µ∗ and

µ∗ ∈MZ(X,T ). Since

lim
k

∫
φdµnk =

∫
φdµ∗

therefore µ∗ ∈M(X,T ;φ), and we proved the compactness ofM(X,T ;φ).

• Convexity. For µ, ν ∈M(X,T ;φ) and α ∈ (0, 1),

∫
φd[αµ+ (1− α)ν] = α

∫
φdµ+ (1− α)

∫
φdν =

∫
φdµ =

∫
φdν

so αµ+ (1− α)ν ∈M(X,T ;φ).

(ii) Assume that µ ∈ M(X,T ;φ) is an extreme point of µ ∈ M(X,T ;φ) and

µ = αµ1 + (1− α)µ2 for α ∈ [0, 1], µ1, µ2 ∈MZ(X,T ). As

∫
φdµ =

∫
φd[αµ1 + (1− α)µ2] = α

∫
φdµ1 + (1− α)

∫
φdµ2

and
∫
φdµ ≥

∫
φdµ1,

∫
φdµ ≥

∫
φdµ2, so

∫
φdµ =

∫
φdµ1 =

∫
φdµ2, which

implies µ1, µ2 ∈ M(X,T ;φ). Then, since µ is extreme inM(X,T ;φ), we have

µ = µ1 = µ2 and µ is an extreme point ofMZ(X,T ), so it is ergodic.

(iii) For µ ∈M(X,T ;φ), let µ =
∫
Me

Z(X,T )
mdτ(m) be the ergodic decomposition of

µ, whereMe
Z(X,T ) is the set of ergodic measures ofMZ(X,T ). Then

∫
φdµ =

∫
φd

(∫
Me

Z(X,T )

mdτ(m)

)
=

∫
Me

Z(X,T )

(∫
φdm

)
dτ(m)
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Since
∫
φdm ≤

∫
φdµ, so m ∈M(X,T ;φ) for τ almost all m.

(iv) Suppose that there exists c ∈ R and h ∈ C(X) such that f = g + c+ h ◦ T − h.

Then for any µ ∈M(X,T ; f) we have

µ ∈ argmax
m∈MZ(X,T )

∫
fdm =⇒ µ ∈ argmax

m∈MZ(X,T )

∫
(g + c+ h ◦ T − h)dm

=⇒ µ ∈ argmax
m∈MZ(X,T )

(
c+

∫
gdm+

∫
(h ◦ T − h)dm

)
=⇒ µ ∈ argmax

m∈MZ(X,T )

∫
gdm

so µ ∈ M(X,T ; g) and thus M(X,T ; f) ⊆ M(X,T ; g). The reverse direction

can be proved similarly.

Let R(X,T ;φ) be the set of optimal plans for problem(II), i.e.

R(X,T ;φ) = {µ∗ ∈MZ(X,T ) :

∫
φdµ∗ + h(µ∗) ≥

∫
φdµ+ h(µ), ∀µ ∈MZ(X,T )}

Theorem 3.7 (Existence, characterization of optimal solutions for problem(II)).

If the settings are as section 2.1, the restriction set MZ(X,T ) is nonempty. Let

φ ∈ C(X). Then

(i) R(X,T ;φ) is convex.

(ii) If the entropy map is u.s.c. then R(X,T ;φ) is compact and nonempty.

(iii) If htop(T ) < ∞ and MZ(X,T ) satisfies property (E), the extreme points of

R(X,T ;φ) are ergodic.

(iv) If htop(T ) <∞ andMZ(X,T ) satisfies property (E), then R(X,T ;φ) contains

an ergodic measure.
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(v) If f, g ∈ C(X) and if there exists c ∈ R s.t. f − g − c belongs to the closure of

the set {h ◦ T − h : h ∈ C(X)}, then R(X,T ; f) = R(X,T ; g).

Before we start to prove Theorem 3.6, two necessary lemmas will be given first:

the first lemma given below shows that the entropy map µ 7→ h(µ) is affine in our

settings (in Section 2.1):

Lemma 3.8. Suppose that the settings are as in Section 2.1. The entropy map

of T is affine, i.e., if µ, ν ∈ M(X,T ) and α ∈ [0, 1] then h(αµ + (1 − α)ν) =

αh(µ) + (1− α)h(ν).

For proofs of Lemma 3.7 please refer to Walters[5] p.183.

The second lemma builds a relationship between ergodic decomposition and en-

tropy.

Lemma 3.9 (Walters[5] Theorem 8.4). Let T : X → X be a continuous map of

a compact metrizable space. If µ ∈ M(X,T ) and its ergodic decomposition is µ =∫
Me(X,T )

mdτ(m), then we have

(i) If P is a finite partition of (X,B(X)) then h(µ,P) =
∫
Me(X,T )

h(m,P)dτ(m).

(ii) h(µ) =
∫
Me(X,T )

h(m)dτ(m)

Now we are ready to prove Theorem 3.6:

Proof of Theorem 3.6.

(i) It is clear. If µ1, µ2 ∈ R(X,T ;φ), then for any α ∈ (0, 1), αµ1 + (1 − α)µ2 ∈

R(X,T ;φ) since by Lemma 3.7 we have

∫
φd[αµ1 + (1− α)µ2] + h(αµ1 + (1− α)µ2)

=α

(∫
φdµ1 + h(µ1)

)
+ (1− α)

(∫
φdµ2 + h(µ2)

)
=

∫
φdµ1 + h(µ1) =

∫
φdµ2 + h(µ2)
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(ii) The nonemptyness of R(X,T ;φ) is because the map µ 7→
∫
φdµ+ h(µ) is u.s.c

andMZ(X,T ) is convex. To prove the compactness, assume (µn)n ∈ R(X,T ;φ)

a sequence of optimal solutions, then we can find a subsequence (µnk)k s.t.

µnk → µ∗ ∈MZ(X,T ) by the compactness ofMZ(X,T ) and

lim sup
k

∫
φdµnk + h(µnk) ≥

∫
φdµ+ h(µ)

so µ ∈ R(X,T ;φ).

(iii) Since the map µ 7→
∫
φdµ + h(µ) is affine, proof can be followed in the same

way as Theorem 3.5(ii).

(iv) By nonemptyness, we can always select a member µ of R(X,T ;φ). Let µ =∫
Me

Z(X,T )
mdτ(m) be the ergodic decomposition of µ, by Lemma 3.8

∫
φdµ+ h(µ) =

∫
φd

(∫
Me

Z(X,T )

mdτ(m)

)
+ h

(∫
Me

Z(X,T )

mdτ(m)

)

=

∫
Me

Z(X,T )

(∫
φdm

)
dτ(m) +

∫
Me

Z(X,T )

h(m)dτ(m)

=

∫
Me

Z(X,T )

(∫
φdm+ h(m)

)
dτ(m)

Since
∫
φdm+ h(m) ≤

∫
φdµ+ h(µ), so m ∈ R(X,T ;φ) for τ almost all m.

(v) Suppose that there exists c ∈ R and h ∈ C(X) such that f = g + c+ h ◦ T − h,

then
∫
fdµ =

∫
gdµ+ c, so

∫
fdµ+ h(µ) =

∫
gdµ+ h(µ) + c

Thus R(X,T ; f) = R(X,T ; g).



CHAPTER 4: UNIQUENESS OF OPTIMAL PLANS

In this chapter, the uniqueness problem we studied is that under what conditions

the optimal plan of problem (I) and (II) is unique? In the framework of problem (I),

Jenkinson[22] got the uniqueness result for ergodic optimization problem. There are

several uniqueness outcomes for different problems including general thermodynamic

formalism[36, 37], Gibbs states[30, 27, 28, 29] and Gibbs measure[9, 36], relative

equilibrium states[49] and localized equilibrium states problem[42] in the framework

of problem (II), among them the most classical one is Bowen’s uniqueness result[36]

for general thermodynamic formalism.

4.1 Uniqueness results of problem (I)

From Theorem 3.6(i), the optimal solution set M(X,T ;φ) is always nonempty.

Generally uniqueness cannot be ensured unless the constraint set MZ(X,T ) is a

singleton. An extreme example is when φ is a constant and Z = {0}, then every

member µ ∈M(X,T ) maximizes
∫
φdµ. So here we would like to say that a "typical"

function φ does have a unique maximizing measure. That is, in a given function space

E ⊂ C(X), can we find an open, dense subset E ′ such that for all φ ∈ E ′,M(X,T ;φ)

is a singleton? Or in other words, the set

UZ(E) = {φ ∈ E : there is a unique measure inMZ(X,T ) maximizes
∫
φdµ}

is open and dense in E. The next uniqueness result is generalized from ergodic

optimization by Jenkinson[22].

Theorem 4.1. Let X be a compact metric space, and T : X → X a continuous map

which has only finitely many ergodic invariant measures. Let E be a topological vector
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space which is densely and continuously embedded in C(X). If Z is closed in C(X)

and satisfies property (E), then UZ(E) is open and dense in E.

Proof. Let {µ1, · · · , µN} be the ergodic measures for T , and define

Fi = {φ ∈ E : µi maximizes
∫
φdµ overMZ(X,T )}

for each 1 ≤ i ≤ N , then

• step 1: By Theorem 3.5(iii), if problem (I) has unique optimal plan, then it

must be ergodic. So UZ(E)c can be expressed as

UZ(E)c =
⋃
i<j

Fi ∩ Fj

• step 2: Fi is closed for each i = 1, · · · , N . Suppose that {φα} is a net in Fi,

with φα → φ in E, then φ ∈ Fi.

• step 3: each Fi ∩ Fj is hollow. Since E is densely embedded in C(X), for any

i < j there exists g = gij ∈ E s.t.
∫
gdµi 6=

∫
gdµj. If φ ∈ Fi ∩ Fj then for

every ε > 0 then function f +εg /∈ Fi∩Fj. Therefore Fi∩Fj has empty interior

whenever 1 ≤ i < j ≤ N , so UZ(E) is dense in E.

The assumption that T has finite many ergodic measures is very strong. So we

strive to get an uniqueness result for a more general T . For a specific property P , we

want to find a residual set E ′ s.t. every f ∈ E ′ has the property P . A residual set

is the set contains a countable intersection of open dense subsets. We say that P is

a generic property if there is some residual set E ′ s.t. every member of E ′ has the

property P .
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Proposition 4.2. Let T : X → X be a continuous map on a compact metric space, Z

is closed in C(X). Let E be a topological vector space which is densely and continuously

embedded in C(X). Then UZ(E) is a countable intersection of open and dense subsets

of E.

If moreover E is a Baire space, then UZ(E) is dense in E.

The sketch of Proposition 4.2’s proof is given as below, for detailed proof we just

need to follow Jenkinson[22]’s proof of Theorem 3.2.

Proof. Define α(g|φ) := max
µ∈M(X,T ;φ)

∫
gdµ and M(X,T ; g|φ) = {µ ∈ M(X,T ;φ) :∫

gdµ = α(g|φ)}.

• Step 1: Show that for any φ, g ∈ C(X),

{∫
gdµ : µ ∈M(X,T ;φ+ εg)

}
→ α(g|φ) as ε→ 0

The proof is, since the set
{∫

gdµ : µ ∈M(X,T ;φ+ εg)
}

= [a−ε , a
+
ε ], so it is

enough to show that any aε in this set we have limε→0 aε = α(g|φ). Writing

aε =
∫
gdmε for some mε ∈ M(X,T ;φ + εg), it is enough to show that any

weak* accumulation point of mε belongs toM(X,T ; g|φ).

• Step 2: Since C(X) separable and E is densely embedded, then there is a

countable subset of E which is dense in C(X) (we can assume {φn : n ∈ N} a

dense subset of C(X) and then we can choose en,i ∈ E s.t. en,i → fn as i→∞,

{en,i : (n, i) ∈ N2} is dense in C(X)). If {gi}∞i=1 denotes this countable subset of

E.

• Step 3: M(X,T ;φ) is a singleton if and only if Mi(φ) := {
∫
gidµ : µ ∈

M(X,T ;φ)} is a singleton for each i. Define Ei,j := {φ ∈ E : |Mi(φ)| ≥ 1/j},

then

UZ(E)c = {φ ∈ E : ∃i ∈ N, |Mi(φ)| > 0} =
∞⋃
j=1

∞⋃
i=1

Ei,j
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• Step 4: We need to show that each Ei,j is closed and has empty interior, thus

UZ(E) is a countable intersection of open and dense subsets of E.

– Closedness: Let {φα} be a net in Ei,j and φα → φ ∈ E. Mi(φα) =

[
∫
gidµ

−
α ,
∫
gidµ

+
α ] for µ±α ∈ M(X,T ;φα) ⊂ MZ(X,T ). The weak* com-

pactness of MZ(X,T ) means ∃µ+, µ− s.t. µ+
α → µ+, µ−α → µ−, which

implies ∫
gidµ

+
α →

∫
gidµ

+,

∫
gidµ

−
α →

∫
gidµ

−

Need to show µ± ∈ M(X,T ;φ):
∫
φαdµ

−
α =

∫
(φα − φ)dµ−α +

∫
φdµ−α →∫

φdµ−, and for any m ∈MZ(X,T ),
∫
φαdµ

−
α ≥

∫
φαdm. From these two

facts, for any m ∈ MZ(X,T ),
∫
φdµ− ≥

∫
φdm. So µ−, µ+ ∈ M(X,T ;φ)

and |
∫
gidµ

+ −
∫
gidµ

−| ≥ 1/j, thus φ ∈ Ei,j.

– Ei,j has empty interior: Let φ ∈ Ei,j be arbitrary, by step 1, Mi(φ+ εgi) =

{
∫
gidµ : µ ∈ M(X,T ;φ + εgi)} → α(gi|φ) as ε → 0, so for some ε > 0

we have |Mi(φ + εgi)| < 1/j, which implies φ + εgi /∈ Ei,j for some ε > 0

sufficiently small, so φ is not an interior point of Ei,j.

4.2 Uniqueness results of problem (II)

Bowen’s classical uniqueness result[36] for thermodynamic formalism is useful and it

will be introduced firstly. A special condition given by Bowen that ensures uniqueness

is called ‘specification’, its definition is as below:

Definition 4.1 (Specification). A homeomorphism T satisfies specification if for each

δ > 0 there is an integer p(δ) for which the following is true: if I1, · · · , In are intervals

of integers in [a, b] with d(Ii, Ij) ≥ p(δ) fir i 6= j and x1, · · · , xn ∈ X, then there is a

point x ∈ X with T b−a+p(δ)(x) = x and d(T k(x), T k(xi)) < δ for k ∈ Ii.
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and we define

V (T ) := {φ ∈ C(X) : ∀ε > 0,∃K, dn(x, y) ≤ ε⇒ |Snφ(x)− Snφ(y)| ≤ K}

Now we are ready to introduce Bowen’s result:

Theorem 4.3 (Bowen). Let T : X → X be an expansive homeomorphism of a

compact metric space satisfying specification. Then each φ ∈ V (T ) has a unique

equilibrium state µφ.

We studied a very special case of problem (II), in this case we consider product space

X×Y , Z =
{
ϕ ◦ πX −

∫
X
ϕdµ+ ψ ◦ πY −

∫
Y
ψdν : ∀ϕ ∈ C(X), ψ ∈ C(Y )

}
where φ ∈

C(X × Y ), µ and ν are given invariant ergodic measures. Restriction set is actually

a set of joinings between two dynamical systems J(µ, ν).

Theorem 4.4. In problem (II), let (X,T ) and (Y, S) be shift spaces, and let µ ∈

M(X,T ), ν ∈M(Y, S) be i.i.d. invariant measures. We specify

Z =

{
ϕ ◦ πX −

∫
X

ϕdµ+ ψ ◦ πY −
∫
Y

ψdν : ∀ϕ ∈ C(X), ψ ∈ C(Y )

}

The continuous function φ : X ×Y → R is given by φ(x, y) = φ0(x0, y0). That is, the

function value of φ(x, y) depends on the first digit of the sequences x, y.

Then problem (II) is equivalent to equilibrium states over joinings:

sup
λ∈J(µ,ν)

{∫
φdλ+ h(λ)

}

and it has unique equilibrium states λ = (λ0)⊗N, where λ0 is the optimal coupling of

µ0 and ν0, i.e.

λ0 = argmax
λ′0∈Π(µ0,ν0)

∫
φ0dλ

′
0 +Hλ′0

(P)
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Proof. By subadditivity of entropy, if P = {P1,1, · · · , Pn,m} is defined as

Pi,j = {(x, y) ∈ X × Y : (x0, y0) = (i, j)}

P is the partition of the first digit, note that P is a generating partition, so

h(λ,P) = h(λ) = inf
k≥1

1

k
H(Pk) ≤ H(P)

where Pk =
∨k−1
i=0 (T × S)−iP .

So

sup
λ∈J(µ,ν)

{∫
φdλ+ h(λ)

}
≤ sup

λ0∈Π(µ0,ν0)

{∫
φ0dλ0 +H(P)

}
that is to say, under this special setting we only need to consider the marginal on the

first digit.

Note that when λ = (λ0)⊗N, then

∫
φ0dλ0 + h(λ) =

∫
φ0dλ0 +H(P)

this is because of

h(λ) = lim
k→∞

(1/k)H(Pk)

and since |Pk| = (n×m)k:

H(Pk) = −
∑
A∈Pk

λ(A) log λ(A)

= −
∑

{[il,jl]}k−1
l=0

λ0[i0, j0]λ0[i1, j1] · · ·λ0[il, jl] log(λ0[i0, j0]λ0[i1, j1] · · ·λ0[il, jl])

= −
∑

[i,j]∈P

λ0[i, j] log λ0[i, j] = H(P)
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Now we should prove the uniqueness. Assume we have another λ ∈ J(µ, ν) s.t.

∫
φ0dλ0 + hλ(T × S) =

∫
φ0dλ0 +H(P)

that is to say,

H(P) = h(λ) ≤ 1

n
H(Pn) ≤ H(P)

so we have

nh(λ) = H(Pn) = nH(P) ∀n ∈ N

which means λ’s marginal on each position is λ0. Therefore, λ = (λ0)⊗N is the unique

optimal plan.



CHAPTER 5: LAGRANGIAN APPROACHES TO OPTIMIZATION

In this chapter we will concentrate on problem (II). In the first section, we give

clear definitions of the pressure function and the tangent functional in the framework

of problem (II). In the second section, we will introduce our Lagrangian method and

apply it to a special case of problem (II) in the last section of this chapter.

5.1 Pressure function and tangent functional

First of all we define a maximal restricted pressure function PZ : C(X) → R. For

φ ∈ C(X), let

PZ(T, φ) = sup
µ∈MZ(X,T )

∫
φdµ+ h(µ)

According to Walters[5] Theorem 9.7, the topological pressure function P (T, ·) has

some nice properties. The following result shows that the map PZ : C(X) → R has

some similar properties:

Lemma 5.1. Assume that PZ(T, φ) <∞ for all φ ∈ C(X),

(i) f ≤ g implies PZ(T, f) ≤ PZ(T, g).

(ii) PZ : C(X)→ R is 1-Lipschitz (and thus continuous).

(iii) PZ : C(X)→ R is convex.

(iv) PZ(T, f + c) = PZ(T, f) + c for all f ∈ C(X) and c ∈ R.

(v) PZ(f + g ◦ T − g) = PZ(f) for all f, g ∈ C(X).

Proof.



39

(i) Let PZ(T, f) =
∫
fdµf + h(µf ), we have

PZ(T, f) ≤
∫
gdµf + h(µf ) ≤ sup

µ∈MZ(X,T )

∫
gdµ+ h(µ) = PZ(T, g)

(ii) Let PZ(T, f) =
∫
fdµf + h(µf ) and PZ(T, g) =

∫
gdµg + h(µg), then

PZ(T, f)− PZ(T, g) ≥
(∫

fdµf + h(µf )

)
−
(∫

gdµf + h(µf )

)
=

∫
(f − g)dµf ≥ −‖f − g‖

and

PZ(T, f)− PZ(T, g) ≤
(∫

fdµg + h(µg)

)
−
(∫

gdµg + h(µg)

)
=

∫
(f − g)dµg ≤ ‖f − g‖

So |PZ(T, f)− PZ(T, g)| ≤ ‖f − g‖, PZ(T, ·) is 1-Lipschitz.

(iii) For f, g ∈ C(X) and α ∈ [0, 1]:

PZ(T, αf + (1− α)g) = sup
µ∈MZ(X,T )

∫
[αf + (1− α)g]dµ+ h(µ)

= sup
µ∈MZ(X,T )

[
α

(∫
fdµ+ h(µ)

)
+ (1− α)

(∫
gdµ+ h(µ)

)]
≤ α sup

µ∈MZ(X,T )

(∫
fdµ+ h(µ)

)
+ (1− α) sup

µ∈MZ(X,T )

(∫
gdµ+ h(µ)

)
= αPZ(T, f) + (1− α)PZ(T, g)

complexity is proved.

(iv) Obviously, since
∫

(f + c)dµ =
∫
fdµ+ c.

(v) Obviously, since for any invariant measure µ and any g ∈ C(X),
∫

(g◦T−g)dµ =

0.
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According to Walters[5] Theorem 9.15, equilibrium states for any φ ∈ C(X) can be

connected to tangent functional to P (T, ·) at φ. Similarly, In Walters[13], any relative

equilibrium state can be considered as a tangent functional to relativised pressure

function at φ. In the following we will give the definition of tangent functional and

generalize these results.

Definition 5.1 (Tangent functional). Let T : X → X be a continuous map of a

compact metrizable space with htop(T ) < ∞ and let f ∈ C(X). Given Z ⊂ C(X) a

closed subset. A tangent functional to restricted pressure function PZ(T, ·) at f is a

finite signed measure µ : B(X)→ R s.t. PZ(T, f +g)−PZ(T, f) ≥
∫
gdµ,∀g ∈ C(X).

LetWφ denote the collection of all tangent functionals to PZ(T, ·) at φ. The Hahn-

Banach theorem implies that Wφ is nonempty.

Theorem 5.2. Let Z ⊂ C(X) and φ ∈ C(X).

(i) All tangent functionals to PZ at φ are inMZ(X,T ).

(ii) If µ0 ∈ MZ(X,T ) and
∫
φdµ0 + h(µ0) = PZ(φ, T ), then µ0 is a tangent func-

tional to PZ at φ.

(iii) Suppose the entropy map µ 7→ h(µ) restricted toMZ(X,T ), is upper-semicontinuous

at all tangent functionals to PZ at φ. If µ is a signed measure on X, the µ is a

tangent functional to PZ at φ iff µ ∈MZ(X,T ) and
∫
φdµ+ h(µ) = PZ(φ, T ).

Proof.

(i) Let µ ∈ Wφ, first we show that µ takes only nonnegative values. Let g ∈ C(X)

be a nonnegative function, we have

∫
gdµ = −

∫
(−g)dµ ≥ PZ(φ)− PZ(φ− g)

≥ PZ(φ)− [PZ(φ)− inf g] ≥ 0
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so
∫
gdµ ≥ 0 for g ≥ 0. We have µ(X) = 1, because if n ∈ Z then

∫
ndµ ≤ PZ(φ+ n, T )− PZ(φ) = n

if n ≥ 1, µ(X) ≤ 1, if n ≤ −1, µ(X) ≥ 1, so µ(X) = 1. Finally we need to show

µ ◦ T−1 = µ. If n ∈ Z and g ∈ C(X):

n

∫
(g ◦ T − g)dµ ≤ PZ(φ+ n(g ◦ T − g), T )− PZ(φ, T ) = 0

Therefore
∫
g ◦ Tdµ =

∫
gdµ, that is µ ◦ T−1 = µ.

(ii) For any ψ ∈ C(X):

PZ(φ+ ψ, T )− PZ(φ, T ) = sup
µ∈MZ(X,T )

(∫
(φ+ ψ)dµ+ h(µ)

)
−
(∫

φdµ0 + h(µ0)

)
≥
(∫

(φ+ ψ)dµ0 + h(µ0)

)
−
(∫

φdµ0 + h(µ0)

)
≥
∫
ψdµ0

therefore µ0 ∈ Wφ.

(iii) It remains to show that if µ ∈ MZ(X,T ) ∩Wφ then PZ(φ, T ) =
∫
φdµ+ h(µ).

As for any g ∈ C(X):

PZ(φ+ g, T )− PZ(φ) ≥
∫
gdµ

so

PZ(φ+ g, T )−
∫

(φ+ g)dµ ≥ PZ(φ)−
∫
φdµ

so by the duality result in Theorem 4.1

h(µ) ≥ PZ(φ)−
∫
φdµ
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then we have PZ(φ, T ) =
∫
φdµ+ h(µ).

5.2 Lagrangian approach

The Lagrangian approach to optimal plan relies on the following special cases of

Isreal’s Theorem:

Lemma 5.3 (Isreal[50]). Let X be a compact metric space, and let W : C(X) → R

be convex and continuous. Suppose N is a closed convex cone in C(X) with apex 0.

Let f0 ∈ C(X) and let µ0 ∈ M(X) be W -bounded (i.e., ∃c ∈ R such that
∫
gdµ0 ≤

c + W (g), ∀g ∈ C(X)). For each ε > 0 there exists f ∈ C(X) and µ ∈ C(X)∗ such

that

(i) f ∈ f0 +N ,

(ii) µ is a tangent functional to W at f ,

(iii)
∫
hdµ ≥

∫
hdµ0 − ε‖h‖, ∀h ∈ N .

By Isreal[1], if N is a closed linear subspace of C(X), then for h ∈ N , (−h) ∈ N

and we obtain

∣∣∣∣∫ hdµ−
∫
hdµ0

∣∣∣∣ ≤ ε‖h‖ =⇒ ‖(µ− µ0)|N‖ ≤ ε

The following result is the main theorem of this chapter:

Theorem 5.4 (Lagrangian approach to optimization). Suppose that the settings

are as section 1.2.1. Let φ ∈ C(X). If Z ⊂ C(X) is a closed linear subspace

s.t. MZ(X,T ) is nonempty and satisfies property (E). Then there exists a mea-

sure µ ∈ M(X,T ) and χ ∈ Z such that µ is an equilibrium state of φ + χ and

|
∫
hdµ| ≤ ε‖h‖ for all h ∈ Z.
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Proof. Since MZ(X,T ) is nonempty so let µ0 be any element of MZ(X,T ). The

function W : C(X)→ R is given by

W (f) = sup
µ∈M(X,T )

∫
fdµ+ h(µ)

which is the pressure function so it is convex and continuous. Then µ0 is W -bounded

because ∃c = 0 s.t. ∫
gdµ0 ≤ c+W (g) ∀g ∈ C(X)

Let N = Z, f0 = φ, by Isreal’s theorem, there exists an element χ ∈ Z and there is

µ ∈M(X,T ) that is a tangent functional to W defined above at φ+χ. By Theorem

5.2(iii) µ is an equilibrium state of φ+ χ for some χ ∈ Z and for any ε > 0,

∣∣∣∣∫ hdµ−
∫
hdµ0

∣∣∣∣ ≤ ε‖h‖, ∀h ∈ Z

since h ∈ Z and µ0 ∈MZ(X,T ) so µ0(h) =
∫
hdµ0 = 0, we get

∣∣∣∣∫ hdµ

∣∣∣∣ ≤ ε‖h‖, ∀h ∈ Z

Now we consider a special case: if (X,T ) and (Y, S) are topological dynamical

systems (X, Y are compact metrizable spaces, T : X → X and S : Y → Y are

continuous transformations), we can construct a product dynamical system (X ×

Y, T × S), where T × S : X × Y → X × Y is given by (T × S)(x, y) = (T (x), S(y))

for (x, y) ∈ X × Y .

Theorem 5.5. If (X×Y, T ×S) is a product dynamical system as above, φ ∈ C(X×
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Y ). Given µ ∈Me(X,T ), ν ∈Me(Y, S) and let

Z =

{
ϕ ◦ πX −

∫
X

ϕdµ+ ψ ◦ πY −
∫
Y

ψdν : ∀ϕ ∈ C(X), ψ ∈ C(Y )

}

Then MZ(X × Y, T × S) = J(µ, ν), and there exists (ϕ̂, ψ̂) ∈ C(X) × C(Y ) and

λ̂ ∈ J(µ, ν) s.t.

λ̂ ∈ argmax
λ∈M(X×Y,T×S)

∫
(φ+ ϕ̂ ◦ πX + ψ̂ ◦ πY )dλ+ h(λ)

⇐⇒ λ̂ ∈ argmax
λ∈J(µ,ν)

∫
φdλ+ h(λ)

Before we apply Lagrangian approach (Theorem 5.4) to prove Theorem 5.5, we

have to verify that Z̃ = {ϕ ◦ πX + ψ ◦ πY : ∀ϕ ∈ C(X), ψ ∈ C(Y )} is a closed linear

subspace in C(X × Y ), where πX : X × Y → X and πY : X × Y → Y are projection

mappings. It is obvious that Z ⊂ C(X × Y ) is a linear subspace, now we will show

that Z is closed. A useful lemma is as follows:

Lemma 5.6 (Kober). Let X be a Banach space, M,N be two closed subspaces of X

and M ∩N = {0}. Then M +N is closed in X if and only if there exists a constant

A > 0 such that for all x ∈M and y ∈ N we have ‖x‖ ≤ A · ‖x+ y‖.

Proposition 5.7. Z̃ = {ϕ ◦ πX + ψ ◦ πY : ϕ ∈ C(X) and ψ ∈ C(Y )} is closed.

Proof. Firstly, define

LX = {ϕ ◦ πX : ϕ ∈ C(X)}, LX = {ψ ◦ πY : ψ ∈ C(Y )}

then N = LX + LY and LX ∩ LY = {c : c ∈ R}, so Lemma 4.20 cannot be applied

directly.

Now we first consider the subspace: let Z̃ = {ϕ ◦ πX + ψ ◦ πY : ϕ ∈ C(X) and ψ ∈

C(Y )} is a subspace of C(X × Y ), LX = {ϕ ◦ πX : ϕ ∈ C(X)}, DY = {ψ ◦ πY :
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ψ ∈ C(Y )} and R = {c : c ∈ R} the set of all constant functions, which is closed in

C(X × Y ).

Then we prove the closedness of LX : assume that hX is a limit point of LX , then

there exists a sequence of functions {(hn)X} ∈ LX s.t. (hn)X = ϕn ◦ πX and

lim
n→∞

(hn)X = lim
n→∞

ϕn ◦ πX =
(

lim
n→∞

ϕn

)
◦ πX = hX

we just need to show ϕh := limn ϕn is continuous: for any ε > 0, ∃N , when n > N

we have

‖ϕh − ϕN‖ < ε/3

and for continuous function ϕN , x ∈ X, ∃δ s.t. x0 ∈ Nδ(x)⇒ |ϕN(x)−ϕN(x0)| < ε/3

Now

|ϕh(x)− ϕh(x0)| = |ϕh(x)− ϕN(x) + ϕN(x)− ϕN(x0) + ϕN(x0)− ϕh(x0)|

≤ |ϕh(x)− ϕN(x)|+ |ϕN(x)− ϕN(x0)|+ |ϕN(x0)− ϕh(x0)| < ε

so ϕh = limn ϕn ∈ C(X), and hX = (limn ϕn) ◦ πX ∈ LX , which means LX is closed,

similarly, LY is closed.

To apply Lemma 5.6 we consider quotient space LX/R and LY /R, we have LX/R∩

LY /R = [0] and Z̃/R = LX/R + LY /R. Now we claim that if Z̃/R closed in C(X ×

Y )/R then Z̃ is closed in C(X × Y ):

Claim 5.1. If Z̃/R closed in C(X × Y )/R then Z̃ is closed in C(X × Y )

Proof of Claim 5.2: Define the quotient map q : C(X×Y )→ C(X×Y )/R, just need

to show that q is continuous: for any ε > 0, if h, h′ ∈ C(X×Y ) and ‖h−h′‖C(X×Y ) <

δ = ε,

‖q(h)− q(h′)‖C(X×Y )/R = inf
c∈R
‖h− h′ + c‖C(X×Y ) ≤ ‖h− h′‖C(X×Y ) < ε.
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So now we just need to show that Z̃/R is closed in C(X ×Y )/R, by lemma 5.6, we

need to find A > 0 s.t. for any ϕ ∈ C(X) and ψ ∈ C(Y ),

‖[ϕ ◦ πX ]‖C(X×Y )/R ≤ A · ‖[ϕ ◦ πX + ψ ◦ πY ]‖C(X×Y )/R

and

‖[ϕ ◦ πX ]‖C(X×Y )/R = inf
c∈R
‖ϕ ◦ πX + c‖C(X×Y )

= inf
c∈R

sup
(x,y)∈X×Y

|ϕ ◦ πX(x, y) + c|

= inf
c∈R

sup
x∈X
|ϕ(x) + c|

we claim that inf
c∈R

sup
x∈X
|f(x) + c| = 1

2
(maxϕ−minϕ).

Claim 5.2. inf
c∈R

sup
x∈X
|ϕ(x) + c| = 1

2
(maxϕ−minϕ)

Proof of Claim 5.3. When ϕ is unbounded, i.e. minϕ = −∞ or maxϕ = ∞, it is

obvious that

inf
c∈R

sup
x∈X
|f = ϕ(x) + c| =∞ =

1

2
(maxϕ−minϕ)

so we just need to consider the boundedness case: note that

inf
c∈R

sup
x∈X
|ϕ(x) + c| = inf

c∈R
sup
x∈X
|ϕ(x)− (−c)|

• When −c < minϕ, select ϕ(x) = maxϕ and −c = minϕ to obtain the inf sup:

inf
c∈R

sup
x∈X
|ϕ(x)− (−c)| = maxϕ−minϕ
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• When −c > maxϕ, select f(x) = min f and −c = maxϕ to obtain the inf sup:

inf
c∈R

sup
x∈X
|ϕ(x)− (−c)| = maxϕ−minϕ

• When minϕ ≤ −c < 1
2
(maxϕ + minϕ), select ϕ(x) = maxϕ and −c =

1
2
(maxϕ+ minϕ) to obtain the inf sup:

inf
c∈R

sup
x∈X
|ϕ(x)− (−c)| = 1

2
(maxϕ−minϕ)

• When 1
2
(maxϕ + minϕ) ≤ −c < maxϕ, select ϕ(x) = minϕ and −c =

1
2
(maxϕ+ minϕ) to obtain the inf sup:

inf
c∈R

sup
x∈X
|ϕ(x)− (−c)| = 1

2
(maxϕ−minϕ)

Therefore we proved the claim.

For any ϕ ∈ C(X) and ψ ∈ C(Y ), let F (x, y) = ϕ(x)+ψ(y), then min(x,y)∈X×Y F (x, y) =

minx∈X ϕ(x)+miny∈Y ψ(y) = minϕ+minψ, similarly, maxF (x, y) = maxϕ+maxψ,

therefore

‖[ϕ ◦ πX + ψ ◦ πY ]‖C(X×Y )/R = inf
c∈R

sup
(x,y)∈X×Y

|ϕ(x) + ψ(y) + c|

=
1

2
(maxF −minF ) ≥ 1

2
(maxϕ−minϕ)

Thus we can find A = 1 s.t. for any ϕ ∈ C(X) and ψ ∈ C(Y ), ϕ ◦ πX ∈ LX/R and

ϕ ◦ πX + ψ ◦ πY ∈ C/R, we have

‖[ϕ ◦ πX ]‖C(X×Y )/R ≤ A · ‖[ϕ ◦ πX + ψ ◦ πY ]‖C(X×Y )/R

then by lemma 5.6, we proved that Z̃/R is closed in C(X × Y )/R, therefore by the
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claim 5.2, Z is closed in C(X × Y ).

We have proved the closedness of Z̃, now we want to show that Z is also closed:

Proposition 5.8. The subspace of C(X × Y )

Z =

{
ϕ ◦ πX −

∫
X

ϕdµ+ ψ ◦ πY −
∫
Y

ψdν : ϕ ∈ C(X), ψ ∈ C(Y )

}

is closed.

Proof. We just need to show that the set

ZX =

{
ϕ ◦ πX −

∫
X

ϕdµ : ϕ ∈ C(X)

}

is closed. We claim that ZX = Z̃X := {ϕ̃ ◦ πX : ϕ̃ ∈ Cµ(X)}, where

Cµ(X) =

{
f ∈ C(X) :

∫
fdµ = 0

}

Since for any F ∈ ZX , there exists ϕ ∈ C(X) s.t. F = (ϕ −
∫
ϕdµ) ◦ πX . Let

ϕ̃ := ϕ−
∫
ϕdµ ∈ Cµ(X), we have F = ϕ̃ ◦ πX ∈ Z̃X .

In another direction, for G ∈ Z̃X , there exists ψ ∈ Cµ(X) s.t. G = ψ ◦ πX . Then

G = (ψ −
∫
ψdµ) ◦ πX ∈ ZX .

Now that Z̃X = ZX , similar to the proof of closedness of LX = {ϕ◦πX : ϕ ∈ C(X)},

we can show that ZX is closed. In the following steps we can define ZY accordingly

and prove the closedness of ZY . Then follow the steps of Proposition 5.7’s proof to

get the desired result.

Now we are ready to prove Theorem 5.5 by applying the Lagrangian approach

(Theorem 5.4):

Proof of Theorem 5.5. In Theorem 5.4, let the topological dynamical system be (X×

Y, T × S), φ ∈ C(X × Y ), function W be the pressure function P (T × S, ·) that is
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convex and continuous on C(X × Y ), and the closed linear subspace N = Z, where

Z =

{
ϕ ◦ πX −

∫
X

ϕdµ+ ψ ◦ πY −
∫
Y

ψdν : ϕ ∈ C(X), ψ ∈ C(Y )

}

then by Theorem 5.4, there exists ϕ̂, ψ̂ and λ∗ ∈M(X × Y, T × S) s.t.

λ∗ ∈ argmax
λ∈M(X×Y,T×S)

∫
X×Y

(
φ+ ϕ̂ ◦ πX −

∫
X

ϕ̂dµ+ ψ̂ ◦ πY −
∫
Y

ψ̂dν

)
dλ+ h(λ)

(5.1)

and for any ε > 0 ∣∣∣∣∫ hdλ∗
∣∣∣∣ ≤ ε‖h‖, ∀h ∈ Z (5.2)

In the follwing we will prove that there exists a λ̂ such that λ̂ ∈MZ(X×Y, T ×S) =

J(µ, ν):

Let λ∗ =
∫
Me(X×Y,T×S)

ρdτ(ρ) be the ergodic decomposition of λ∗. Then


λ∗ ◦ π−1

X =
∫
p∈Me(X,T )

pd(τ ◦ π̃−1
X )(p)

λ∗ ◦ π−1
Y =

∫
q∈Me(Y,S)

qd(τ ◦ π̃−1
Y )(q)

are the ergodic decomposition of λ∗ ◦ π−1
X and λ∗ ◦ π−1

Y respectively, where π̃X :

M(X × Y, T × S)→M(X,T ) and π̃Y :M(X × Y, T × S)→M(Y, S) are the map

induced by πX and πY .

By (5.2), when h = ϕ ◦ πX −
∫
X
ϕdµ (let ψ ≡ 0) for any ϕ ∈ C(X), we have

∣∣∣∣∫
X×Y

ϕ ◦ πXdλ∗ −
∫
X

ϕdµ

∣∣∣∣ =

∣∣∣∣∫
X

ϕdλ∗ ◦ π−1
X −

∫
X

ϕdµ

∣∣∣∣
=

∣∣∣∣∫
X

(
ϕ−

∫
X

ϕdµ

)
dλ∗ ◦ π−1

X −
∫
X

(
ϕ−

∫
X

ϕdµ

)
dµ

∣∣∣∣
≤ ε

∥∥∥∥(ϕ− ∫
X

ϕdµ

)∥∥∥∥
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Since C(X) = {ϕ−
∫
X
ϕdµ : ϕ ∈ C(X)}, from the above inequality we have:

‖λ∗ ◦ π−1
X − µ‖ = ‖τ ◦ π̃−1

X − δµ‖ ≤ ε

Similarly,

‖λ∗ ◦ π−1
Y − ν‖ = ‖τ ◦ π̃−1

Y − δν‖ ≤ ε

Since the set of equilibrium states of
(
φ+ ϕ̂ ◦ πX −

∫
X
ϕ̂dµ+ ψ̂ ◦ πY −

∫
Y
ψ̂dν

)
is a

face ofM(X × Y, T × S), the set

{
λ ◦ π−1

X : λ is an equilibrium state of
(
φ+ ϕ̂ ◦ πX −

∫
X

ϕ̂dµ+ ψ̂ ◦ πY −
∫
Y

ψ̂dν

)}

and

{
λ ◦ π−1

Y : λ is an equilibrium state of
(
φ+ ϕ̂ ◦ πX −

∫
X

ϕ̂dµ+ ψ̂ ◦ πY −
∫
Y

ψ̂dν

)}

are faces ofM(X,T ) andM(Y, S) respectively.

Let

EX = {λ : π̃Xλ = µ} EY = {λ : π̃Y λ = ν}

and E = {λ : λ is an equilibrium state of
(
φ+ ϕ̂ ◦ πX −

∫
X
ϕ̂dµ+ ψ̂ ◦ πY −

∫
Y
ψ̂dν

)
}.

E is a face of M(X × Y, T × S), so τ(E) = 1 as λ∗ is an equilibrium state of(
φ+ ϕ̂ ◦ πX −

∫
X
ϕ̂dµ+ ψ̂ ◦ πY −

∫
Y
ψ̂dν

)
. Meanwhile, by the fact that ‖τ ◦ π̃−1

X −

δµ‖ ≤ ε, since [τ ◦ π̃−1
X − δµ] :M(X,T )→ R, we have

‖τ ◦ π̃−1
X − δµ‖ := sup

m∈C(M(X,T ))
‖m‖≤1

|τ ◦ π̃−1
X (m)− δµ(m)| ≤ ε

That is, the supremum is taken over all measure m ∈ M(X,T ). with its norm
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‖m‖ ≤ 1, the norm of m is the same of norm on C(X)∗:

‖m‖ = sup
f∈C(X)
‖f‖≤1

|m(f)| = sup
f∈C(X)
‖f‖≤1

∣∣∣∣∫ fdm

∣∣∣∣
if we set m = µ, then

|τ(π̃−1
X µ)− 1| ≤ ‖τ ◦ π̃−1

X − δµ‖ ≤ ε =⇒ τ(π̃−1
X µ) = τ(EX) ≥ 1− ε

Similarly, τ(EY ) ≥ 1− ε. Therefore

τ(E ∩ EX ∩ EY ) = 1− τ(Ec ∪ Ec
X ∪ Ec

Y ) ≥ 1− (τ(Ec) + τ(Ec
X) + τ(Ec

Y )) ≥ 1− 2ε

As ε can be any value, we can pick ε = 1/3, then τ(E∩EX ∩EY ) ≥ 1/3 > 0, so some

equilibrium state of
(
φ+ ϕ̂ ◦ πX −

∫
X
ϕ̂dµ+ ψ̂ ◦ πY −

∫
Y
ψ̂dν

)
, say λ̂, is an element

of J(µ, ν).

Finally we will prove the ‘if and only if’ part: for some λ̂ ∈ J(µ, ν),

λ̂ ∈ argmax
λ∈M(X×Y,T×S)

∫ (
φ+ ϕ̂ ◦ πX −

∫
X

ϕ̂dµ+ ψ̂ ◦ πY −
∫
Y

ψ̂dν

)
dλ+ h(λ)

⇐⇒ λ̂ ∈ argmax
λ∈J(µ,ν)

∫
φdλ+ h(λ)
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• ( =⇒ ): For λ̂ ∈ J(µ, ν),

λ̂ ∈ argmax
λ∈M(X×Y,T×S)

∫ (
φ+ ϕ̂ ◦ πX −

∫
X

ϕ̂dµ+ ψ̂ ◦ πY −
∫
Y

ψ̂dν

)
dλ+ h(λ)

=⇒ λ̂ ∈ argmax
λ∈M(X×Y,T×S)

∫
(φ+ ϕ̂ ◦ πX + ψ̂ ◦ πY )dλ+ h(λ)

=⇒ λ̂ ∈ argmax
λ∈J(µ,ν)

∫
(φ+ ϕ̂ ◦ πX + ψ̂ ◦ πY )dλ+ h(λ)

=⇒ λ̂ ∈ argmax
λ∈J(µ,ν)

∫
φdλ+ h(λ) +

∫
X

ϕ̂dµ+

∫
Y

ψ̂dν

=⇒ λ̂ ∈ argmax
λ∈J(µ,ν)

∫
φdλ+ h(λ)

• (⇐= ): This is directly from the fact that λ̂ is an equilibrium state of (φ+ ϕ̂ ◦

πX −
∫
X
ϕ̂dµ+ ψ̂ ◦ πY −

∫
Y
ψ̂dν).

Remark 5.3.

(i) When Z = {ϕ ◦ πX −
∫
Y
ϕdν : ϕ ∈ C(Y )}, the relativized version of the La-

grangian approach has been proved by Walters[13].

(ii) In Theorem 5.5 if the given φ ∈ C(X × Y ) and ϕ̂, ψ̂ are Hölder functions or

satisfy strong regularity conditions, then there exists an unique optimal plan.

(iii) There is another way to prove Theorem 5.5 by applying Theorem 5.4: Let ZX =

{ϕ ◦ πX −
∫
X
ϕdµ : ϕ ∈ C(X)} and ZY = {ψ ◦ πY −

∫
Y
πdν : ψ ∈ C(Y )}, and

W (f) = PZX (T × S, f) = sup
λ∈MZX

(X×Y,T×S)

∫
fdλ+ h(λ)

by Lemma 5.1, W is convex and continuous. Now, let N = ZY , since ZY is a

closed subspace, we can apply Theorem 5.4 and Walters’ relativized version[13],
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there exist some λ∗ ∈ J(µ, ν) satisfies λ∗ ◦ π−1
Y = ν and ψ∗ ∈ C(Y ) s.t.

λ∗ ∈ argmax
λ∈MZX

(X×Y,T×S)

∫
(φ+ψ∗ ◦πY )dλ+h(λ) ⇐⇒ λ∗ ∈ argmax

λ∈J(µ,ν)

∫
φdλ+h(λ)

We can generalize Theorem 5.5 if there are n different dynamical systems (Xi, Ti)

for i = 1, 2, · · · , n:

Corollary 5.9. Suppose that there are n dynamical systems {(Xi, Ti)}ni=1, where each

Xi and Ti : Xi → Xi satisfy our basic settings in section 1.2.1. Let φ ∈ C(
∏n

k=1 Xk)

and πi :
∏n

k=1 Xk → Xi be the projection map onto the ith space. Given µi ∈

Me(Xi, Ti) and let

Z =

{
n∑
i=1

(
fi ◦ πi −

∫
Xi

fidµi

)
: fi ∈ C(Xi), i = 1, · · · , n

}

there exists (f̂1, · · · , f̂n) ∈ C(X1)× · · · × C(Xn) s.t.

λ̂ ∈ argmax
λ∈M(

∏n
k=1Xk,

∏n
k=1 Tk)

∫ [
φ+

n∑
i=1

(
f̂i ◦ πi −

∫
Xi

f̂idµi

)]
dλ+ h(λ)

⇐⇒ λ̂ ∈ argmax
λ∈MZ(

∏n
k=1Xk,

∏n
k=1 Tk)

∫
φdλ+ h(λ)

Note that

MZ(
n∏
k=1

Xk,

n∏
k=1

Tk) = {µ ∈M(
n∏
k=1

Xk,

n∏
k=1

Tk) : µ ◦ π−1
i = µi for i = 1, · · · , n}

Proof. Let

Z̃ =

{
n∑
i=1

fi ◦ πi : fi ∈ C(Xi), i = 1, · · · , n

}

by Proposition 5.7, Z̃ defined above is closed, and by Proposition 5.8, such Z defined

in Corollary 5.9 is closed. Then by the Lagrangian approach (Theorem 5.4), there
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exists (f̂1, · · · , f̂n) ∈ C(X1)× · · · × C(Xn) and λ∗ ∈M(
∏n

k=1Xk,
∏n

k=1 Tk) s.t.

λ∗ ∈ argmax
M(

∏n
k=1Xk,

∏n
k=1 Tk)

∫ [
φ+

n∑
i=1

(
f̂i ◦ πi −

∫
Xi

f̂idµi

)]
dλ+ h(λ)

and for any ε > 0 we have

∣∣∣∣∫ hdλ∗
∣∣∣∣ < ε‖h‖, ∀h ∈ Z

For fi ∈ C(Xi), let h = fi ◦ πi −
∫
Xi
fidµi, then by the proof of Theorem 5.5,

∣∣∣∣∫ hdλ∗
∣∣∣∣ < ε‖h‖, ∀h ∈ Z =⇒ ‖λ∗ ◦ π−1

i − µi‖ < ε

Let

λ∗ =

∫
Me(

∏n
k=1Xk,

∏n
k=1 Tk)

pdτ(p)

be the ergodic decomposition of λ∗, then we have (by the proof of Theorem 5.5):

‖λ∗ ◦ π−1
i − µi‖ = ‖τ ◦ π̃i−1 − δµi‖ < ε

where the map π̃i : M(
∏n

k=1Xk,
∏n

k=1 Tk) → M(Xi, Ti) induced by πi and is given

by

π̃i(λ) = λ ◦ π−1
i

Now we define

Ei =

{
λ ◦ π−1

i : λ is an equilibrium state of φ+
n∑
i=1

f̂i ◦ πi

}

then τ(Ei) > 1− ε, and if ε < 1/n

τ

(
n⋂
i=1

Ei

)
> 1− nε > 0
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Since the set

E =

{
λ ∈M(

n∏
k=1

Xk,
n∏
k=1

Tk) : λ is an equilibrium state of φ+
n∑
i=1

f̂i ◦ πi

}

is a face ofM(
∏n

k=1Xk,
∏n

k=1 Tk), therefore there is a λ̂ ∈ E ∩ (
⋂n
i=1Ei).

5.3 Result in uniqueness of relative equilibrium states

Throughout this section we consider the Gibbs measures defined on Shift of Finite

Types (SFTs) with Hölder continuous potential functions: Given two finite sets (al-

phabets) HA and HY . Assume that there is a one-block factor map π : HA → HY

between two subshifts (ΣA, σ) and (Y, σY ). Here (ΣA, σ) be a topological mixing SFT

and (Y, σY ) be another subshift, where ΣA ⊆ HN
A and Y ⊆ HN

Y . Let the potential

function φ : ΣA → R be an member of FA, where

FA = {φ ∈ C(ΣA) : varnφ ≤ βαn, β > 0, α ∈ (0, 1)}

and

varnφ = sup{|φ(x)− φ(y)| : xn−1
0 = yn−1

0
}

σ : ΣA → ΣA and σY : Y → Y are left-shift maps.

Definition 5.2 (Fiber-wise mixing factor map). A one-block factor map π is called

fiber-wise mixing if there exists N such that for any yN0 admissible in Y and x0, xN ∈

HA s.t. π(x0) = y0 and π(xN) = yN , then there exists x0x
N−1
1 xN ∈ ΣA with π(xN0 ) =

yN0 .

We have the following meaningful uniqueness results in relative equilibrium states

problem (by specifying Z in the framework of problem (II)):

Theorem 5.10. Suppose that φ ∈ FA and ψ ∈ C(Y ) is Hölder. Let ν ∈ M(Y, σY )

be the unique equilibrium state for ψ and π : ΣA → Y be a one-block fiber-wise
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mixing factor map from (ΣA, σ) onto (Y, σY ). If Z =
{
g ◦ π −

∫
gdν : g ∈ C(Y )

}
,

then we can choose a Hölder function g = ψ − Pot(µφ ◦ π−1) ∈ C(Y ) such that

χ = g ◦ π −
∫
gdν satisfies Lagrangian approach (where Pot(·) means the potential of

certain Gibbs measure). As g is Hölder and χ is also Hölder, the relative equilibrium

state is unique.

Note that the theorem above gives an result for uniqueness relative equilibrium

states, it is an weak version of Yoo[49]:

Theorem 5.11 (Yoo[49]). Let π : ΣA → Y be a factor map from an irreducible

SFT onto a sofic shift. Let φ, ψ be Hölder continuous functions defined on ΣA and

Y respectively. Let ν be the unique equilibrium state for ψ. Then there is a unique

relative equilibrium state µ of φ over ν.

Before we prove Theorem 5.10, some necessary results are given as below. The first

definition gives a candidate for potential functions of projection of Gibbs measures:

Definition 5.3 (g-function). If µφ is the Gibbs measure with potential φ ∈ C(ΣA).

Denote gn(x) by

gn(x) :=
π#µφ[x0 · · ·xn]

π#µφ[x1 · · ·xn]

where π#µφ = µφ ◦ π−1. The g-function for π#µφ is defined as g(x) = lim
n→∞

gn(x) and

log g is a candidate for potential functions of π#µφ.

The next result given by Piraino[51] shows that projection of a Gibbs measure with

Hölder potential is also Gibbsian and its potential is also Hölder:

Proposition 5.12 (Piraino[51]). Suppose that φ : ΣA → R is continuous, µφ the

Gibbs state for φ, and π : ΣA → Y a fiber-wise mixing 1-block factor map. Then

π#µφ is also a Gibbs measure with Hölder continuous potential log g.

In the following we give another form of potentials candidate for π#µφ when µφ is

a Gibbs measure with a regular potential φ:
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Proposition 5.13 (Kempton[52]). Suppose that (ΣA, σA) is a topological mixing SFT

and π : ΣA → Y is a fiber-wise mixing factor map and satisfies that there exists an

integer N s.t. for any n ∈ N, the possible values of xn in the set of sequences

{x ∈ ΣA : π(xn−N · · · xn+N) = zn−N · · · zn+N} equals the possible values of xn in

{x ∈ ΣA : π(x) = z} (the nth position of x is locally determined). Then for j ∈ HA,

n ∈ N and w ∈ ΣA such that jw is admissible, the potential for π#µφ is given by

ψ(y) = lim
n→∞

log

∑
x=xn−1

0 j

π(x)=yn0

exp(Sn+1φ(xω))∑
x′=xn−1

1 j

π(x′)=yn1

exp(Snφ(x′ω))

for y ∈ Y , where xn−1
0 = x0 · · ·xn−1 and Snφ(x) =

∑n−1
i=0 φ(σix).

For completeness we give a brief proof below, for detailed proof please refer to

Kempton[52].

Lemma 5.14. The term

lim
n→∞

∑
x=xn−1

0 j

π(x)=yn0

exp(Sn+1φ(xω))∑
x′=xn−1

1 j

π(x′)=yn1

exp(Snφ(x′ω))

is well defined and independent of j, w.

Lemma 5.15. There is a constant C depending only on φ such that

C−1 ≤

∑
x=xn0

exp(Sn+1φ(xω))
∑

x=xsn+1
exp(Ss−nφ(xω))∑

x=xs0
exp(Ss+1φ(xω))

≤ C

Then the sketch proof of Proposition 5.13 is given below:

Proof of Proposition 5.13. Note that by the Gibbsian property of µφ we have (for any

x ∈ [xn0 ] and y ∈ [yn0 ] s.t. π([xn0 ]) = [yn0 ])

C1 ≤
µφ[x0 · · ·xn]

exp(Sn+1φ(x)− (n+ 1)P (φ))
≤ C2
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and

C ′1 ≤
µφ[x1 · · ·xn]

exp(Snφ(σx)− nP (φ))
≤ C ′2

as

π#µφ[y0 · · · yn] =
∑

xn0∈π−1(yn0 )

µφ[x0 · · ·xn]

so

C1e
−(n+1)P

∑
xn0∈π−1(yn0 )

exp(Sn+1φ(x)) ≤ π#µφ[x0 · · ·xn] ≤ C2e
−(n+1)P

∑
xn0∈π−1(yn0 )

exp(Sn+1φ(x))

C ′1e
−nP

∑
xn1∈π−1(yn1 )

exp(Snφ(σx)) ≤ π#µφ[x1 · · ·xn] ≤ C ′2e
−nP

∑
xn1∈π−1(yn1 )

exp(Snφ(σx))

since x ∈ [xn0 ], σx ∈ [xn1 ], and we have

C1

C ′2e
P
·
∑

xn0∈π−1(yn0 ) exp(Sn+1φ(x))∑
xn1∈π−1(yn1 ) exp(Snφ(σx))

≤ gn(x) ≤ C2

C ′1e
P
·
∑

xn0∈π−1(yn0 ) exp(Sn+1φ(x))∑
xn1∈π−1(yn1 ) exp(Snφ(σx))

and the potential satisfies

c̃1 + lim
n→∞

log

∑
xn0∈π−1(yn0 ) exp(Sn+1φ(x))∑
xn1∈π−1(yn1 ) exp(Snφ(σx))

≤ lim
n→∞

log gn(x)

≤c̃2 + lim
n→∞

log

∑
xn0∈π−1(yn0 ) exp(Sn+1φ(x))∑
xn1∈π−1(yn1 ) exp(Snφ(σx))

where

c̃1 = log

(
C1

C ′2e
P

)
c̃2 = log

(
C2

C ′1e
P

)
We can choose a proper coboundary g ◦ σ − g + c where g is in the same space as φ

and c is a constant, s.t. P (φ+ g ◦σ− g+ c) = 0, and we denote φ := φ+ g ◦σ− g+ c.

Then we let ψm(y) = log

∑
xm0 ∈π−1(ym0 ) exp(Sm+1φ(x))∑
xm1 ∈π−1(ym1 ) exp(Smφ(σx))

= log

∑
x=xm−1

0 j

π(x)=ym0

exp(Sm+1φ(xω))∑
x′=xm−1

1 j

π(x′)=ym1

exp(Smφ(x′ω))
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(here ω ⊂ ΣA and jω admissable) and ψ = limm→∞ ψm, we have the following results:

Sn+1ψ(y) = lim
m→∞

ψm(y) + lim
m→∞

ψm−1(σy) + · · ·+ lim
m→∞

ψm−n(σny)

= lim
m→∞

n∑
i=0

log

∑
x=xm−1

0 j

π(x)=yn0

exp(Sm+1−iφ(σixω))∑
x′=xm−1

0 j

π(x′)=yn0

exp(Sm−iφ(σx′ω))

= lim
m→∞

log


∑

x=xm−1
0 j

π(x)=yn0

exp(Sm+1φ(xω))∑
x′=xm−1

n j

π(x′)=ymn

exp(Sm−nφ(σx′ω))


that is because

ψm−i(σ
iy) = log

∑
x=xm−1

i
j

π(x)=ym
i

exp(Sm−i+1φ(xω))∑
x′=xm−1

i+1
j

π(x′)=ym
i+1

exp(Sm−iφ(x′ω))

By Lemma 5.15, we have (when s = m):

exp(Sn+1ψ(y)) =

∑
x=xm0

π(x)=ym0

exp(Sm+1φ(xω))∑
x=xmn+1

π(x)=ymn+1

exp(Sm−nφ(xω))
≤ C

∑
x=xn0

π(x)=yn0

exp(Sn+1φ(xω))

exp(Sn+1ψ(y)) =

∑
x=xm0

π(x)=ym0

exp(Sm+1φ(xω))∑
x=xmn+1

π(x)=ymn+1

exp(Sm−nφ(xω))
≥ C−1

∑
x=xn0

π(x)=yn0

exp(Sn+1φ(xω))

by the Gibbsian property of µφ:

C1 ≤
λ[x0 · · · xn]

exp(Sn+1φ(xω))
≤ C2

summing over all x = [x0 · · ·xn] s.t. π(x) = [yn0 ]:

C1

∑
π(x)=yn0

exp(Sn+1φ(xω)) ≤ π#λ[x0 · · ·xn] ≤ C2

∑
π(x)=yn0

exp(Sn+1φ(xω))
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we have
C1

C
≤ π#µφ[x0 · · ·xn]

exp(Sn+1ψ(y))
≤ C2C

Therefore, together with Lemma 5.13, we can pick the potential of π#µφ as

lim
n→∞

log

∑
x=xn−1

0 j

π(x)=yn0

exp(Sn+1φ(xω))∑
x′=xn−1

1 j

π(x′)=yn1

exp(Snφ(x′ω))

To prove Theorem 5.10 we still need the following result:

Proposition 5.16. If for φ ∈ C(ΣA) and g ∈ C(Y ), then

Pot(µφ+g◦π ◦ π−1) = g + Pot(µφ ◦ π−1)

Proof. By the result above, we have

Pot(µφ ◦ π−1)(y) = lim
n→∞

log

∑
x=xn−1

0 j

π(x)=yn0

exp(Sn+1φ(xω))∑
x′=xn−1

1 j

π(x′)=yn1

exp(Snφ(x′ω))

so if the potential is φ+ g ◦ π:

Pot(µφ+g◦π ◦ π−1)(y)

= lim
n→∞

log

∑
x=xn−1

0 j

π(x)=yn0

exp(Sn+1(φ+ g ◦ π)(xω))∑
x′=xn−1

1 j

π(x′)=yn1

exp(Sn(φ+ g ◦ π)(x′ω))

= lim
n→∞

log

exp(Sn+1g(y))
∑

x=xn−1
0 j

π(x)=yn0

exp(Sn+1φ(xω))

exp(Sng(σy))
∑

x′=xn−1
1 j

π(x′)=yn1

exp(Snφ(x′ω))

= lim
n→∞

[Sn+1g(y)− Sng(σy)] + Pot(µφ ◦ π−1)(y)

=g(y) + Pot(µφ ◦ π−1)(y)
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Now we are ready to prove Theorem 5.10:

Proof of Theorem 5.10. By the Lagrangian approach Theorem 5.4 and 5.5, there ex-

ists g ∈ C(Y ) s.t. µφ+χ = µφ+g◦π, the equilibrium state of φ + g ◦ π, is a member of

MZ(ΣA, σ). We claim that g = ψ−Pot(µφ ◦ π−1) satisfies the Lagrangian approach.

g is a Hölder function by Proposition 5.10. We just need to show

µφ+g◦π ◦ π−1 = ν

which is equivalent to

Pot(µφ+g◦π ◦ π−1) = ψ

As g is Hölder, we know that µφ+g◦π is a Gibbs measure, and then by Proposition

5.15

Pot(µφ+g◦π ◦ π−1) = g + Pot(µφ ◦ π−1) = [ψ − Pot(µφ ◦ π−1)] + Pot(µφ ◦ π−1) = ψ

Thus we can pick χ = g ◦π−
∫
gdν ∈ Z as the Lagrange multiplier of this relativised

problem. Since

µ∗ ∈ argmax
µ∈M(X,T )

∫
(φ+ χ)dµ+ h(µ) ⇐⇒ µ∗ ∈ argmax

µ∈MZ(X,T )

∫
φdµ+ h(µ)

LHS problem has unique solution, so does the RHS.

Remark 5.4. Suppose that there is a factor map π : ΣA → Y , (ΣA, σ) is a topological

mixing SFT and φ ∈ C(ΣA). For any Z ⊂ C(ΣA), if problem (II)

sup
µ∈MZ(ΣA,σ)

∫
φdµ+ h(µ)
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has unique optimal plan, then for Lagrangian multiplier χ, µφ+χ is a Gibbs measure.



CHAPTER 6: OPTIMIZATION AS ZERO TEMPERATURE

Suppose that settings are as Section 2.1, recall that the pressure function P (T, f)

is defined as

P (f) = sup
µ∈M(X,T )

(∫
φdµ+ h(µ)

)
If φ is replaced by tφ for t ∈ R, then the entropy term loses relative importance

as t → ∞ (the thermodynamic interpretation of the parameter t is as an inverse

temperature, so that letting t → ∞ is referred to as a zero temperature limit). The

following result is generalized from[22]:

Theorem 6.1 (Optimization as zero temperature). If X compact metrizable, T :

X → X continuous, φ ∈ C(X), htop(T ) <∞ and the entropy map µ 7→ h(µ) is u.s.c.

For t ∈ R, if µt is an equilibrium state for tφ in problem (II), then (µt) has at least

one accumulation point µ∗ ∈MZ(X,T ) as t→∞, and:

(i) µ∗ ∈ argmax
µ∈MZ(X,T )

∫
φdµ,

(ii) h(µ∗) = max{h(m) : m ∈M(X,T ;φ))},

(iii) lim
t→∞

h(µt) = h(µ∗).

Proof. The existence of µt for every t is established by Theorem 3.6(ii). By the com-

pactness ofMZ(X,T ), for each sequence (µt) ⊂MZ(X,T ) there exists a convergence

subsequence (µtk)→ µ∗ ∈MZ(X,T ).

(i) As for each tk, µtk maximizes
∫
tkφdµ + h(µ) = tk

∫
φdµ + 1

tk
h(µ), when k is

large enough, 1
tk
h(µ) < ε (as htop(T ) <∞), and we denote µmax as the optimizer



64

of problem (I). Then

∫
φdµtk ≤

∫
φdµmax <

∫
φdµmax+

1

tk
h(µtk) ≤

∫
φdµtk+

1

tk
h(µtk) <

∫
φdµtk+ε

with k →∞, ε→ 0, and we have

∫
φdµ∗ =

∫
φdµmax

(ii) As for any φ ∈ C(X) and t ∈ R, there exists an optimizer µt for
∫
tφdµ+ h(µ).

So for different t we get a sequence of optimizer (µt), and for each k and any

optimal plan µmax for problem (II), i.e. for any µmax ∈M(X,T ;φ):

∫
tφdµmax + h(µmax) ≤

∫
tφdµt + h(µt)

µmax maximizes
∫
φdµ overMZ(X,T ) so

∫
tφdµmax ≥

∫
tφdµt, and we can get

the desired result since the entropy map is upper semi-continuous:

h(µ) ≤ h(µt) =⇒ h(µ) ≤ lim sup
t→∞

h(µt) ≤ h(µ∗)

(iii) We just need to show h(µ∗) ≤ lim inft→∞ h(µt): Since µt maximizes
∫
tφdµ +

h(µ) for µ ∈MZ(X,T ), then

∫
tφdµ∗ + h(µ∗) ≤

∫
tφdµt + h(µt)

from (i) we know µ∗ maximizes
∫
φdµ, then

∫
tφdµ∗ ≥

∫
tφdµt, so

h(µ∗) ≤ h(µt) =⇒ h(µ∗) ≤ lim inf
t→∞

h(µt)
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Therefore, for any sequence of optimizers (µt) w.r.t different values t:

lim sup
t→∞

h(µt) ≤ h(µ∗) ≤ lim inf
t→∞

h(µt) =⇒ lim
t→∞

h(µt) = h(µ∗)

6.1 An application: optimal Markov joining may not be Markovian

Markov measure is an important collection of measures defined on shift spaces.

Here its definition is provided below:

Definition 6.1 (Markov Measure). Let H = {0, 1, · · · , k − 1} (k ≥ 2 is an fixed

integer) be an alphabet and (Σ, σ) be a shift space where Σ = HN and the shift trans-

formation σ : Σ→ Σ is given by σ(x)i = xi+1 for any sequence x := {xi}∞i=0 ∈ Σ. Let

B(Σ) be the σ-algebra generated by the semi-algebra of cylinder sets (i.e., [an−1
0 ] :=

{x ∈ Σ : xi = ai for 0 ≤ i ≤ n − 1}). Given a probability vector p := (p0, · · · , pk−1)

with non-zero entries (pi > 0 for each i and
∑k−1

i=0 pi = 1) and a k × k stochastic

matrix (also named ‘transition matrix’) P = (pij)i,j∈H (pij ≥ 0,
∑k−1

i=0 pij = 1) such

that pP = p. A probability measure µ defined on (Σ,B(Σ)) is called (p, P ) Markov

measure if

(i) µ([i]) = pi for 0 ≤ i ≤ k − 1.

(ii) For any cylinder set [an0 ] ∈ B(Σ),

µ([an0 ]) = pa0pa0a1pa1a2 · · · pan−1an

By Walters[5], every Markov measure is ergodic and stationary. In the following

we will consider Markov joinings. Given two Markov measures µ and ν, where µ is

(p, P ) Markov measure, defined on the full-2 shift space ({A,B}N, σ) and ν is (q, Q)
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Markov measure, defined on the full-2 shift space ({C,D}N, σ). And

P =

1− α α

α 1− α

 , Q =

 α 1− α

1− α α

 , p = q = [1/2, 1/2]

for 0 < α < 1. Ellis[53] proved that the d̄-metric between two Markov processes may

not be attained by a Markov joining. d̄-metric, or d̄-distance, is a metric between two

discrete time processes with finite or countable states, measures how different the two

processes are. When µ and ν are stationary, we have the following useful result.

Proposition 6.2. If µ and ν are stationary, then

d̄(µ, ν) = inf
λ∈J(µ,ν)

∫
cdλ

where c(x, y) = 1(x0 6= y0) =


1, if x0 6= y0

0, if x0 = y0

Please refer to Shields[54] for detailed proof. LetMJ (µ, ν) be the set of Markov

joinings of µ and ν, next result is proved by Ellis[53].

Proposition 6.3. Suppose that µ and ν are Markov measures as given above, for

0 < α < 1/2

d̄(µ, ν) =
1

2
(1− 2α), M(µ, ν) = inf

λ∈MJ (µ,ν)

∫
cdλ =

1− 2α

2− 2α

where M(µ, ν) is called ‘Markov distance’ of µ and ν.

The next theorem shows that in our framework of problem (II), if the linear opti-

mization problem is over joinings of ergodic Markov measures, the optimal plan may

not be Markovian.
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Theorem 6.4. Let µ and ν be Markov measures as given above. For φ = −c, if ε is

fixed and small enough, then

sup
λ∈J(µ,ν)

∫
φdλ+ εh(λ) > sup

λ∈MJ (µ,ν)

∫
φdλ+ εh(λ)

To prove Theorem 6.4 we need the following properties ofMJ (µ, ν):

Lemma 6.5. For Markov measures µ and ν defined on (Σµ, σ) and (Σν , σ), respec-

tively,MJ (µ, ν) is a non-empty and compact subset inM(Σµ × Σν).

Proof. It is obvious thatMJ (µ, ν) is non-empty because µ⊗ ν is a Markov joining

of µ and ν. Now we talk about the compactness, we just need to show that for a

sequence of Markov joinings {λn}n ∈MJ (µ, ν) and λn → λ, we have λ ∈MJ (µ, ν).

Firstly, λ is a joining of µ and ν by Theorem 3.2(i), so we just need to show that

λ satisfies Markov property. Assume that Aµ = {a0, a1, · · · , ak−1}, Σµ = AN
µ and

Aν = {b0, b1, · · · , bl−1}, Σν = AN
ν . Denote by T = σ × σ, λ is a Markov measure

on product space (Σµ × Σν , σ × σ) if and only if for every integer m > 0 and for

every sequence E1, · · · , Em where Ei ∈ Aµ × Aν , if I = TE1 ∩ T 2E2 ∩ · · · ∩ TmEm,

c, d ∈ Σµ × Σν , F = I ∩ c

λ(TI ∩ d|I) = λ(Tc ∩ d|c)

Since each λn satisfies the Markov property above and λn → λ, so λ is a Markov

measure. Thus we proved the closedness and compactness ofMJ (µ, ν).

Now we are ready to prove Theorem 6.4:

Proof of Theorem 6.4. Assume that for each fixed ε, the optimizer of

sup
λ∈J(µ,ν)

∫
φdλ+ εh(λ)
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is denoted as λJε , correspondingly, the optimizer of

sup
λ∈MJ (µ,ν)

∫
φdλ+ εh(λ)

is denoted as λMJ
ε . Since an upper semi continuous real-valued function of a compact

space attains its supremum, for each εn, optimizers λJε and λMJ
ε always exist.

We pick a sequence of numbers {εn}n with εn → 0. For each n and thus εn

there exist λJεn and λMJ
εn . In the following, using λJn and λMJ

n to denote λJεn and λMJ
εn

respectively. By compactness, in sequence {λJn}n there exists a subsequence {nk}k

s.t λJnk → λJ , and in subsequence {λMJ
nk
}k there exists a subsubsequence {nkl}l s.t

{λMJ
nkl
}l → λMJ . Note that {λJnkl}l → λJ as well. By Theorem 6.1(i),

λJ ∈ argmax
λ∈J (µ,ν)

∫
φdλ, λMJ ∈ argmax

λ∈MJ (µ,ν)

∫
φdλ

By convergence result above, for any δ < α
8(1−α)

, there exists lδ s.t when l > lδ, we

have ∣∣∣∣∫ φdλJεnkl
−
∫
φdλJ

∣∣∣∣ < δ and
∣∣∣∣∫ φdλMJ

εnkl
−
∫
φdλMJ

∣∣∣∣ < δ

In addition, as the topological entropy htop(σ × σ) is bounded, there exists lh > 0

s.t. when l > lh, we have

εnkl <
α

4(1− α)htop(σ × σ)
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Now let lm = max{lδ, lh}, then for l > lm:

[∫
φdλJεnkl

+ εnklh(λJεnkl
)

]
−
[∫

φdλMJ
εnkl

+ εnklh(λMJ
εnkl

)

]
>

[∫
φdλJ − δ + εnklh(λJεnkl

)

]
−
[∫

φdλMJ + δ + εnklh(λJεnkl
)

]
=− 1

2
(1− 2α)−

(
−1− 2α

2− 2α

)
− 2δ + εnkl [h(λJεnkl

)− h(λMJ
εnkl

)]

>
α

2− 2α
− 2δ − εnklhtop(σ × σ)

>
α

2− 2α
− α

4(1− α)
− α

4(1− α)
= 0

Therefore, if we select l∗ > lm defined above, the problem sup
λ∈J(µ,ν)

∫
φdλ+ εnkl∗h(λ)

achieves greater maximal value than the problem sup
λ∈MJ (µ,ν)

∫
φdλ + εnkl∗h(λ). So if

φ = −c/εnkl∗
, the optimal plan of problem (II) is not Markovian.



CHAPTER 7: REALIZATION PROBLEM

LetMZ(X,T ) denote the set of T -invariant Borel probability measures on a com-

pact metrizable space X and
∫
hdµ = 0 ∀h ∈ Z for any µ ∈MZ(X,T ). The following

realization result, generalizes Jenkinson[22], shows that if E is a non-empty collection

of ergodic measures which is weak* closed as a subset ofMZ(X,T ), then there is a

continuous function φ such that set of optimal plans in problem (I) is the closed con-

vex hull of E . That is, if co(E) denotes the closed convex hull of E , then ∃φ ∈ C(X) s.t.

M(X,T ;φ) = co(E). Such realization result is also established when applied to prob-

lem (II): let E be a weak* closed set of ergodic measures inMZ(X,T ), if the entropy

map µ 7→ h(µ) is continuous on co(E), there exists φ ∈ C(X) s.t. R(X,T ;φ) = co(E).

7.1 Settings

As the basic settings in section 1.2.1, C(X) is the space of continuous real-valued

functions onX (where (X,T ) is a compact, metrizable dynamical system). By Royden

and Fitzpatrick[55], C(X) is a real Banach space when equipped with the supremum

norm ‖ · ‖max. Consider the topological dual of C(X), denoted by C(X)∗, which

is the vector space of continuous linear functionals on C(X). The famous Riesz

representation theorem (see Walters[5] Thm. 6.3) tells us that for each element of

J ∈ C(X)∗, there is a signed Borel measures µ on X s.t.

J(φ) = 〈φ, µ〉 =

∫
φdµ (7.1)

Furthermore, if J is a normalized positive operator (i.e., if φ ≥ 0 then J(φ) ≥ 0 and

J(1) = 1). Then there is a Borel probability measure µ on X with (7.1) satisfied.

Let (C(X)∗, w∗) denote the dual space C(X)∗ equipped with the weak* topology.
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By definition (see Royden and Fitzpatrick[55]), this is the weakest topology s.t. for

every φ ∈ C(X), the linear functional J on C(X)∗ given by µ 7→ 〈φ, µ〉 =
∫
φdµ is

continuous. By Schaefer[56], weak* topology is locally convex, being generated by the

family of semi-norms {pφ : φ ∈ C(X)}, where pφ(λ) = |〈φ, λ〉|. Since X is compact

and metrizable, C(X) is separable[55]. Therefore, from [57] Thm. 10.7 the closed

unit ball B = {J ∈ C(X)∗ : ‖J‖ ≤ 1} in the dual space is metrizable w.r.t the weak*

topology.

By the related results from [57] and [58], the dual space C(X)∗ is also a Riesz space:

it is an ordered vector space w.r.t the (convex pointed) cone C of all positive Borel

measures on X, and it is a lattice with the operations ∨ and ∧ given by

(µ ∨ ν)(C) = sup
D∈A⊗B,D⊂C

{µ(D) + ν(C\D)} (7.2)

(µ ∧ ν)(C) = inf
D∈A⊗B,D⊂C

{µ(D) + ν(C\D)} (7.3)

Let ET,Z denote the set of Z-restricted signed T -invariant measures. That is,

µ ∈ ET,Z ⇐⇒ µ ◦ T−1 = µ and µ(h) = 0 ∀h ∈ Z

It is obvious that ET,Z is a vector space. Let BT,Z(X) denote the closure in C(X)

of the vector subspace generated by the set {f − f ◦ T + h : f ∈ C(X), h ∈ Z}.

It is easily shown that a measure µ ∈ E is a member of ET,Z iff
∫
gdµ = 0 for all

g ∈ BT,Z(X). Since E is the topological dual of C(X), we deduce that

ET,Z = (C(X)/BT,Z(X))∗

that is, ET,Z is the topological dual of the quotient Banach space C(X)/BT,Z(X).

[Obviously, ET,Z ⊆ (C(X)/BT,Z(X))∗. Since µ ∈ (C(X)/BT,Z(X))∗ implies that

∀g = f − f ◦ T + h ∈ BT,Z(X),
∫
gdµ = 0, so (C(X)/BT,Z(X))∗ ⊆ ET,Z .]
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7.2 Necessary lemmas

To prove the realization result, in this section we will introduce four necessary

lemmas and their proofs:

Lemma 7.1.

BT,Z(X) = {h ∈ C(X) : 〈h, µ〉 = 0 for all µ ∈ ET,Z}

Proof. Since ET,Z is the topological dual of C(X)/BT,Z(X), it follows that the topo-

logical dual of (ET,Z , w
∗) = ((C(X)/BT,Z(X))∗, w∗) is precisely C(X)/BT,Z(X) (by

[57] Thm. 3.16).

But there is another expression for the topological dual of (ET,Z , w
∗), namely

(ET,Z , w
∗)∗ = C(X)/Ann(ET,Z) (7.4)

where Ann(ET,Z) = {h ∈ C(X) : 〈h, µ〉 = 0 for all µ ∈ ET,Z} denotes the annihilator

of ET,Z . To verify equation (7.4), first note that by Hahn-Banach, any continuous

linear functional on (ET,Z , w
∗) is the restriction of a continuous linear functional

on (C(X)∗, w∗). Such a functional can therefore be identified with an element of

C(X), which is a topological dual of (C(X)∗, w∗) by [57] Thm. 3.16 and the Riesz

representation theorem. But two elements of C(X) yield the same functional on

ET,Z iff their difference lies in Ann(ET,Z), so (7.4) follows. Comparison of the two

expressions for (ET,Z , w
∗)∗ yields the result.

The duality of the pair (C(X)/BT,Z(X), ET,Z) will be denoted by

(θ, µ) 7→ 〈θ, µ〉

which is consistent with the duality of (C(X), E) in the sense that 〈φ, µ〉 = 〈θ, µ〉 for
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φ ∈ θ ∈ C(X)/BT,Z(X) and λ ∈ ET,Z .

By our settings, M(X,T ) is the set of T -invariant Borel probability measures.

ClearlyM(X,T ) is convex.

Definition 7.1 (Extreme points). Suppose that K is a convex subset of a vector space

V , a point x ∈ K is called an extreme point of K if whenever x = αx1 + (1 − α)x2

for some x1, x2 ∈ K and 0 < α < 1, then x = x1 = x2.

If K is contained in a hyperplane that does not contain the origin, it is called a

simplex if the cone P = {ck : c ≥ 0, k ∈ K} defines a lattice ordering on P − P ⊆ V .

Recall thatMZ(X,T ) ⊂M(X,T ) is the set of invariant Borel probability measures

that is equal to 0 on Z.

The following lemma details some classical facts aboutMZ(X,T ).

Lemma 7.2. IfMZ(X,T ) is nonempty and satisfies property (E):

(i) (MZ(X,T ), w∗) is compact and metrizable.

(ii) MZ(X,T ) is a simplex.

(iii) The set of extreme points ofMZ(X,T ) is preciselyMe
Z(X,T ), i.e., set of ergodic

Z-restricted T -invariant Borel probability measures.

Proof.

(i) This fact is by [7].

(ii) SinceMZ(X,T ) lies in a hyperplane in E which does not contain the origin, it

suffices to show that ET,Z = CT,Z−CT,Z is a sub-lattice of E. (In fact, ET,Z is a

Riesz space of E.) To verify that ET,Z is a lattice with respect to the operations

∨ and ∧ defined by (7.2) and (7.3), it suffices to show that if µ ∈ ET,Z , then

µ+ = µ∨ 0 ∈ ET,Z . For any A ∈ B, µ(A) = µ(T−1A) = µ+(T−1A)− µ−(T−1A).

By Rudin[59], µ+(T−1A) ≥ µ+(A). But Ac ∈ B as well, so µ+((T−1A)c) =

µ+(T−1Ac) ≥ µ+(Ac), therefore µ+(T−1A) = λ+(A).
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(iii) Obviously sinceMZ(X,T ) satisfies property (E).

In the following we will introduce some geometry definitions of vector spaces:

Definition 7.2 (Convex hull). Suppose that G is a non-empty subset of a convex set

K, its convex hull co(G) is the smallest convex set containing G. Its closed convex

hull co(G) is the smallest closed convex set containing G, and it equals the closure of

co(G).

Definition 7.3 (Face). A non-empty convex subset F of K is called a face of K if

whenever αx1 + (1− α)x2 ∈ F for some x1, x2 ∈ K and α ∈ (0, 1), then x1, x2 ∈ F .

Remark 7.1. In the following sections we will focus on closed faces. the simplest

closed faces are singletons {k}, where k ∈ K is an extreme point.

The following lemma summarises certain classical properties of the closed faces of

MZ(X,T ), which follow from the fact that it is a simplex and thatMe
Z(X,T ) is its

set of extreme points.

Lemma 7.3. IfMZ(X,T ) is nonempty and satisfies property (E):

(i) Every closed face F of MZ(X,T ) is of the form co(E) for some non-empty

subset E ofMe
Z(X,T ).

(ii) If E is a non-empty subset of Me
Z(X,T ) which is closed in MZ(X,T ), then

co(E) is a face ofMZ(X,T ).

(iii) IfMe
Z(X,T ) is closed inMZ(X,T ), and E is any non-empty subset ofMZ(X,T ),

then co(E) is a face ofMZ(X,T ).

Proof. (i) If F ⊂MZ(X,T ) is a closed face, then by Krein-Milman theorem, let E

be the set of extreme points of F , we have F = co(E). By [60] Prop. 2: If F
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is a face of K, any point x extreme in F is also extreme in K, any point in E

is also extreme inMZ(X,T ). And then by property (E), the extreme point in

MZ(X,T ) is also ergodic. Therefore E must be a subset ofMe
Z(X,T ).

(ii) By Effros[61] Thm 3.3 and Cor. 3.5 we can prove the desired result.

(iii) This result is by Alfsen[60] Prop. 4: Every closed face F ofK can be represented

in the form F = co(E) where E is the subset of extreme points of K. If K is a

simplex and its set of extreme points is closed, then every set F of the form is

a closed face.

Definition 7.4 (Affine functional). Suppose that K is a convex subset of a topological

vector space. A functional ` : K → R is affine if it satisfies the following

`(αx1 + (1− α)x2) = α`(x1) + (1− α)`(x2)

for all x1, x2 ∈ K and α ∈ [0, 1].

In the following we will introduce a property related to functions that are continuous

and affine.

Definition 7.5 (Exposed face[62]). Suppose that K is a convex subset of a topological

vector space. A face F of K is called exposed if there exists a continuous affine

functional ` : K → R such that `(x) = 0 for all x ∈ F and `(x) > 0 for all x ∈ K\F .

In particular, if a point k ∈ K satisfies {k} as an exposed face (which means that k

must be an extreme point), then k is an exposed point.

Remark 7.2. Note that the continuity of ` means that any exposed face is necessarily

closed.

A result which is necessary in proving the main theorems of this chapter is that if

K is a compact metrizable simplex, then all of its closed faces are exposed:
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Lemma 7.4. Let F be a closed face of MZ(X,T ). There exists an affine function

` :MZ(X,T ) → R, continuous in weak* topology, such that `(µ) = 0 for all µ ∈ F ,

and `(ν) > 0 for all ν ∈MZ(X,T )\F .

Such result was firstly proved by Davies[63], for a detailed proof please refer to

Alfsen[62].

7.3 Realization theorems and proofs

Define `τ,f (µ) :=
∫
fdµ+ τ · h(µ) and Lτ (f) := supµ∈MZ(X,T ) `τ,f (µ) for τ ∈ {0, 1}.

Denote byM(X,T ;φ) ⊂MZ(X,T ) andR(X,T ;φ) ⊂MZ(X,T ) the set of measures

maximize `τ,φ(µ) over MZ(X,T ) for τ = 0 and τ = 1 respectively (that is, µ′ ∈

M(X,T ;φ) ⇐⇒ `0,φ(µ′) = L0(φ) and µ′ ∈ R(X,T ;φ) ⇐⇒ `1,φ(µ′) = L1(φ)).

The following four theorems are main results of this chapter:

Theorem 7.5. Let µ be any ergodic measure onMZ(X,T ).

(i) There exists a continuous function φ : X → R such thatM(X,T ;φ) = {µ}.

(ii) There exists a continuous function ψ : X → R such that R(X,T ;ψ) = {µ}.

Theorem 7.6. Let E be a non-empty subset of Me
Z(X,T ) which is weak* closed in

MZ(X,T ). Let co(E) denote its closed convex hull in MZ(X,T ). There exists a

continuous function φ : X → R such that M(X,T ;φ) = co(E). Furthermore, if

h|co(E) is continuous, then there exists a continuous function ψ : X → R such that

R(X,T ;ψ) = co(E).

IfMe
Z(X,T ) happens to be a weak* closed subset ofMZ(X,T ) (which in general

it is not), then the conclusion of Theorem 7.6 applies if E is any non-empty subset of

Me
Z(X,T ).

Theorem 7.7. Suppose that Me
Z(X,T ) is a weak* closed subset of MZ(X,T ). For

every non-empty subset E ⊂Me
Z(X,T ), there exists a continuous function φ : X → R
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such thatM(X,T ;φ) = co(E). Furthermore, if h|co(E) is continuous, then there exists

a continuous function ψ : X → R such that R(X,T ;ψ) = co(E).

We have the following characterization of those subsets ofMZ(X,T ) which are of

the formM(X,T ;φ) and R(X,T ;φ) for some φ ∈ C(X).

Theorem 7.8.

(i) The set {M(X,T ;φ) : φ ∈ C(X)} is precisely the set of closed faces ofMZ(X,T ).

(ii) The set {R(X,T ;φ) : φ ∈ C(X)} is precisely the set of closed faces ofMZ(X,T )

on which the entropy map µ 7→ h(µ) is continuous.

The following proposition is important in proving theorems above:

Proposition 7.9. Suppose ` :MZ(X,T )→ R is weak* continuous and affine. there

exists φ ∈ C(X) such that

`(µ) = 〈φ, µ〉 =

∫
φdµ for all µ ∈MZ(X,T )

(Which means an element of C∗∗(X) can be identified with an element of C(X).)

Proof of Theorems. First, we prove Theorem 7.8. By lemma 7.4, a subset F of

MZ(X,T ) is a closed face of MZ(X,T ) if and only if there exists a weak* con-

tinuous affine functional ` : MZ(X,T ) → R such that `(µ) = 0 when µ ∈ F , and

`(ν) > 0 when ν ∈ MZ(X,T )\F . By proposition 7.9, we may write `(µ) =
∫
φdµ

for some φ ∈ C(X), so F is a closed face of MZ(X,T ) if and only if there exists

a continuous function ψ(= −φ) such that
∫
ψdµ = 0 for all µ ∈ F and

∫
ψdν < 0

for all ν ∈ MZ(X,T )\F . That is, F is a closed face of MZ(X,T ) if and only if

F =M(X,T ;ψ) for some ψ ∈ C(X), so Theorem 7.8 is proved.

If E is a non-empty subset ofMe
Z(X,T ), then co(E) is a closed face ofMZ(X,T )

provided either E is closed inMZ(X,T ) (by Lemma 7.3 (ii)) orMe
Z(X,T ) is closed in
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MZ(X,T ) (by Lemma 7.3 (iii)). In either case, Theorem 7.8 implies the existence of

some ψ ∈ C(X) for whichM(X,T ;ψ) = co(E), so Theorems 7.6 and 7.7 are proved.

Theorem 7.5 follows immediately from Theorem 7.6, since the singleton {µ} (µ is

ergodic) is a non-empty subset ofMe
Z(X,T ) and is closed inMZ(X,T ).

It remains to prove Proposition 7.9. We can follow the proof of Proposition 1 in

Jenkinson[14] with some replacements to finish Proposition 7.9’s proof. For complete-

ness the sketch of the proof is shown as below.

Proof of Proposition 7.9.

By lemma 7.1, it suffices to find θ = g + BT,Z(X) ∈ C(X)/BT,Z(X) such that

`(µ) = 〈θ, µ〉 for all µ ∈MZ(X,T ).

Define CT,Z the cone of Z-restricted positive invariant measures as

CT,Z := {cµ : c ≥ 0, µ ∈MZ(X,T )}

and then we can take the following steps to prove this proposition:

(i) Define `1 : CT,Z → R+ by setting `1(0) = 0 and `1(m) = c`1(µ). `1 is additive

and weak* continuous.

(ii) Extend `1 to a functional `2 : ET,Z → R defined by

`2(µ) = `1(µ+)− `1(µ−)

`2 is well-defined, linear and weak* continuous

(iii) Since the topological dual of (ET,Z , w
∗) = ((C(X)/BT,Z(X))∗, w∗)∗ is C(X)/BT,Z(X).

Therefore there exists a unique θ ∈ C(X)/BT,Z(X) s.t. `2(µ) = 〈θ, µ〉 for all

µ ∈ ET,Z . Since `2 is an extension of ` :MZ(X,T ) → R, so the proposition is

proved.
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The last necessary result is a special case of Isreal and Phelps[64] Proposition 3.9:

Proposition 7.10 ([64] Prop. 3.9). The basic settings are as section 1.2.1 and sup-

pose that Z ⊂ C(X) closed s.t. MZ(X,T ) satisfies property (E). If F ⊆ MZ(X,T )

is a nonempty closed face ofMZ(X,T ) and entropy map µ 7→ h(µ) is continuous on

F then there exists weak* continuous and affine functional ` ∈MZ(X,T )∗ such that

µ′ ∈ F ⇐⇒ µ′ ∈ argmax
µ∈MZ(X,T )

`(µ) + h(µ)

Now we are ready to prove Theorem 7.5 - 7.8:

Proof of Theorem 7.5 - 7.8. Firstly we are going to prove Theorem 7.8: For state-

ment (i), for any closed face F of MZ(X,T ), by Lemma 7.4, it is exposed so there

exists a affine and weak* continuous functional ` s.t. `|F ≡ 0 and `|MZ(X,T )\F > 0.

Furthermore, from Proposition 7.9 we can find a φ ∈ C(X) s.t. `(µ) =
∫
φdµ. There-

fore, for −φ ∈ C(X), we have

∫
(−φ)dµ = 0, ∀µ ∈ F and

∫
(−φ)dµ < 0, ∀µ ∈MZ(X,T )\F

Thus, F = M(X,T ;−φ). As for each φ ∈ C(X), M(X,T ;φ) is a closed face

(nonempty, closed, and for any αµ1 + (1 − α)µ2 ∈ M(X,T ;φ) (α ∈ (0, 1)), µ1, µ2 ∈

M(X,T ;φ)). So we have proved (i). The proof of statement (ii) is directly followed

by the combination of Proposition 7.9 and Proposition 7.10.

In Theorem 7.6, E ⊆ Me
Z(X,T ) and weak* closed inM(X,T ), by Lemma 7.3(ii),

co(E) is a closed face of MZ(X,T ). Similarly, in Theorem 7.7, E ⊆ Me
Z(X,T ) and

Me
Z(X,T ) is weak* closed inM(X,T ), by Lemma 7.3(iii), co(E) is a closed face of

MZ(X,T ). Therefore Theorem 7.6 and Theorem 7.7 are followed by Theorem 7.8.
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Theorem 7.5 is a special case for Theorem 7.6 (the singleton E = {µ} is a closed face),

so it is satisfied.



CHAPTER 8: DUALITY PROBLEMS

In this project, our problems (I) and (II) are linear optimization problems, so it is

very natural to explore their duality problems. This chapter consists of two sections;

in the first section we studied the duality of problem (I) - Kantorovich duality, its

name origins from the duality problem of optimal transport[16]; in the second section

we explored the duality of problem (II), which is called Fenchel duality.

8.1 For problem (I) - Kantorovich duality

Given a dynamical system (X,T ) with X compact and metrizable and T : X → X

continuous. Let Z ⊂ C(X) be a linear subspace. ν is a bounded linear functional

defined on Z, 1 ∈ Z and ν(1) = 1, and denote

Mν(X,T ) := {µ ∈M(X,T ) : µ|Z = ν}

If there is another system (Y, S). Consider the product dynamical system (X ×

Y, T × S), let Z ⊂ C(X × Y ) be a linear subspace, ρ is a fixed probability measure

defined on Z, denote

Mρ(X × Y, T × S) := {λ ∈M(X × Y, T × S) : λ|Z = ρ}

The following result is the main theorem of this chapter:

Theorem 8.1. Let W = {g ◦ T − g : g ∈ C(X)}, define

ΠW (ν) = {µ ∈ P(X) :

∫
wdµ = 0,∀w ∈ W and µ|Z = ν}
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we can prove that ΠW (ν) =Mν(X,T ), and the following restricted Kantorovich-form

duality:

inf
µ∈ΠW (ν)

∫
cdµ = sup

f+w≤c
w∈W

ν(f)

where f ∈ Z.

To prove Theorem 8.1 we need the following Kantorovich duality:

Theorem 8.2. Let

Π(ν) = {µ ∈ P(X) : µ|Z = ν}

then the following duality is satisfied

inf
µ∈Π(ν)

∫
cdµ = sup

f≤c
ν(f)

where f ∈ Z.

Proof. As ν ∈ Z∗ is a bounded linear functional and it is positive and continuous

w.r.t ‖ · ‖max norm. Let

U(h) = inf
f∈Z
{ν(f) : f ≥ h}

be a functional from C(X) to R. It can be proved that U is subadditive: for h, g ∈

C(X),

U(h+ g) = inf
f∈Z
{ν(f) : f ≥ (g + h)}

≤ inf
f∈Z
{ν(f) : f ≥ g}+ inf

f∈Z
{ν(f) : f ≥ h}

= U(g) + U(h)
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U is positively homogeneous: for any α ∈ R+

U(αh) = inf
f∈Z
{ν(f) : f ≥ αh}

= inf
(f/α)∈Z

{αν(f/α) : f/α ≥ h}

= αU(h)

Additionally, for any t ∈ R, U(th) ≥ tU(h), we just need to show the inequality is

satisfied when t = −1. Since inf E = − sup(−E),

U(−h) = inf
f∈Z
{ν(f) : f ≥ −h} = inf

f∈Z
{ν(f) : −f ≤ h}

= inf
f∈Z
{ν(−f) : f ≤ h} = − sup

f∈Z
{ν(f) : f ≤ h}

≥ − inf
f∈Z
{ν(f) : f ≥ h} = −U(h)

the last inequality is because of

sup
f∈Z
{ν(f) : f ≤ h} ≤ inf

f∈Z
{ν(f) : f ≥ h}

which follows from the positivity of the functional ν.

Thus,the functional U : C(X) → R is positively homogeneous and subadditive,

Z ⊂ C(X) a linear subspace, the linear functional ν : Z → R is bounded by U on

Z. Then by Hahn-Banach theorem, ν may be extended to a linear functional P on

C(X) for which P ≤ U on C(X). P has the property of positivity:

Assume P is not positive, then there exists h ∈ C(X) s.t. h ≥ 0 and P (h) < 0,

however, the fact

0 < P (−h) ≤ U(−h) = inf
f∈Z
{ν(f) : f ≥ −h} ≤ 0

is contradictory. So P is positive.

Let us define a new linear operator νc : {f + tc : t ∈ R, f ∈ Z} → R such that
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νc|Z = ν and νc(−c) = U(−c). By linearity of νc and property of U we have

νc(tc) = (−t)U(−c) ≤ U(tc)

Thus νc is bounded by U on its domain, so by Hahn-Banach, we can extend νc to the

linear functional Pc : C(X)→ R such that

Pc|{f+tc:t∈R,f∈Z} = νc, Pc|Z = ν, Pc(−c) = U(−c), Pc ≤ U

By the construction fo linear extensions we have

sup
P
P (−c) ≤ U(−c) = inf

f∈Z
{ν(f) : f ≥ −c}

where supremum is taken over all possible linear extensions which extends ν and

bounded by U , and

Pc(c) = −Pc(−c) = −U(−c)

= − inf
f∈Z
{ν(f) : f ≥ −c} = sup

f∈Z
{ν(f) : f ≤ c}

which implies

− sup
P
P (−c) ≥ − inf

f∈Z
{ν(f) : f ≥ −c}

=⇒ inf
P
P (c) ≥ sup

f∈Z
{ν(f) : f ≤ c} = Pc(c)

Since Pc extends ν and dominated by U , we have

inf
P
P (c) = Pc(c) = sup

f∈Z
{ν(f) : f ≤ c}

As P a positive linear functional on C(X), by Riesz-Markov, there is a unique
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Radon measure µ̂ on B(X) s.t.

P (c) =

∫
X

cdµ̂ for all c ∈ C(X)

for any f ∈ Z, since P is an extension of ν,

P (f) = ν(f) =

∫
X

fdµ̂ =⇒ µ̂|Z = ν

as 1 ∈ Z, P (1) = ν(1) = 1, so µ̂ is a probability measure. Therefore,

P ' µ̂ ∈ Π(ν)

Thus P is a transport plan with marginal ν. The desired duality problem is satisfied.

The next statement is a general version of minmax theorem, it is necessary to prove

Theorem 8.1 and its proof can be found in [65]:

Theorem 8.3 ([65]). Let K be a compact convex subset of a Hausdorff topological

vector space, Y be a convex subset of an arbitrary vector space, and h be a real-valued

function (≤ +∞) on K × Y , which is lower semi-continuous in x for each fixed y,

convex on K, and concave on Y . Then

min
x∈K

sup
y∈Y

h(x, y) = sup
y∈Y

min
x∈K

h(x, y)

Now we are ready to prove Theorem 8.1:

Proof of Theorem 8.1. Firstly,

inf
µ∈ΠW (ν)

∫
cdµ ≥ sup

f+w≤c
w∈W,f∈Z

ν(f)
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is proved below:

inf
µ∈ΠW (ν)

∫
cdµ ≥ inf

µ∈ΠW (ν)
sup
f+w≤c

∫
(f + w)dµ

= inf
µ∈ΠW (ν)

sup
f+w≤c

ν(f) = sup
f+w≤c

ν(f)

And then prove the opposite direction:

sup
f+w≤c
w∈W,f∈Z

ν(f) = sup
w∈W

sup
f≤c−w
f∈Z

ν(f) = sup
w∈W

inf
µ∈Π(ν)

∫
(c− w)dµ

the last equation is by Theorem 8.2. The next step is to apply Theorem 8.3. Let

K = Π(ν), Y = W and h(µ,w) =
∫

(c−w)dµ be a real valued function on Π(ν)×W

satisfies:

• h is l.s.c. in µ ∈ Π(ν) for each fixed w ∈ W : for {µk} a sequence of measures

in Π(ν) and µk converges to µ in weak* topology,

lim
k→∞

h(µk, w) =

∫
(c− w)dµk =

∫
(c− w)dµ = h(µ,w)

• h is convex on Π(ν): for µ1, µ2 ∈ Π(ν), αµ1 + (1− α)µ2 ∈ Π(ν) and

h(αµ1 + (1− α)µ2, w) =

∫
(c− w)d(αµ1 + (1− α)µ2)

= α

∫
(c− w)dµ1 + (1− α)

∫
(c− w)dµ2

= αh(µ1, w) + (1− α)h(µ2, w)
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• h is concave on W : for w1, w2 ∈ W , any β ∈ (0, 1)

h(µ, βw1 + (1− β)w2) =

∫
(c− (βw1 + (1− β)w2))dµ

= β

∫
(c− w1)dµ+ (1− β)

∫
(c− w2)dµ

= βh(µ,w1) + (1− β)h(µ,w2)

Therefore, all assumptions in Theorem 8.3 are satisfied, we have

sup
w∈W

inf
µ∈Π(ν)

∫
(c− w)dµ = inf

µ∈Π(ν)
sup
w∈W

∫
(c− w)dµ

If µ /∈ ΠW (ν), there exists w1 ∈ W s.t.
∫
w1dµ < 0. We can choose w = αw1, when

α→∞, supw∈W
∫

(c− w)dµ→∞, thus

inf
µ∈Π(ν)

sup
w∈W

∫
(c− w)dµ = inf

µ∈ΠW (ν)

∫
cdµ

Example 8.1 (Relative equilibrium case). If π : X → Y is a factor map, we have

the following duality result:

inf
µ∈ΠW (ν)

∫
cdµ = sup

f◦π+w≤c
w∈W

∫
fdν

where

ΠW (ν) = {µ ∈ P(X) :

∫
wdµ = 0 ∀w ∈ W,µ ◦ π−1 = ν}

This example is derived directly from Theorem 8.1 by setting the restriction set

Z = {f ◦ π : f ∈ C(Y )}, µ(f ◦ π) = ν(f). It is equivalent to say, µ|Z = ν.

8.1.1 Geometry of Optimal Transport Plans

This subsection generalizes Zeav[66].
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Definition 8.1. For two measures µ1, µ2 on X define the equivalence relation ∼W :

α ∼W β iff

(i) µ1|Z = µ2|Z.

(ii)
∫
wdµ1 =

∫
wdµ2 ∀w ∈ W

We denote by [µ]W the equivalence class of µ w.r.t ∼W . Let Sm be a set of m points

in the space X, βs be a measure with the support Sm.

The following definitions and results of (c,W )-monotonicity are from Zaev[66]:

Definition 8.2 ((c,W )-monotonicity[66]). For a Borel measurable cost function c :

X → R and a linear subspace W ⊂ C(X) a set Γ ⊂ X is called (c,W )-monotone

iff for any m ∈ N, any Sm ⊂ Γ any measure βs, such that supp(βs) = Sm, and any

measure α ∼W βs: ∫
cdβs ≤

∫
cdα

Proposition 8.4 ([66]). If W = {0}, then the notion of (c,W )-monotonicity is

equivalent to the notion of usual c-monotonicity.

Definition 8.3. A transport plan µ ∈ ΠW (ν) is called (c,W )-monotone iff there is a

(c,W )-monotone set Γ of full µ-measure: µ(Γ) = 1.

Now we are ready to state and prove the geometry properties of optimal plans in

problem (I):

Theorem 8.5. Let X be Polish spaces, µ ∈ P(X), c ∈ C(X) is a cost function,

W ⊂ C(X) is a vector subspace, Z ⊂ C(X) is restriction set, µ∗ ∈ ΠW (ν) is the

minimizer of the primal Kantorovich problem with additional linear constraints:

inf
µ∈ΠW (ν)

∫
X

cdµ

then µ∗ is a (c,W )-monotone transport plan.
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Proof. By Theorem 8.1 ∫
X

cdµ∗ = sup
f+w≤c

f∈Z,w∈W

ν(f)

Let (fk, wk) be a maximizing sequence in the dual problem and let ck = c− fk − wk.

Since ∫
X

ckdµ∗ =

∫
X

cdµ∗ − ν(fk)→ 0

and ck ≥ 0 we can find a subsequence ckj and a Borel set Γ for which µ∗(Γ) = 1, such

that ckj → 0 on Γ. If S = {xi}mi=1 ⊂ Γ, µs is a measure with support S and γ ∈ [µs]W

we get ∫
cdγ ≥

∫
fkdγ +

∫
wdγ

since γ|Z = µs|Z , and
∫
wdµs =

∫
wdγ, we have

∫
cdγ ≥

∫
fkdµs +

∫
wdµs =

∫
(c− ck)dµs

for any k. Letting k →∞ the (c,W )-monotonicity of Γ follows.

However, if µ is (c,W )-monotone, we cannot have that µ is an optimal transport

plan.

8.2 For problem (II) - Fenchel duality

Let (X,T ) as above, Z ⊂ C(X) closed. φ ∈ C(X). MZ(X,T ) = {µ ∈ M(X,T ) :∫
hdµ = 0 ∀h ∈ Z}. Define

PZ(φ, T ) = sup
µ∈MZ(X,T )

(∫
φdµ+ h(µ)

)

and for any µ0 ∈MZ(X,T ), define

hZ(µ0) = inf
φ∈C(X)

(
PZ(φ, T )−

∫
φdµ0

)
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Theorem 8.6. Let T : X → X be a continuous map of a compact metrizable space

with the topological entropy htop(T ) < ∞ and Z ⊂ C(X) closed with MZ(X,T )

nonempty. Then for µ0 ∈ MZ(X,T ), if the entropy map of T is upper semi-

continuous at µ0, we have

hZ(µ0) := inf
φ∈C(X)

(
PZ(φ, T )−

∫
φdµ0

)
= h(µ0)

that is, hZ(µ0) coincides with the measure-theoretic entropy h(µ0).

We need the following fact the prove theorem 8.6:

Lemma 8.7 ([67]). If K1 and K2 are disjoint closed convex subsets of a locally convex

linear topological space V and if K1 is compact there exists a continuous real-valued

linear functional F on V such that

F (x) < F (y) ∀x ∈ K1, y ∈ K2

Proof of Theorem 8.6. As the entropy map is upper-semi continuous, by the definition

of PZ(φ, T ) we have

h(µ0) ≤ PZ(φ, T )−
∫
φdµ0, ∀φ ∈ C(X)

=⇒ h(µ0) ≤ inf
φ∈C(X)

(
PZ(φ, T )−

∫
φdµ0

)

So we just need to show h(µ0) ≥ inf
φ∈C(X)

(
PZ(φ, T )−

∫
φdµ0

)
. Let b > h(µ0) and

let C = {(µ, t) ∈ MZ(X,T ) × R : 0 ≤ t ≤ h(µ)}. C is a convex set because the

entropy map is affine. C is a subset of C∗(X) × R, where C∗(X) is equipped with

weak* topology, then (µ0, b) /∈ C by the upper-semi continuity of the entropy map

at µ0. In lemma 8.7, let V = C∗(X) × R, K1 = C, K2 = (µ0, b), then there is a

continuous linear functional F : C∗(X) × R → R such that F (µ, t) < F (µ0, b) for all

(µ, t) ∈ C. Since we are using the weak* topology on C∗(X) we know that F has the
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form F (µ, t) =
∫
ϕdµ+ αt for some ϕ ∈ C(X) and some α ∈ R. Therefore

∫
ϕdµ+ αt <

∫
ϕdµ0 + α · b ∀(µ, t) ∈ C

=⇒
∫
ϕdµ+ αh(µ) <

∫
ϕdµ0 + α · b ∀µ ∈MZ(X,T )

If we set µ = µ0, then αh(µ0) < α · b, which implies α > 0. So

h(µ) +

∫
ϕ

α
dµ <

∫
ϕ

α
dµ0 + b, ∀µ ∈MZ(X,T )

that is

PZ(ϕ/α, T ) ≤
∫
ϕ

α
dµ0 + b

and which implies

b ≥ PZ(ϕ/α, T )−
∫
ϕ

α
dµ0 ≥ inf

φ∈C(X)

{
PZ(φ, T )−

∫
φdµ0

}

As any b > h(µ0) satisfies the above inequality, we have

h(µ0) ≥ inf
φ∈C(X)

{
PZ(φ, T )−

∫
φdµ0

}



CHAPTER 9: DISCUSSION

Throughout this paper, we explored constrained linear optimization problems on

different topics. However, there are some unsolved problems during the research,

which will be listed below as open problems.

The first two problems are in the framework of problem (II):

Problem 9.1. Suppose that X and Y are irreducible shift of finite types with T :

X → X and S : Y → Y define on them respectively. Let ϕ, ψ be Hölder continuous

functions on X, Y respectively. Let µ ∈M(X) be the unique equilibrium states for ϕ

and ν ∈M(Y ) be the unique equilibrium states for ψ, and let

Z =

{
f ◦ πX −

∫
fdµ+ g ◦ πY −

∫
gdν : f ∈ C(X), g ∈ C(Y )

}

where πX : X × Y → X and πY : X × Y → Y are projection maps and also factor

maps. For φ ∈ C(X × Y ) Hölder continuous, does the optimization problem

sup
λ∈MZ(X×Y,T×S)

∫
φdλ+ h(λ)

has unique optimal plan?

The settings of Problem 8.1 are illuminated by Yoo[49], since under similar settings

with Z = {f ◦ πX −
∫
fdµ : f ∈ C(X)}, problem (II) is a relative equilibrium state

problem and by Theorem 5.16 (cited from[49]) there is a unique relative equilibrium

state. So, it is natural to think about the uniqueness problem with two constraints

in the same framework.

Remark 9.1. In fact, even when X, Y are 2-full shift, µ and ν are 1-step Markov
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measure determined by 2 × 2 transition matrices (for example, the transition matrix

for µ and ν are

 α 1− α

1− α α

 and

1− α α

α 1− α

 respectively with α ∈ (0, 1))

and thus the potentials ϕ and ψ are locally constant, the uniqueness result is hard to

get.

Problem 9.2. If in the settings of Problem 9.1 there is more than one optimal plan,

can you give an example or disproof the uniqueness guess?

The next open problem is related to the ‘generic’ uniqueness property in the frame-

work of problem (I). By Contreras[68], if T : X → X is expanding, there is a residual

subset of the set of Lipschitz functions Lip(X) such that the maximizing measures

are unique and supported on a single periodic orbit. For difference choices of Z, there

may be no measure supported on a single periodic orbit inMZ(X,T ). Our problem

is, is there a residual subset of Lip(X) such that the maximizing measure achieves the

minimum entropy, if the maximizing measure is not supported on a single periodic

orbit?

Problem 9.3. Define the set

U =

{
f ∈ Lip(X) :M(X,T ; f) = {µ∗} and h(µ∗) = inf

µ∈MZ(X,T )
h(µ)

}

Is U residual in Lip(X)?

Remark 9.2. A special case of Problem 9.3 is the relative case. Suppose (Y, S) is

another dynamical system, ν ∈M(Y ) is fixed and π : X → Y is the factor map. Let

Z =

{
f ◦ πX −

∫
fdµ : f ∈ C(X)

}

by the property of relative entropy, for µ ∈MZ(X,T ) = {µ ∈M(X,T ) : µ◦π−1 = ν},

h(µ) ≥ h(ν). So Problem 9.3 reduces to the following problem:
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Given the set

U = {f ∈ Lip(X) :M(X,T ; f) = {µ} and h(µ) = h(ν)}

is U residual in Lip(X)?
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