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ABSTRACT

ZIHUI WANG. Varying-Coefficient Stochastic Diffusion Processes with Deep
Learning. (Under the direction of DR. JIANCHENG JIANG)

Varying-coefficient stochastic diffusion processes provide a flexible way to capture

time-varying dynamics in time series. These models allow both the drift and dif-

fusion terms in the stochastic differential equation to evolve over time, reflecting

changing market conditions. In this dissertation, we explore different methodologies

for modeling time series: nonparametric estimation of varying-coefficient SDE, deep

learning for multivariate time series, and high-dimensional regression with LASSO.

For the univariate case, we estimate time-varying drift and diffusion functions using

local regression. We establish the asymptotic properties of the model estimators under

regularity conditions.

To extend the analysis to multivariate settings, we use a regression-based structure

to model relationships among interdependent financial variables and make prediction.

Deep learning neural networks are applied to capture nonlinear dependencies and

temporal dynamics across multiple series.

As the number of variables increases, the high dimensionality poses challenges for

estimation and interpretation. To address this, we incorporate LASSO regularization

for variable selection and dimensionality reduction. We investigate the selection con-

sistency of LASSO in high-dimensional time series regression when predictors may

include both stationary and nonstationary components.



iv

DEDICATION

To my parents, for their unwavering love and support.



v

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest gratitude to my advisor, Dr.

Jiancheng Jiang. Without his expert advice and constructive feedback, I would not

have been able to complete this dissertation. His passion for Statistics and dedication

to his students have been a constant source of inspiration for me.

I would also like to sincerely thank my committee members, Dr. Qingning Zhou,

Dr. Yinghao Pan, and Dr. Jake Smithwick, for their thoughtful feedback, insight-

ful suggestions, and their unwavering support. Their expertise and dedication have

helped shape the direction of this research, and I have greatly benefited from their

diverse perspectives.

Additionally, I am deeply grateful to Dr. Shaozhong Deng, Dr. Xingjie Li, Dr.

Wenyu Gao and Dr. Judith Krauss for their support in both my professional and

personal development.

Finally, I would like to acknowledge the financial support I received from UNC

Charlotte Graduate School and the Department of Mathematics and Statistics, which

allowed me to focus on my research.



vi

TABLE OF CONTENTS

LIST OF TABLES viii

LIST OF FIGURES ix

CHAPTER 1: Introduction 1

1.1. Motivation 1

1.2. Outline of the Dissertation 3

CHAPTER 2: Varying-Coefficient Stochastic Diffusion Model 4

2.1. Model Specification and Notation 4

2.2. Estimating the Functions α0(t) and α1(t) 5

2.3. Estimating the Functions β0(t) and β1(t) 6

2.4. Bandwidth Selection 7

2.4.1. Bandwidth Selection for Drift Coefficient Estimation 7

2.4.2. Bandwidth Selection for Volatility Coefficient
Estimation

8

CHAPTER 3: Simulations 9

CHAPTER 4: Asymptotic Properties 13

4.1. Notation and Preliminaries 13

4.2. Asymptotic Properties 16

4.2.1. Drift Coefficient Estimator α̂(t) 16

4.2.2. Volatility Coefficient Estimator θ̂(t) 16

CHAPTER 5: Modeling Dependencies Among Financial Time Series Us-
ing Deep Learning Regression Frameworks

18

5.1. Introduction and Motivation 18



vii

5.2. Data and Variable Structure 19

5.3. Deep Learning Models 20

5.3.1. Long Short-Term Memory (LSTM) 20

5.3.2. Gated Recurrent Unit (GRU) 23

5.3.3. Convolutional Neural Network (CNN) 26

5.3.4. CNN–LSTM Hybrid Model 28

5.4. Result Evaluation 31

CHAPTER 6: High-Dimensional Time Series Regression and Variable
Selection

33

6.1. Introduction and Motivation 33

6.2. Model Setup 34

6.3. Tuning Parameter Selection 35

6.4. Simulation 37

CHAPTER 7: Discussion 43

APPENDIX A: Regularity Conditions 49

APPENDIX B: Proof of Theorem in Section 4.2 51



viii

LIST OF TABLES

TABLE 5.1: Forecasting Performance on S&P500 Data 31

TABLE 5.2: Ranking of Models 32

TABLE 6.1: Simulation results for Example 6.1: Independent predictors
with mixed stationarity (N = 200). LASSO performance with λ
ranging from 0.06 to 0.17 and cross-validated λcv.

39

TABLE 6.2: Simulation results for Example 1: Independent predictors
with mixed stationarity (N = 400). LASSO performance with λ
ranging from 0.06 to 0.17 and cross-validated λcv.

39

TABLE 6.3: Simulation results for Example 6.2: Correlated predictors
with mixed stationarity (N = 200). LASSO performance under vary-
ing correlation levels ρ with λ fixed at 0.1.

41

TABLE 6.4: Simulation results for Example 6.2: Correlated predictors
with mixed stationarity (N = 400). LASSO performance under vary-
ing correlation levels ρ with λ fixed at 0.1.

41



ix

LIST OF FIGURES

FIGURE 3.1: Pointwise 95% envelope (black band), median (red), and
true value (blue) for the estimators of α0(t), α1(t), β0(t), and β1(t)
under the time-homogeneous model in Example 3.1.

10

FIGURE 3.2: Pointwise 95% envelope (black band), median (red), and
true function (blue) for the estimators of α0(t), α1(t), β0(t), and
β1(t) under the varying-coefficient model in Example 3.2.

12

FIGURE 5.1: Long Short-Term Memory (LSTM) network structure. 21

FIGURE 5.2: Gated Recurrent Unit (GRU) network structure 24

FIGURE 5.3: 1D-CNN structure. 26

FIGURE 5.4: CNN–LSTM structure 28

FIGURE 6.1: Rolling-origin cross-validation 36



CHAPTER 1: Introduction

1.1 Motivation

Understanding and forecasting the behavior of financial time series is a central con-

cern in financial econometrics. Early modeling approaches often relied on stochastic

differential equations (SDEs) with constant parameters. The geometric Brownian

motion model introduced by Black and Scholes [6] is a classic example:

dSt = µSt dt+ σSt dWt, (1.1)

where µ and σ are constant drift and volatility terms, and Wt denotes standard

Brownian motion. This model forms the foundation for much of modern option pricing

theory. However, it assumes that financial processes are stationary and homoskedas-

tic, which empirical data rarely supports.

Researchers have since developed models that relax these assumptions. Stanton

[33] proposed a nonparametric approach to estimate drift and diffusion functions

of interest rates using discrete-time data. His empirical findings showed significant

nonlinearities, especially in the drift of short-term rates, highlighting the limitations

of parametric specifications.

Fan and Zhang [13] extended this direction with a rigorous nonparametric frame-

work for estimating time-homogeneous diffusion processes:

dXt = µ(Xt) dt+ σ(Xt) dWt. (1.2)

Their method uses local regression to estimate the drift and diffusion functions

without assuming a parametric form. They also introduced diagnostic tools to test
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the adequacy of existing models. This work builds directly on the foundational con-

tributions of Fan and Gijbels [11], whose monograph on local polynomial modeling

established the theoretical underpinnings for kernel-based estimation in time series

and diffusion processes.

To accommodate structural breaks and time-varying features in financial data, Fan

et al. [14] introduced a semiparametric time-dependent diffusion model:

dXt = {α0(t) + α1(t)Xt} dt+ β0(t)X
β1(t)
t dWt, (1.3)

where all parameters are allowed to evolve smoothly over time.

While these approaches have improved our understanding of univariate financial

dynamics, they often fall short in multivariate settings. Financial markets are com-

posed of many interconnected time series whose interactions evolve over time. Mod-

eling these high-dimensional dependencies is challenging for traditional parametric or

even nonparametric models.

This has led to increasing interest in machine learning methods, particularly deep

learning. Long Short-Term Memory (LSTM) networks, introduced by Hochreiter

and Schmidhuber [21], and Gated Recurrent Units (GRUs), proposed by Cho et al.

[10], are specifically designed to capture long-range dependencies in sequential data

and have demonstrated strong performance in financial applications [15]. To further

enhance forecasting accuracy, hybrid architectures such as CNN-LSTM models have

also been developed and applied successfully in financial time series prediction [7, 25].

However, deep learning models can be difficult to interpret and may overfit the

data, especially in complex or high-dimensional settings. To address these issues,

regularization techniques like LASSO Tibshirani [36] have been used. LASSO per-

forms both variable selection and shrinkage, making it a valuable tool for analyzing

time series data. Recent theoretical developments have investigated its performance

in more complex environments, including scenarios involving both stationary and
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nonstationary predictors, with a focus on its consistency in variable selection.

This dissertation unifies these methods—nonparametric diffusion modeling, deep

neural networks, and regularized high-dimensional regression—into a framework for

flexible financial forecasting.

1.2 Outline of the Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 introduces

the methodological framework, including the formulation of the varying-coefficient

stochastic diffusion model and the estimation method for the drift and volatility

components. Chapter 3 presents the simulation results, evaluating the performance

of the proposed framework on both simulated and real-world financial datasets. In

Chapter 4, we investigate the asymptotic properties of model estimators. In Chapter

5, the deep learning modeling framework is introduced. In Chapter 6, we investigate

the LASSO variable selection consistency in high dimensional time series regression

model. Concluding remarks are presented in Chapter 7. Proofs of the main results

are given in the Appendix.



CHAPTER 2: Varying-Coefficient Stochastic Diffusion Model

In this chapter, we introduce the varying-coefficient stochastic diffusion model.

Starting by introducing the model and the necessary notation. Then focusing on the

estimation procedure of the time-varying drift and diffusion components of the model

inspired by Fan et al. [14].

2.1 Model Specification and Notation

Let {Xt, t ≥ 0} denote a continuous-time stochastic process observed at discrete

time points over a finite time interval. The process evolves according to the following

stochastic differential equation:

dXt = {α0(t) + α1(t)Xt} dt+ β0(t)X
β1(t)
t dWt, (2.1)

where Wt is a standard Brownian motion. The functions α0(t) and α1(t) define the

drift component, capturing the instantaneous expected change in the process, while

β0(t) and β1(t) control the diffusion component, representing the volatility structure

of the system. Unlike fixed-parameter models, all four coefficients are allowed to vary

smoothly with time, providing the model with the flexibility to capture temporal

changes in both the trend and volatility.

Several well-known models can be viewed as special cases of this general specifica-

tion. For instance, when α0(t), α1(t), and β0(t) are constant, and β1(t) = 1/2, the

model reduces to the CIR process. If β1(t) = 1 and other coefficients are constant,

we recover the GBM process used in the Black-Scholes model.

Assume that the process Xt is observed at discrete, equally spaced time points

{ti = i∆, i = 0, 1, . . . , n}, with ∆ representing the sampling interval.
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2.2 Estimating the Functions α0(t) and α1(t)

The drift coefficients α0(t) and α1(t) are estimated following the local regression

method Fan and Gijbels [11].

The process Xt follows the stochastic differential equation:

dXt = {α0(t) + α1(t)Xt} dt+ β0(t)X
β1(t)
t dWt, (2.2)

where α0(t) and α1(t) are smooth, time-varying drift terms, β0(t) and β1(t) govern

the volatility structure, and Wt is standard Brownian motion.

In practical settings, Xt is not observed continuously but at a set of discrete time

points t1 < t2 < · · · < tn+1. Define ∆i = ti+1 − ti and the observed increments:

Yti := Xti+1
−Xti , i = 1, . . . , n.

Applying a first-order Euler approximation, the continuous-time model can be dis-

cretized as:

Yti ≈ {α0(ti) + α1(ti)Xti}∆i + β0(ti)X
β1(ti)
ti

√
∆i εti , (2.3)

where εti ∼ N (0, 1) are independent standard normal variables. This approximation

allows the drift function to be estimated from discrete data.

Assuming the drift functions are locally constant, they can then be approximated

around a target time t0 as:

α0(t) ≈ α0(t0), α1(t) ≈ α1(t0), for t ∈ [t0 − h, t0],

where h > 0 is a bandwidth parameter defining the local neighborhood.

The drift coefficients are estimated by solving the following kernel-weighted least



6

squares problem:

min
a,b

n∑
i=1

(
Yti
∆i

− a− bXti

)2

Kh(ti − t0), (2.4)

where Kh(u) = 1
h
K
(
u
h

)
is a kernel function scaled by the bandwidth h. The mini-

mizers â(t0) and b̂(t0) yield the drift estimates:

α̂0(t0) = â(t0), α̂1(t0) = b̂(t0).

By evaluating this regression at each t0 over a dense grid, we obtain smooth, time-

varying estimates of the drift functions α0(t) and α1(t).

2.3 Estimating the Functions β0(t) and β1(t)

Following the estimation of the drift component, we now turn to estimating the

time-varying volatility function in the varying-coefficient diffusion model. Consider

again the discretized version of the model:

Yti ≈ µ(ti, Xti)∆i + σ(ti, Xti)
√

∆i εti , (2.5)

where εti ∼ N (0, 1), and σ(t,Xt) is specified as

σ(t,Xt) = β0(t)X
β1(t)
t .

Given the estimated drift µ̂(ti, Xti) = α̂0(ti) + α̂1(ti)Xti , the standardized residuals

are defined as:

Êti =
Yti − µ̂(ti, Xti)∆i√

∆i

. (2.6)

These residuals approximate the volatility component:

Êti ≈ β0(ti)X
β1(ti)
ti εti .
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To estimate β0(t) and β1(t), we employ a local pseudo-likelihood approach. The

conditional log-likelihood of Êti , up to an additive constant, is approximated as:

`(β0, β1; t0) = −1

2

n∑
i=1

Kh(ti − t0)

{
log
(
β2

0X
2β1
ti

)
+

Ê2
ti

β2
0X

2β1
ti

}
, (2.7)

where Kh(·) is a kernel function with bandwidth h, centered at t0.

Maximizing this criterion yields the local estimators β̂0(t0) and β̂1(t0). For fixed

β1, the optimal value of β2
0 admits the closed-form solution:

β̂2
0(t0; β1) =

∑n
i=1Kh(ti − t0)Ê2

ti
|Xti |−2β1∑n

i=1 Kh(ti − t0)
. (2.8)

Hence, the estimation reduces to a univariate optimization over β1, which simplifies

the computation significantly. Once β̂1(t0) is obtained, it is substituted into the above

expression to compute β̂0(t0).

2.4 Bandwidth Selection

In nonparametric estimation of time-varying drift and diffusion functions, the

choice of bandwidth plays a central role in determining the accuracy and stability

of the estimators. This section discusses the bandwidth selection strategies for both

the drift and volatility coefficient estimation procedures.

2.4.1 Bandwidth Selection for Drift Coefficient Estimation

For estimating the drift function µ(t,Xt) = α0(t) + α1(t)Xt, we use a one-sided

kernel that respects the causal structure of financial time series, relying only on

information available up to time t0. The bandwidth parameter h determines the

extent of the local neighborhood over which the regression is performed.

The selection of the optimal bandwidth is based on the Average Prediction Er-

ror(APE) criterion, which evaluates the out-of-sample prediction performance at a
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sequence of evaluation points {t∗1, t∗2, . . . , t∗m}. Specifically, the APE is defined as:

APE(h) =
1

m

m∑
i=1

(Yt∗i − Ŷt∗i )2

σ̂2
t∗i

, (2.9)

where Yt∗i = Xt∗i +∆ − Xt∗i
denotes the observed return, Ŷt∗i = {α̂0(t∗i ) + α̂1(t∗i )Xt∗i

}∆

is the predicted value from the estimated drift, and

σ̂2
t∗i

= β̂2
0(t∗i )X

2β̂1(t∗i )

t∗i

is the estimated conditional variance. The optimal bandwidth is the value of h that

minimizes the APE.

2.4.2 Bandwidth Selection for Volatility Coefficient Estimation

For volatility estimation, we adopt a different criterion with respect to the residual-

based pseudo-likelihood approach. Given the residuals from the drift estimation:

Êti =
Yti − µ̂(ti, Xti)∆i√

∆i

,

the local pseudo-likelihood function at t0 is given by:

L(h) = −1

2

m∑
i=1

log
(
β̂2

0(t∗i )X
2β̂1(t∗i )

t∗i

)
+

Ê2
t∗i

β̂2
0(t∗i )X

2β̂1(t∗i )

t∗i

 , (2.10)

where each β̂0(t∗i ) and β̂1(t∗i ) are computed via local pseudo-likelihood maximization.

The optimal bandwidth for volatility is chosen as the value of h that maximizes this

criterion.



CHAPTER 3: Simulations

To evaluate the performance of the nonparametric estimators for the varying co-

efficient stochastic diffusion model, we conduct a series of simulation studies. We

consider two primary scenarios: 1. A time-homogeneous model where the true coef-

ficient functions are constant over time. 2. A varying-coefficient model in which the

coefficients vary smoothly with time.

Example 3.1

We begin by considering a time-homogeneous stochastic diffusion model:

dXt = {0.0408− 0.5921Xt} dt+
√

1.6704X1.4999
t dWt, (3.1)

where Wt is a standard Brownian motion. This model is adopted from Chan et al.

[9]. The true parameter values are constant over time, which allows us to examine

whether the proposed time-varying estimation framework can correctly identify the

absence of time dependence.

We simulate 1578 weekly observations corresponding to the time span from January

5, 1970, to March 31, 2000. The initial value is set to X0 = 0.05.

To evaluate estimator performance, we replicate the simulation 400 times. In each

replication, we estimate the drift and diffusion functions using the procedures in-

troduced in Sections 2.2 and 2.3. Specifically, the drift coefficients α0(t) and α1(t)

are estimated using local constant kernel regression with one-sided kernels, while the

volatility parameters β0(t) and β1(t) are estimated by maximizing a localized pseudo-

likelihood. The bandwidths for the kernel smoothing are selected based on the average

prediction error for the drift and maximum pseudo-likelihood for the diffusion.
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For each coefficient function, we construct the pointwise median along with the

2.5th and 97.5th percentiles across the 400 simulations, thus forming a pointwise 95%

envelope. Figure 3.1 presents the estimated coefficient functions with the true values.
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Time
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8

2.
0

β1(t)

Time

Figure 3.1: Pointwise 95% envelope (black band), median (red), and true value (blue)
for the estimators of α0(t), α1(t), β0(t), and β1(t) under the time-homogeneous model
in Example 3.1.

The simulation results for the constant-coefficient case confirm that the estimators

perform well under time-homogeneous conditions. The estimated functions closely

align with the true constant values, and the confidence bands remain narrow and

stable, reflecting low variability and high estimation precision. These findings pro-

vide reassuring evidence that the method remains reliable when applied to simpler,

stationary settings.

Example 3.2

Next, we consider a varying-coefficient stochastic diffusion model of the form:

dXt = {α0(t) + α1(t)Xt} dt+ β0(t)X
β1(t)
t dWt, (3.2)
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where the coefficient functions α0(t), α1(t), β0(t), and β1(t) are assumed to vary

smoothly over time.

To simulate this process, we first fit the model in Equation (3.2) to a real dataset

consisting of 1618 weekly observations of U.S. Treasury bill yields from January 4,

1980 to December 31, 2010. Using the estimation methods, we obtain the estimates

α̃0(t), α̃1(t), β̃0(t), and β̃1(t) from the real data. These estimated coefficient functions

are then treated as the true underlying functions and used to generate synthetic data

from the model in Equation (3.2).

A total of 400 independent replications are generated. For each replication, we

apply the estimation procedures described in Sections 2.2 and 2.3 to obtain the esti-

mators α̂0(t), α̂1(t), β̂0(t), and β̂1(t).

As in Example 3.1, we construct pointwise 95% envelopes from the empirical dis-

tribution of the estimators across simulations, using the 2.5th and 97.5th percentiles.

Figure 3.2 presents the estimated coefficient functions along with their envelopes and

the true time-varying functions.
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Figure 3.2: Pointwise 95% envelope (black band), median (red), and true function
(blue) for the estimators of α0(t), α1(t), β0(t), and β1(t) under the varying-coefficient
model in Example 3.2.

The simulation results show that the estimators successfully capture the temporal

dynamics of the coefficient functions. The true time-varying structures lie well within

the estimated confidence envelopes, demonstrating both flexibility and accuracy of

the methodology in nonstationary settings.



CHAPTER 4: Asymptotic Properties

This chapter establishes the asymptotic properties of the nonparametric estima-

tors in the varying-coefficient stochastic diffusion model. Specifically, we derive the

asymptotic distributions of the estimators for the time-varying drift coefficient α̂0(t),

α̂1(t), and the diffusion coefficient β̂0(t), β̂1(t).

4.1 Notation and Preliminaries

• Define the observation times and increments:

ti = t0 + i∆, i = 0, . . . , n, ∆ =
T

n
, Yi = Xti+1

−Xti , Y ∗i =
Yi
∆
.

• Define the state and drift parameter vectors:

Xi =

 1

Xti

 , α(t) =

α0(t)

α1(t)

 .

• Standardized residual:

ui = β0(ti)X
β1(ti)
ti

εti√
∆
, εti ∼ N (0, 1).

• Kernel weights:

Kh(ti − t0) =
1

h
K

(
ti − t0
h

)
, µm =

∫ 1

−1

umK(u)du, R(K) =

∫ 1

−1

K(u)2du.
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• Local-constant estimator matrices:

Sn =
n∑
i=1

Kh(ti − t0)XiX
T
i , Rn =

n∑
i=1

Kh(ti − t0)XiY
∗
i , α̂(t0) = S−1

n Rn.

• Sampling density and design matrix:

fT (t) =
1

T
, t ∈ [0, T ], IX(t0) = fT (t0)E[Xt0X

T
t0

].

• Volatility structure:

σ2(t, x) = β2
0(t)x2β1(t).

• Asymptotic bias and variance for drift coefficient estimators:

B(t0) =
µ2

2fT (t0)
I−1
X (t0)α′′(t0), Σ(t0) = I−1

X (t0)

[
R(K)fT (t0)E[Xt0X

T
t0

σ2(t0, Xt0)

∆
]

]
I−1
X (t0).

• Standardized residuals for volatility estimation:

Êi =
Yi − µ̂(ti, Xti)∆√

∆
, µ̂(ti, Xti) = α̂0(ti) + α̂1(ti)Xti .

• Local pseudo-likelihood:

`n(θ) = −1

2

n∑
i=1

Kh(ti − t0)

{
log
(
β2

0X
2β1
ti

)
+

Ê2
i

β2
0X

2β1
ti

}
,

with θ = (β0, β1)>.

• Closed-form for β0 given β1:

β̂2
0(t0; β1) =

∑n
i=1Kh(ti − t0)Ê2

iX
−2β1
ti∑n

i=1 Kh(ti − t0)
.
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• Optimized β1:

β̂1(t0) = arg max
β1

`(β̂0(t0; β1), β1; t0).

• Local parameter vectors:

θ̂(t0) =

β̂0(t0)

β̂1(t0)

 , θ(t0) =

β0(t0)

β1(t0)

 .

We write θ = (β0, β1)> as shorthand for θ(t0), the local volatility parameter vector

evaluated at time t0.

• Score function:

ψi(θ) =


∂

∂β0

`i(θ)

∂

∂β1

`i(θ)

 =


− 1

β0

+
Ê2
ti

β3
0X

2β1
ti

− logXti +
Ê2
ti

logXti

β2
0X

2β1
ti

 .

• Observed information matrix (negative Hessian):

hi(θ) = −


∂2

∂β2
0

`i(θ)
∂2

∂β0∂β1

`i(θ)

∂2

∂β1∂β0

`i(θ)
∂2

∂β2
1

`i(θ)

 =


1

β2
0

−
3Ê2

ti

β4
0X

2β1
ti

2Ê2
ti

logXti

β3
0X

2β1
ti

2Ê2
ti

logXti

β3
0X

2β1
ti

2Ê2
ti

log2Xti

β2
0X

2β1
ti

 .

• Fisher information and variance of the score function:

Iθ(t0) = E [hi(θ)] , Vθ(t0) = Var
(
ψi
(
θ(t0)

))

• Log-likelihood sum and local reparameterization:

`n(θ) =
n∑
i=1

Kh(ti − t0) `i(θ), δ =
√
nh (θ − θ0), an =

1√
nh
.

Convergence in probability and distribution are denoted by P−→ and d−→, respectively.
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4.2 Asymptotic Properties

In this section, we establish the asymptotic properties of the proposed estimators for

the varying-coefficient stochastic diffusion model. The regularity conditions required

for these results are listed in Appendix A, and all proofs are provided in Appendix B.

4.2.1 Drift Coefficient Estimator α̂(t)

Recall from the previous section that the drift coefficient estimator:

α̂(t0) =

α̂0(t0)

α̂1(t0)

 = S−1
n Rn, Sn =

n∑
i=1

Kh(ti−t0)XiX
>
i , Rn =

n∑
i=1

Kh(ti−t0)XiY
∗
i .

Theorem 4.1 Under Assumptions A1–A8, we have:

√
nh
[
α̂(t0)− α(t0)− h2B(t0)

] d−→ N (0,Σ(t0)),

where

B(t0) =
µ2

2fT (t0)
IX (t0)−1 α′′ (t0) , Σ(t0) = IX(t0)−1

[
R(K)fT (t0)E

{
Xt0X

>
t0

σ2(t0, Xt0)

∆

}]
IX(t0)−1.

4.2.2 Volatility Coefficient Estimator θ̂(t)

The diffusion coefficient estimator θ̂(t0) = (β̂0(t0), β̂1(t0))> is obtained by maximiz-

ing the local pseudo–log–likelihood

`(β0, β1; t0) = −1

2

n∑
i=1

Kh(ti − t0)
[

log
(
β2

0X
2β1
ti

)
+

Ê2
i

β2
0X

2β1
ti

]
,

where Êi denotes the standardized residual.

Theorem 4.2 Under Assumptions A1–A8, we have

√
nh
[
θ̂(t0) − θ(t0) − h2Bθ(t0)

]
d−→ N

(
0, Σθ(t0)

)
,
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where

Bθ (t0) =
µ2

2fT (t0)
Iθ (t0)−1

[
d2

dt2
E (∂θ`i(θ(t)))

]
t=t0

,

Σθ(t0) = Iθ(t0)−1 Vθ(t0) Iθ(t0)−1,

with

Iθ(t0) = E
[
− ∂2

θθ> `i
(
θ(t0)

)]
, Vθ(t0) = V ar

[
∂θ `i

(
θ(t0)

)]
, µ2 =

∫
u2K(u) du.

Remarks.

• Both α̂(t0) and θ̂(t0) converge at the nonparametric rate
√
nh .

• Each estimator carries an O(h2) bias. In particular

E
[
α̂(t0)

]
= α(t0) + h2B(t0) + o(h2), E

[
θ̂(t0)

]
= θ(t0) + h2Bθ(t0) + o(h2).

• The asymptotic variance-covariance matrices

Σ(t0) = IX(t0)−1
[
R(K) fT (t0)E{Xt0X

>
t0
σ2(t0, Xt0)/∆}

]
IX(t0)−1, Σθ(t0) = Iθ(t0)−1 Vθ(t0) Iθ(t0)−1,

can be consistently estimated by plugging in

ÎX(t0) =
1

nh

n∑
i=1

Kh(ti − t0)XiX
>
i , σ̂2(ti, Xti) = β̂0(t0)2X

2β̂1(t0)
ti ,

and similarly using

Îθ(t0) = − 1

nh

n∑
i=1

Kh(ti−t0)
∂2

∂θ∂θ>
`i
(
θ̂(t0)

)
, V̂θ(t0) =

1

nh

n∑
i=1

Kh(ti−t0) ψ̂i ψ̂
>
i ,

with ψ̂i = ∂θ`i(θ̂(t0)) .



CHAPTER 5: Modeling Dependencies Among Financial Time Series Using Deep

Learning Regression Frameworks

5.1 Introduction and Motivation

In the previous chapter, we focused on modeling the temporal evolution of a sin-

gle financial process using a varying-coefficient stochastic diffusion model. While

this univariate approach offers flexibility in capturing nonlinear dynamics and time-

varying volatility, it does not address the multivariate nature of financial markets. In

practice, financial variables like interest rates, earnings, and dividends often exhibit

interdependencies over time.

To capture such relationships, we adopt a multivariate regression framework in

which the target variable—such as the S&P 500 index—is modeled as a function of

several explanatory financial processes. This framework aims not only to improve

predictive accuracy but also to uncover how different variables interact and jointly

influence financial outcomes, particularly in the context of financial forecasting.

Formally, we consider the following model:

Yt = f(X1t, X2t, . . . , Xpt) + εt,

where Yt represents the target financial process at time t, X1t, . . . , Xpt denote p ex-

planatory financial variables, and εt is an error term. The function f(·) is unknown

and potentially highly nonlinear.

We evaluate several neural network architectures—including LSTM, GRU, CNN,

CNN-LSTM and traditional time series models such as AR and ARIMA to assess

their ability to learn these dependencies and forecast financial outcomes. Given the



19

complexity and nonlinearity of such relationships, we estimate f(·) using deep learning

neural networks. These models can approximate complex functional forms without

imposing restrictive parametric structures.

5.2 Data and Variable Structure

The data used in this chapter is sourced from the data used in Campbell and Yogo

[8] and Hong et al. [22]. It contains monthly observations of key financial and macroe-

conomic indicators frequently used in return prediction studies. The target variable is

the monthly closing value of the S&P 500 index (S&P 500). The explanatory variables

include:

• Earnings: the earnings-price (EP) ratio for the S&P 500 index

• Dividends: the dividend-price (DP) ratio for the S&P 500 index

• TB3MS: the 3-month U.S. Treasury bill secondary market rate, used as a proxy

for the short-term risk-free rate

• Lagged S&P 500: a 5-month lag of the S&P 500 index, included to account for

autocorrelation and momentum effects

All variables are recorded at monthly frequency. After removing missing values

and applying the 5-period lag to the S&P 500 index, the dataset contains a total of

1,003 monthly observations.

Before model training, each series is scaled to the [0, 1] range using MinMax normal-

ization to ensure stable training and comparable input magnitudes across variables.

The dataset is split chronologically, with the first 80% (802 observations) used for

training and the remaining 20% (201 observations) for testing. After accounting for

the 10-step input window required by the models, this results in 792 training sequences

and 191 testing sequences.
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Each input sample consists of the 10 most recent monthly observations for all

explanatory variables, and the model is trained to predict the S&P 500 value one

month ahead. That is, we use the sequence {Xt−9, Xt−8, . . . , Xt} to forecast Yt+1,

where Xt is the vector of normalized explanatory variables at time t, and Yt+1 is the

corresponding S&P 500 index value in the next month.

5.3 Deep Learning Models

In this section, we explore 4 neural network architectures chosen for their ability

to capture different aspects of financial time series behavior. Recurrent models like

Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU) are well suited

for sequential modeling and long-range temporal dependencies. Convolutional Neural

Networks (CNNs) efficiently extract short-term local patterns, while hybrid models

(CNN-LSTM) combine both local and sequential learning. These models are trained

on the same inputs and evaluated under uniform settings for direct comparison.

5.3.1 Long Short-Term Memory (LSTM)

The Long Short-Term Memory (LSTM) network, introduced by Hochreiter and

Schmidhuber [21], was developed to overcome the limitations of standard recurrent

neural networks (RNNs), particularly their inability to capture long-range dependen-

cies due to vanishing and exploding gradients. This makes LSTM networks especially

effective for modeling financial time series, which often exhibit persistent temporal

correlations and structural shifts.

LSTM units maintain two forms of memory: a hidden state and a cell state. These

are updated at each time step through a gated mechanism that regulates the flow of

information, allowing the network to learn what to retain, update, or discard across

time. Specifically, the LSTM cell employs three gates: a forget gate, an input gate,

and an output gate. These gates coordinate how new input, past memory, and past

hidden information are combined to update the cell state and compute the output.
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ct−1

ft

it

ot

c̃t
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×

+ ct

tanh × ht

Figure 5.1: Long Short-Term Memory (LSTM) network structure.

The architecture and information flow of an LSTM cell are illustrated in Figure 5.1.

At time t, given an input vector xt, the previous hidden state ht−1, and the previous

cell state ct−1, the LSTM performs the following computations:

1. Forget gate:

ft = σ(Wfxt + Ufht−1 + bf )

Controls which components of ct−1 are retained or forgotten.

2. Input gate and candidate update:

it = σ(Wixt + Uiht−1 + bi), c̃t = tanh(Wcxt + Ucht−1 + bc)

Determines how much of the new candidate memory c̃t is added to the cell state.

3. Cell state update:

ct = ft � ct−1 + it � c̃t

Produces the updated internal memory.
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4. Output gate and hidden state:

ot = σ(Woxt + Uoht−1 + bo), ht = ot � tanh(ct)

Generates the hidden state that serves as the output of the current cell and

input to the next.

where

• xt ∈ Rm: Input vector at time t

• ht ∈ Rd: Hidden state

• ct ∈ Rd: Cell state

• ft, it, ot ∈ (0, 1)d: Forget, input, and output gate activations

• c̃t ∈ Rd: Candidate update

• W· ∈ Rd×m, U· ∈ Rd×d, b· ∈ Rd: Trainable parameters

• σ(z) = 1
1+e−z : Sigmoid activation

• tanh(z) = ez−e−z

ez+e−z : Hyperbolic tangent activation

• �: Element-wise multiplication

In our implementation, we used the following setup:

• One LSTM layer with 50 units

• ReLU activation function

• Dropout layer with rate 0.2 to prevent overfitting

• Dense output layer with one neuron for regression
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• Optimizer: Adam

• Loss function: Mean Squared Error (MSE)

• Up to 50 training epochs with early stopping (patience = 5)

• Batch size: 32

This architecture was selected to balance model complexity and training stability.

The use of dropout and early stopping was motivated by concerns about overfitting,

particularly due to the relatively limited sample size in our dataset. The number of

hidden units was chosen based on common practice and preliminary tuning.

5.3.2 Gated Recurrent Unit (GRU)

The Gated Recurrent Unit (GRU), introduced by Cho et al. [10], is a simplified

variant of the Long Short-Term Memory (LSTM) network. GRUs were developed to

mitigate the vanishing gradient problem while offering a more streamlined architec-

ture. Unlike LSTMs, GRUs do not maintain a separate cell state—instead, the entire

memory is encoded in a single hidden state vector ht, which is updated through two

gates: the update gate and the reset gate.

This simplification reduces the number of trainable parameters and computational

complexity, making GRUs particularly suitable for settings with limited training

data or real-time inference constraints. Despite their reduced structure, GRUs of-

ten achieve comparable performance to LSTMs in sequence modeling tasks such as

financial forecasting, where modeling long- and short-term dependencies is critical.

The architecture and information flow of an GRU network are illustrated in Fig-

ure 5.2. At each time step t, given the input vector xt and the previous hidden state

ht−1, the GRU performs the following computations:

1. Update gate:

zt = σ(Wzxt + Uzht−1 + bz)
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gate

h̃t xt

1− zt zt
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Figure 5.2: Gated Recurrent Unit (GRU) network structure

The update gate controls the balance between retaining the previous hidden

state and incorporating new information. A value of zt ≈ 1 leads to replacing

the memory with the new candidate, while zt ≈ 0 retains past memory.

2. Reset gate:

rt = σ(Wrxt + Urht−1 + br)

The reset gate determines how much of the past information to forget before

computing the candidate activation. A reset gate close to zero effectively resets

the memory for the current time step.

3. Candidate activation:

h̃t = tanh(Whxt + Uh(rt � ht−1) + bh)

This is the candidate hidden state that proposes a new memory update based

on the current input and selectively forgotten past.

4. Hidden state:

ht = (1− zt)� ht−1 + zt � h̃t

The updated hidden state is computed as a convex combination of the previous
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memory and the candidate activation, weighted by the update gate. This inter-

polation allows the GRU to adaptively decide between preserving past memory

and integrating new context.

where

• xt ∈ Rm: Input vector at time t

• ht ∈ Rd: Hidden state (also serves as GRU output)

• zt, rt ∈ (0, 1)d: Update and reset gates

• h̃t ∈ Rd: Candidate hidden state

• W· ∈ Rd×m, U· ∈ Rd×d, b· ∈ Rd: Trainable weights and biases

• σ(z) = 1
1+e−z : Sigmoid activation function

• tanh(z) = ez−e−z

ez+e−z : Hyperbolic tangent activation function

• �: Element-wise multiplication

In our implementation, we used the following setup:

• One GRU layer with 50 units

• ReLU activation function

• Dropout layer with rate 0.2 to prevent overfitting

• Dense output layer with one neuron for regression

• Optimizer: Adam

• Loss function: Mean Squared Error (MSE)

• Up to 50 training epochs with early stopping (patience = 5)
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• Batch size: 32

This architecture was selected as a simplified alternative to LSTM, offering similar

representational power with reduced computational complexity. Given the compara-

ble training setup, dropout and early stopping were again applied to guard against

overfitting.

5.3.3 Convolutional Neural Network (CNN)

Convolutional Neural Networks (CNNs) were originally developed for computer

vision but have been successfully adapted for time series forecasting in Borovykh

et al. [7], Zeng et al. [39]. In time series applications, CNNs apply 1D convolutional

filters across temporal dimensions to extract short-range patterns and local depen-

dencies—such as trend changes or bursts of volatility in financial data.

Input
xt−L+1:t

Conv1D
(64×kernel 2) ReLU

MaxPool
(size 2)

Dropout
(rate 0.2)

FlattenDense(50)
ReLU

Dropout
(rate 0.2)

Dense(1)
Linear

Figure 5.3: 1D-CNN structure.

The architecture of an 1D-CNN are illustrated in Figure 5.3. At each time step

t, a one-dimensional convolutional filter of length s slides across the input sequence

x = (x1, x2, . . . , xT ), capturing local temporal patterns. For the k-th filter, the con-

volutional output at position t is computed as:

h
(k)
t = σ

(
s−1∑
j=0

w
(k)
j xt+j + b(k)

)
,

where w(k) ∈ Rs denotes the filter weights, b(k) is a bias term, and σ(·) is a non-linear
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activation function, typically the rectified linear unit (ReLU). Each filter k learns

to detect distinct local structures or short-term dependencies within the time series,

such as level shifts, bursts, or local trends.

The resulting set of feature maps is then passed through a max pooling layer, which

downsamples the output by selecting the most salient responses, thereby reducing

dimensionality and providing translational invariance to local fluctuations. These

pooled features are subsequently flattened and fed into fully connected (dense) layers,

which integrate the learned local representations and map them to the final predictive

output.

In our implementation, we used the following setup:

• One 1D convolutional layer with 64 filters and kernel size 2

• ReLU activation function

• Max pooling layer with pool size 2

• Dropout layer with rate 0.2 to prevent overfitting

• Flatten layer followed by a dense layer with 50 units (ReLU)

• Additional dropout layer with rate 0.2 before the final output

• Dense output layer with one neuron for regression

• Optimizer: Adam

• Loss function: Mean Squared Error (MSE)

• Up to 50 training epochs with early stopping (patience = 5)

• Batch size: 32

This architecture was selected for its computational efficiency and strong perfor-

mance in extracting local temporal features.
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5.3.4 CNN–LSTM Hybrid Model

The CNN–LSTM hybrid model combines the spatial pattern extraction capabilities

of CNNs with the sequential modeling strength of LSTMs. This hybrid is especially

useful for capturing both short-term local fluctuations and long-term temporal de-

pendencies Tian [35], Zeng et al. [39].

Input Sequence
xt−L+1:t

[Conv1D→ReLU→Pool]1...m LSTM Layer(s)

Dense → ŷt

Figure 5.4: CNN–LSTM structure

The architecture of CNN–LSTM network are illustrated in Figure 5.4. The CNN–LSTM

model combines a 1D convolutional feature extractor with an LSTM to capture both

local and long-range temporal dependencies. At each time step t, we first transform

the raw series x = (x1, . . . , xT ) into a compact feature vector x̃t via convolution and

pooling, then feed x̃t into an LSTM cell. Formally:

1. Convolution and pooling. We apply K one-dimensional filters of length s over

a sliding window ending at t:

z
(k)
t =

s−1∑
j=0

w
(k)
j xt−j + b(k), a

(k)
t = ReLU(z

(k)
t ), k = 1, . . . , K.

Next, we downsample by max-pooling over each non-overlapping block of length

p:

x̃
(k)
i = max{ a(k)

(i−1)p+1, . . . , a
(k)
ip }, i = 1, . . . , bT/pc.

We then stack the K-dimensional pooled vectors at the positions aligned to t

into the feature vector x̃t ∈ RK .
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2. LSTM update. Given x̃t, the previous hidden state ht−1, and the previous cell

state ct−1, the LSTM performs:

ft = σ(Wf x̃t + Ufht−1 + bf ),

it = σ(Wix̃t + Uiht−1 + bi), c̃t = tanh(Wcx̃t + Ucht−1 + bc),

ct = ft � ct−1 + it � c̃t,

ot = σ(Wox̃t + Uoht−1 + bo), ht = ot � tanh(ct).

3. Output. The hidden state ht is then passed to a final dense layer (or directly

used) to produce the one-step-ahead forecast ŷt.

Notation:

• xt ∈ R: raw time-series value at t.

• w(k) ∈ Rs, b(k) ∈ R: convolutional filter weights and bias for feature k.

• K: number of convolutional filters.

• p: pooling size.

• x̃t ∈ RK : pooled feature vector at time t.

• ht, ct ∈ Rd: LSTM hidden and cell states.

• ft, it, ot ∈ (0, 1)d: forget, input, and output gate activations.

• c̃t ∈ Rd: LSTM candidate memory.

• W· ∈ Rd×K , U· ∈ Rd×d, b· ∈ Rd: trainable LSTM parameters.

• σ(z) = 1/(1 + e−z), tanh(z) = (ez − e−z)/(ez + e−z), �: element-wise multipli-

cation.
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The CNN–LSTM architecture first distills local temporal patterns through convo-

lution and pooling, then models their evolution over time through the gated LSTM

dynamics, yielding a powerful hybrid for financial forecasting. In our implementation,

we used the following setup:

• One 1D convolutional layer with 64 filters and kernel size 2

• ReLU activation function

• Max pooling layer with pool size 2

• Dropout layer with rate 0.2 after pooling

• LSTM layer with 32 units

• Dropout layer with rate 0.2 after the LSTM

• Dense output layer with one neuron for regression

• Optimizer: Adam

• Loss function: Mean Squared Error (MSE)

• Up to 50 training epochs with early stopping (patience = 5)

• Batch size: 32

This structure was chosen to leverage complementary strengths of both CNNs and

LSTMs. Prior work has shown that such hybrid models can outperform standalone

architectures in financial prediction tasks by capturing both local and global dynam-

ics.
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5.4 Result Evaluation

To assess forecasting performance, we compare each deep learning model to two

traditional time series models: AR(20), an autoregressive model applied to differenced

S&P 500 returns, and ARIMA(5, 1, 0), an integrated model for capturing trend and

autocorrelation.

All models were trained on the first 80% of the dataset and evaluated on the

remaining 20%. Forecast accuracy was assessed using three metrics commonly used

in financial time series evaluation:

• Root Mean Squared Error (RMSE)

• Mean Absolute Error (MAE)

• Mean Absolute Percentage Error (MAPE)

Table 5.1: Forecasting Performance on S&P500 Data

Model RMSE MAE MAPE

LSTM 108.8462 91.5796 0.1219
GRU 130.1747 115.3863 0.1464
CNN 91.1347 63.4523 0.0927
CNN–LSTM 90.6981 67.3337 0.0983
AR(20) 266.1643 235.3103 0.3465
ARIMA 346.4359 309.9496 0.4669

The hybrid CNN–LSTM model clearly outperforms every other neural network,

posting the lowest RMSE (90.70). The CNN follows closely, achieving the best MAE

(63.45) and MAPE (9.27%), which highlights its strength in capturing short-term

patterns. The LSTM comes next—its performance (RMSE = 108.85, MAE = 91.58,

MAPE = 12.19%) is solid but cannot match the precision of the convolutional meth-

ods. The GRU, despite its simpler gating, trails behind both LSTM and the CNNs

(RMSE = 130.17, MAE = 115.39, MAPE = 14.64%), suggesting it may be less
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adept at handling the S&P500’s volatile swings. Likewise, the traditional AR(20)

and ARIMA(5,1,0) models deliver substantially larger errors.

To summarize the comparative rankings:

Table 5.2: Ranking of Models

Metric 1st 2nd 3rd

RMSE CNN–LSTM CNN LSTM
MAE CNN CNN–LSTM LSTM
MAPE CNN CNN–LSTM LSTM

This ranking clearly underscores the consistent superiority of the CNN–LSTM ar-

chitecture across all criteria, followed by the standalone CNN. These findings highlight

that the combination of convolutional filters with recurrent memory provides a pow-

erful framework for forecasting non-stationary high noise financial series such as the

S&P500 index.



CHAPTER 6: High-Dimensional Time Series Regression and Variable Selection

6.1 Introduction and Motivation

In the previous chapter, we applied a deep learning framework for forecasting finan-

cial time series by modeling nonlinear dependencies among multiple variables. While

this showed strong predictive performance, it also highlighted a common challenge

in modern time series analysis: managing a large number of explanatory variables

without compromising model interpretability or stability.

This issue exists in macroeconomic and financial forecasting, where datasets may

include many potential predictors—such as interest rates, inflation rates, corporate

earnings, and sentiment indicators. These variables typically exhibit heterogeneous

statistical properties: some are stationary, others are nonstationary or even coin-

tegrated. Modeling such high-dimensional, mixed-persistence data introduces both

statistical and computational complexities, especially when the number of predictors

exceeds the available sample size.

To address these challenges, we employ the Least Absolute Shrinkage and Selection

Operator (LASSO), introduced by Tibshirani [36], as a method for variable selection

and dimension reduction. LASSO is a popular method in high-dimensional regression

due to its ability to shrink coefficients and select variables simultaneously via an `1

penalty. Its interpretability, scalability, and ability to handle situations where p� n

make it a natural choice in this context.

While LASSO has been extensively studied in i.i.d. and weakly dependent settings,

its behavior in time series regression—particularly when predictors include a mixture

of stationary and nonstationary components—is not fully understood. As financial

and economic datasets frequently violate the standard assumptions that guarantee
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LASSO’s consistency. Persistent trends, stochastic volatility, autocorrelations, and

structural breaks are common features in such data.

This chapter investigates a central question:

Is LASSO regression consistent for variable selection in high-dimensional time

series data when predictors include both stationary and nonstationary components?

To explore this, we examine the LASSO selection consistency under the mixture

of stationary and nonstationary variables, varying signal-to-noise ratios, and differ-

ent correlation structures. We also evaluate its performance on a real-world macro-

financial dataset with heterogeneous stationarity properties. These analyses assess

both the theoretical robustness and the practical utility of LASSO as a feature selec-

tion tool in complex, high-dimensional time series environments.

6.2 Model Setup

Consider the following linear model:

Yt = β0 +
k∑
i=1

βiXi,t +

k+p∑
j=k+1

βjXj,t + εt, (6.1)

where:

• Yt is the response variable observed over time t = 1, . . . , N ,

• Xi,t, for i = 1, . . . , k, are stationary predictors (e.g., AR(1) processes),

• Xj,t, for j = k + 1, . . . , k + p, are integrated processes of order one (I(1)),

• β0 is the intercept, and βi ∈ R are unknown coefficients,

• εt ∼ N (0, σ2) is an i.i.d. noise term.

The total number of predictors d = k + p may be large relative to the sample size

N , creating a high-dimensional situation where d � N is possible. We assume that
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the true coefficient vector β = (β1, . . . , βd) is sparse, meaning only a small subset of

predictors have nonzero effects on the response.

To handle this setting, we apply the Least Absolute Shrinkage and Selection Op-

erator (LASSO), which solves the penalized least squares problem:

β̂lasso = arg min
β

 1

2N

N∑
t=1

(
Yt − β0 −

d∑
`=1

β`X`,t

)2

+ λ
d∑
`=1

|β`|

 , (6.2)

where λ > 0 is the tuning parameter controlling the sparsity level.

While LASSO is designed to produce sparse models in high-dimensional settings,

its behavior in time series applications is complicated by the presence of autocorre-

lated errors, cross-sectional dependence, and mixed integration orders. Nonstationary

regressors, in particular, may distort penalty magnitudes due to their diverging vari-

ance over time. These issues motivate a careful examination of LASSO’s selection

properties in the presence of mixed-persistence predictors.

In the following sections, we investigate whether LASSO can consistently select the

important predictors under this model structure.

6.3 Tuning Parameter Selection

In high-dimensional regression, the choice of the regularization parameter λ is crit-

ical for balancing model sparsity and predictive performance. This selection becomes

particularly important in time series applications, where serial dependence and non-

stationary components violate the independence assumptions underlying standard

k-fold cross-validation procedures.

To address these issues, we adopt a rolling-origin cross-validation method(also

known as walk-forward validation). Specifically, we begin with an initial training

set consisting of the first 50% of the observations. Then, we perform five rounds of

validation, each time expanding the training window by 10% and using the subse-

quent 10% of the data as a test set. At each fold, the model is refit on the expanded
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training data and evaluated on the forward validation block. An illustration of this

procedure is provided in Figure 6.1.

Figure 6.1: Rolling-origin cross-validation

This methodology is supported by the forecasting literature. Tashman [34] presents

a detailed review of out-of-sample forecast evaluation methods and recommends

rolling-origin validation as a reliable strategy in the presence of time dependence.

Bergmeir et al. [5] further demonstrate that while traditional cross-validation can be

valid under certain assumptions (e.g., uncorrelated errors), time-series-specific proce-

dures such as rolling-origin cross-validation are generally more robust in practice.

Based on this rolling-origin cross-validation procedure, we find that the optimal reg-

ularization parameter λcv lies within the range [0.10, 0.11]. To evaluate the sensitivity

of the model to different penalty levels, we also consider values that are two-thirds

and three-halves of this range:

λ =
2

3
× λcv ≈ 0.06 and λ =

3

2
× λcv ≈ 0.17.

These three values-λ = 0.06, λcv, and λ = 0.17—are used in the simulation study

presented in the following section to examine the robustness of LASSO’s variable

selection and estimation performance across different levels of regularization.
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6.4 Simulation

To evaluate the consistency of variable selection by LASSO in high-dimensional

time series regression with both stationary and nonstationary predictors, we conduct

a series of simulation studies using the model introduced in Equation (6.1). The

predictors Xi,t are generated to reflect a mixture of stationary (I(0)) and nonsta-

tionary (I(1)) time series, capturing the heterogeneous dynamics often observed in

macroeconomic and financial data.

Example 7.1: Independent Predictors

This example assesses the performance of the LASSO estimator in a high-dimensional

setting where predictors are mutually independent but exhibit heterogeneous dynamic

behavior. Specifically, the covariates consist of a mix of stationary and nonstationary

processes, with no cross-sectional correlation.

We simulate data following the model introduced in Equation (6.1). The predictors

are generated as follows:

• For i = 1, . . . , k: Xi,t ∼ AR(1) with Xi,t = φiXi,t−1 + ui,t, where φi ∼

Uniform(0, 0.9) and ui,t ∼ N (0, 1) (stationary).

• For j = k + 1, . . . , k + p: Xj,t ∼ ARIMA(1, 1, 0) with ∆Xj,t = φj∆Xj,t−1 + vj,t,

where φj ∼ Uniform(0, 0.9) and vj,t ∼ N (0, 1) (nonstationary).

• β0 = 0, and the true coefficient vector β ∈ Rk+p is sparse.

We set k = 500, p = 500, and assign nonzero values to the first 10 coefficients of

each group:

• Stationary variables: β = [1.1, 1.2, 1.1, 1.5, −1.1, 0.3, −0.2, 0.8, −0.6, 0.7].

• Nonstationary variables: β = [1.1, 1.3, 1.2, 1.1, −1.1, 0.4, −0.2, 0.6, −0.9, 0.3].

All other coefficients are set to zero.
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We perform simulations for two sample sizes: N = 200 and N = 400, with 500

replications for each case. The LASSO regularization parameter λ is selected using

a rolling-window cross-validation procedure. A separate test set of 50 observations is

used for forecasting evaluation.

Evaluation metrics are defined as follows:

• True Positives (TP): Number of truly nonzero coefficients that are correctly

identified (i.e., estimated as nonzero).

• False Positives (FP): Number of truly zero coefficients that are incorrectly esti-

mated as nonzero.

• False Negatives (FN): Number of truly nonzero coefficients that are incorrectly

estimated as zero.

• True Negatives (TN): Number of truly zero coefficients correctly estimated as

zero.

• Mean Squared Error (MSE): Mean squared difference between predicted and

actual responses on the test set.

Results.

The simulation outcomes are reported in Table 6.1 and Table 6.2. The results show

that as the sample size increases, the LASSO estimator demonstrates improved selec-

tion consistency, true positives approach the correct sparsity level while false positives

and false negatives decline.
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Table 6.1: Simulation results for Example 6.1: Independent predictors with mixed
stationarity (N = 200). LASSO performance with λ ranging from 0.06 to 0.17 and
cross-validated λcv.

MSE TP FP TN FN

Settings: N = 200, 500 AR(1) I(0) rvs, 500 ARIMA(1,1,0) I(1) rvs, s = 20

λ = 0.06 0.00131 18.80 (0.88) 1.20 (0.88) 883.24 (6.36) 96.76 (6.36)

λ = 0.11 0.00141 18.42 (1.04) 1.58 (1.04) 917.34 (7.70) 62.66 (7.70)

λ = 0.17 0.00178 17.75 (0.97) 2.25 (0.97) 937.74 (6.44) 42.26 (6.44)

λ = λcv 0.00124 18.95 (0.87) 1.05 (0.87) 890.65 (16.01) 89.35 (16.01)

Table 6.2: Simulation results for Example 1: Independent predictors with mixed
stationarity (N = 400). LASSO performance with λ ranging from 0.06 to 0.17 and
cross-validated λcv.

MSE TP FP TN FN

Settings: N = 400, 500 AR(1) I(0) rvs, 500 ARIMA(1,1,0) I(1) rvs, s = 20

λ = 0.06 0.00031 19.96 (0.20) 0.04 (0.20) 885.65 (7.91) 94.35 (7.91)

λ = 0.11 0.00036 19.75 (0.50) 0.25 (0.50) 940.90 (6.24) 39.10 (6.24)

λ = 0.17 0.00059 19.44 (0.62) 0.56 (0.62) 960.33 (4.79) 19.67 (4.79)

λ = λcv 0.00029 19.95 (0.26) 0.05 (0.26) 894.09 (18.63) 85.91 (18.63)

Example 7.2: Correlated Predictors

We now consider a more general setting where predictors are correlated. This ex-

ample examines the performance of the LASSO estimator when covariates exhibit

cross-sectional dependence. In contrast to Example 6.1, where predictors were as-

sumed independent, here correlation is introduced separately among stationary and

nonstationary series to mimic more complex interdependencies frequently observed

in financial and macroeconomic data.
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We generate data based on the model specified in Equation (6.1). The predictors

are simulated as follows:

• For i = 1, . . . , k (stationary): Xi,t = φiXi,t−1 + εi,t, where φi ∼ Uniform(0, 0.9).

The error terms εi,t ∼ N (0, 1) are jointly Gaussian with correlation structure

Corr(εi,t, εj,t) = ρ|i−j|, where ρ ∈ {0.25, 0.5, 0.75, 0.9}.

• For j = k+1, . . . , k+p (nonstationary): ∆Xj,t = φj∆Xj,t−1+Zj,t, where φj = 0.8

and Zj,t ∼ N (0, 1) with Corr(Zi,t, Zj,t) = ρ|i−j|, where ρ ∈ {0.25, 0.5, 0.75, 0.9}.

• The intercept is set to β0 = 0, and the true coefficient vector β ∈ Rk+p is sparse.

We again set k = 500, p = 500, and assign nonzero coefficients as follows:

• Stationary variables: β = [1.1, 1.2, 1.1, 1.5, −1.1, 0.3, −0.2, 0.8, −0.6, 0.7].

• Nonstationary variables: β = [1.1, 1.3, 1.2, 1.1, −1.1, 0.4, −0.2, 0.6, −0.9, 0.3].

All remaining coefficients are set to zero.

We consider two sample sizes: N = 200 andN = 400. For each sample size and each

correlation setting ρ ∈ {0.25, 0.5, 0.75, 0.9}, we generate 500 independent replications.

The regularization parameter is fixed at λ = 0.1 and the same evaluation metrics are

applied. Forecasting accuracy is evaluated using a test set of 50 observations.

Results.

Simulation results are presented in Table 6.3 and Table 6.4, highlighting the deterio-

ration in performance as predictor correlation increases.
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Table 6.3: Simulation results for Example 6.2: Correlated predictors with mixed
stationarity (N = 200). LASSO performance under varying correlation levels ρ with
λ fixed at 0.1.

Correlation ρ MSE TP FP TN FN

Settings: N = 200, 500 AR(1) stationary, 500 ARIMA(1,1,0) nonstationary, s = 20

ρ = 0.25 0.00185 17.93 (1.00) 2.07 (1.00) 911.97 (7.69) 68.03 (7.69)

ρ = 0.5 0.00348 16.71 (1.26) 3.29 (1.26) 911.42 (8.21) 68.58 (8.21)

ρ = 0.75 0.00942 13.28 (1.71) 6.72 (1.71) 913.75 (7.21) 66.25 (7.21)

ρ = 0.9 0.01641 7.50 (2.12) 12.50 (2.12) 927.82 (7.06) 52.18 (7.06)

Table 6.4: Simulation results for Example 6.2: Correlated predictors with mixed
stationarity (N = 400). LASSO performance under varying correlation levels ρ with
λ fixed at 0.1.

Correlation ρ MSE TP FP TN FN

Settings: N = 400, 500 AR(1) stationary, 500 ARIMA(1,1,0) nonstationary, s = 20

ρ = 0.25 0.00032 19.86 (0.35) 0.14 (0.35) 932.20 (6.96) 47.80 (6.96)

ρ = 0.5 0.00042 19.73 (0.51) 0.27 (0.51) 928.71 (7.71) 51.29 (7.71)

ρ = 0.75 0.00110 18.60 (1.02) 1.40 (1.02) 922.81 (8.65) 57.19 (8.65)

ρ = 0.9 0.00521 15.65 (1.53) 4.35 (1.53) 921.19 (9.06) 58.81 (9.06)

The simulation results show that LASSO can work quite well when predictors are

independent, even if they include a mix of stationary and nonstationary time series.

In Example 6.1, as the sample size increases from N = 200 to N = 400, LASSO does

a better job at correctly identifying the important variables, while keeping both the

number of missed signals and extra false selections low. However, in Example 6.2,

when predictors are correlated, the selection performance drops as the correlation

becomes stronger. With higher correlation levels, LASSO tends to pick more irrele-

vant variables and miss more true ones, and the prediction error also becomes larger.
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These results suggest that while LASSO is fairly reliable in settings with indepen-

dent predictors, its performance becomes more unstable when variables are highly

correlated—a common situation in economic and financial data. This highlights the

need to be cautious and possibly consider additional methods or adjustments when

applying LASSO in real-world time series problems.



CHAPTER 7: Discussion

In this dissertation, we explored the modeling and inference in time-varying and

high-dimensional time series settings, with a particular focus on financial applications.

We began by studying varying-coefficient stochastic diffusion models and the nonpara-

metric estimation procedures for both the drift and diffusion components. Theoreti-

cal properties of the estimators were established, and simulation results demonstrated

their flexibility and strong empirical performance when applied to U.S. interest rate

data.

We then applied a deep learning-based regression framework to model dependencies

across multiple financial time series. Our analysis shows that deep learning methods

are capable of improving prediction and capturing nonlinear interactions.

Finally, we studied the consistency of LASSO for variable selection in high-dimensional

time series regressions with mixed stationary and nonstationary predictors. Through

extensive simulations, we assessed how persistence, dependence, and dimensionality

affect selection accuracy. The results provide useful guidance for applying LASSO in

practical time series contexts.

Future research directions include extending the nonparametric estimation frame-

work to multivariate stochastic systems and developing inferential tools such as confi-

dence bands for time-varying parameters. In the context of deep learning, incorporat-

ing uncertainty quantification and exploring hybrid models that integrate statistical

structure with neural networks could be the furure working direction.
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APPENDIX A: Regularity Conditions

A1. The functions α0(t), α1(t), β0(t), β1(t) are each C3 in a neighborhood of t0,

with all derivatives up to order 3 are bounded:

sup
|t−t0|≤ε

∣∣α(k)
i (t)

∣∣ <∞, sup
|t−t0|≤ε

∣∣β(k)
j (t)

∣∣ <∞, k = 0, 1, 2, 3.

A2. The sequence {(Xti , εti)} is α –mixing with rate α(k) = O(k−a) for some a > 2.

Moreover, for some δ > 0,

sup
i
E
[
|Xti |4+δ

]
<∞, sup

i
E
[
|εti |2+δ

]
<∞.

A3. The observation times ti have a continuous density fT (t) near t0 satisfying

0 < inf
|t−t0|≤ε

fT (t) ≤ sup
|t−t0|≤ε

fT (t) <∞.

A4. K is a bounded symmetric density supported on [−1, 1] with

∫
uK(u) du = 0, µ2 =

∫
u2K(u) du <∞, R(K) =

∫
K(u)2 du <∞.

The bandwidth h = hn and time-step ∆ satisfy as n→∞:

nh → ∞, n h3 → 0, n h5 → 0,
√
nh∆ → 0.

A5. The matrix

IX(t0) = fT (t0)E
[
Xt0X

>
t0

]
is positive-definite.
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A6. The drift estimator µ̂(t, x) used to form

Êti =
Yti − µ̂(ti, Xti) ∆√

∆

satisfies

sup
t,x

∣∣µ̂(t, x)− µ(t, x)
∣∣ = oP (h).

A7. inft β0(t) > 0.

A8. Let ψi(θ) be the local score of the pseudo-likelihood at θ0. There exists ε > 0

such that

sup
i
E
∥∥ψi(β0(t0), β1(t0))

∥∥2+ε
<∞.
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APPENDIX B: Proof of Theorem in Section 4.2

Proof of Theorem 4.1

Recall that the local constant estimator of α(t0) is given by

α̂(t0) = S−1
n Rn,

where

Sn =
n∑
i=1

K

(
ti − t0
h

)
XiX

>
i , Rn =

n∑
i=1

K

(
ti − t0
h

)
Xi
Yti
∆
.

Define the centered and scaled error as

δn :=
√
nh
[
α̂(t0)− α(t0)− h2B(t0)

]
, (B.1)

where B(t0) = µ2
2fT (t0)

IX(t0)−1α′′(t0).

Since Snα̂(t0) = Rn, it follows that

Sn

[
α(t0) + h2B(t0) +

δn√
nh

]
= Rn.

Rewriting the above equation we get,

Sn
nh
δn =

Rn − Snα(t0)− Snh2B(t0)√
nh

. (B.2)

We now analyze the right-hand side. First, we expandRn using the Euler–Maruyama

approximation:

Yti
∆

= α0(ti) + α1(ti)Xti + σ(ti, Xti)∆
−1/2εti +

rti
∆
.
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Substituting into Rn, we obtain

Rn = An +Mn +R(r)
n ,

where

An :=
n∑
i=1

KiXiX
>
i α(ti),

Mn :=
n∑
i=1

KiXiσ(ti, Xti)∆
−1/2εti ,

R(r)
n :=

n∑
i=1

KiXi
rti
∆
, Ki := K

(
ti − t0
h

)
.

We assume the remainder term satisfies

R
(r)
n√
nh

= oP (1),

which holds since rti = O(∆2) and
∑
Ki = O(nh).

We now expand An. Using the second-order Taylor expansion of α(ti) around t0 is,

α(ti) = α(t0) + huiα
′(t0) + 1

2
h2u2

iα
′′(t0) +O(h3|ui|3), ui :=

ti − t0
h

.

Thus,

An = α(t0)
n∑
i=1

KiXiX
>
i + hα′(t0)

n∑
i=1

uiKiXiX
>
i (B.3)

+ 1
2
h2 α′′(t0)

n∑
i=1

u2
iKiXiX

>
i +

n∑
i=1

O(h3|ui|3)KiXiX
>
i . (B.4)
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Under regularity conditions A4, the following approximations hold:

n∑
i=1

KiXiX
>
i = nh fT (t0) IX(t0) + oP (nh), (B.5)

n∑
i=1

uiKiXiX
>
i = oP (nh), (B.6)

n∑
i=1

u2
iKiXiX

>
i = nhµ2 fT (t0) IX(t0) + oP (nh), (B.7)

n∑
i=1

O(h3|ui|3)KiXiX
>
i = oP (nh3). (B.8)

Now we will show the above approximation:

Recall that

Ki = Kh(ti − t0) =
1

h
K
(ti − t0

h

)
, ui =

ti − t0
h

,

and Ki = 0 whenever |ui| > 1.

Since ti = t0+i∆ with ∆ = T/n and the sampling density fT (t) = 1/∆ is continuous

near t0, a Riemann-sum argument shows that for any smooth matrix-valued function

G(t),
n∑
i=1

G(ti) = fT (t0)

∫ t0+h

t0−h
G(t) dt + o(n).

Apply this with

G(t) =
1

h
K
(
t−t0
h

) [
XtX

>
t

]
.

Then the integral

∫ t0+h

t0−h

1

h
K
(
t−t0
h

) [
XtX

>
t

]
dt

u=(t−t0)/h−−−−−−→
∫ 1

−1

K(u)
[
Xt0+uhX

>
t0+uh

]
du,



54

and as h→ 0 the integrand converges uniformly to [Xt0X
>
t0

]. Hence

1

nh

n∑
i=1

KiXiX
>
i

P−→ IX(t0), so
n∑
i=1

KiXiX
>
i = nh IX(t0) + oP (nh).

Following exactly the same steps give

1

nh

n∑
i=1

uiKiXiX
>
i

P−→ [Xt0X
>
t0

]

∫ 1

−1

uK(u) du = 0,

since
∫
uK(u) du = 0. Thus

n∑
i=1

uiKiXiX
>
i = oP (nh).

Similarly,

1

nh

n∑
i=1

u2
i KiXiX

>
i

P−→ [Xt0X
>
t0

]

∫ 1

−1

u2K(u) du =
µ2

fT (t0)
IX(t0),

so
n∑
i=1

u2
i KiXiX

>
i = nhµ2 fT (t0) IX(t0) + oP (nh).

For the last term:
n∑
i=1

O
(
h3|ui|3

)
KiXiX

>
i

Noticing that each summand in it has an factor h3, so by the same Riemann-sum

argument
n∑
i=1

O
(
h3|ui|3

)
KiXiX

>
i = OP (nh4) = oP (nh3).

Combining the above, we find

An − Snα(t0) = 1
2
nh3µ2fT (t0)IX(t0)α′′(t0) + oP (nh3), (B.9)

= nh3fT (t0)IX(t0)B(t0) + oP (nh3). (B.10)
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Hence,

An − Snα(t0)− Snh2B(t0) = oP (nh5/2),

and so
An − Snα(t0)− Snh2B(t0)√

nh
= oP (1).

It remains to study the stochastic term Mn. Note that E[Mn] = 0, and its variance

is

Var(Mn) =
n∑
i=1

K2
i E[‖Xi‖2σ2(ti, Xti)∆

−1] = nhR(K)
1

∆
E[‖Xt0‖2σ2(t0, Xt0)] + o(nh).

Under mixing and moment conditions A2, a central limit theorem yields

Mn√
nh

d−→ N
(

0, R(K)
1

∆
E[‖Xt0‖2σ2(t0, Xt0)]

)
. (B.11)

Combining everything into (B.2), using Slutsky’s theorem, and the fact that Sn/(nh)→

fT (t0)IX(t0), we obtain:

δn =
√
nh
[
α̂(t0)− α(t0)− h2B(t0)

] d−→ N (0,Σ(t0)),

where

Σ(t0) = IX(t0)−1

[
R(K) fT (t0)E

(
Xt0X

>
t0

σ2(t0, Xt0)

∆

)]
IX(t0)−1.

Proof of Theorem 4.2

We fix a target time point t0 and consider the local pseudo-log-likelihood function

based on discretely observed data from a time-varying diffusion process. The localized

criterion is given by

`n(θ) =
n∑
i=1

Kh(ti − t0) `i(θ),
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where each contribution to the likelihood is

`i(θ) = −1

2

{
log
[
β2

0X
2β1
ti

]
+

Ê2
ti

β2
0X

2β1
ti

}
,

and the standardized residual is defined as

Êti =
Xti+1

−Xti − µ̂(ti, Xti)∆√
∆

.

Let θ0 = θ(t0) denote the true parameter vector at time t0, and define an =

(nh)−1/2, δ =
√
nh(θ− θ0). We aim to derive the asymptotic distribution of the local

estimator θ̂(t0) by analyzing the normalized objective function

In(δ) =
n∑
i=1

Kh(ti − t0) {`i(θ0 + anδ)− `i(θ0)} .

Using the smoothness condition in Assumption A1, we perform a second-order

Taylor expansion of `i(θ0 + anδ) around θ0. Let

ψi(θ) =

 ∂
∂β0
`i(θ)

∂
∂β1
`i(θ)

 , hi(θ) = −

 ∂2

∂β2
0
`i(θ)

∂2

∂β0 ∂β1
`i(θ)

∂2

∂β1 ∂β0
`i(θ)

∂2

∂β2
1
`i(θ)

 .

denote the score and observed information, respectively. Then

`i(θ0 + anδ) = `i(θ0) + anψi(θ0)>δ − 1

2
a2
nδ
>hi(θ0)δ +Ri,n(δ), (B.12)

Due to the condition nh → ∞, nh5 → 0, ∆ = O(h) in Assumption A4,

which together ensure that
∑n

i=1KhRi,n(δ) = OP (‖δ‖3(nh)−1/2) = oP (1).

Substituting B.12 into In(δ), we obtain

In(δ) = anδ
>Sn −

1

2
a2
nδ
>Tnδ + oP (1), (B.13)
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where

Sn =
n∑
i=1

Kh(ti − t0)ψi(θ0), Tn =
n∑
i=1

Kh(ti − t0)hi(θ0).

Then we want to study the asymptotic behavior of the normalized hessian.

Define the scaled matrix

Cn =
Tn
nh
.

We show that Cn
P→ I(t0), where I(t0) denotes the Fisher information matrix at time

t0. Specifically: For the expectation,

E[Cn] =
1

nh

n∑
i=1

Kh(ti − t0)E[hi(θ0) | ti].

Under Assumption A4 and writing m(t) = E[hi(θ0) | ti = t], the Riemann sum

approximation yields

E [Cn] =
1

n

∑
|ui|≤1

K (ui)m (t0 + hui)
1

h∆

n→∞−−−→ m (t0)

∆

∫ 1

−1

K(u)du = fT (t0)m (t0) = I (t0) ,

(B.14)

where fT (t0) is the sampling density at t0.

For the variance, using the α-mixing property (Assumption A2) and bounded mo-

ments,

V ar (Cn) =
1

(nh)2

∑
i,j

Kh (ti − t0)Kh (tj − t0)Cov (hi, hj) = O

(
1

nh

)

Thus Cn
P−→ I (t0).

We now derive the asymptotic distribution of Sn. First, we evaluate its mean:
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E[Sn] =
n∑
i=1

Kh(ti−t0)E[ψi(θ0) | ti] =
1

2
nh3 µ2 fT (t0) ∂2

t

(
E[ψi(θ0) | ti]

)∣∣∣
ti=t0

+ o(nh3),

(B.15)

using a second-order expansion in ti and the symmetry
∫
uK(u)du = 0.

Write the conditional mean of the score as a second-order Taylor expansion about t0:

m(ti) =
[
ψi(θ0) | ti

]
= m(t0) + m′(t0) (ti − t0) + 1

2
m′′(t0) (ti − t0)2 + O

(
|ti − t0|3

)
,

(B.16)

where we note that m(t0) = 0 because the true score has zero mean.

Substituting B.16 into the expected local sum gives

E[Sn] =
n∑
i=1

Kh(ti−t0)m(ti) =
n∑
i=1

Kh(ti−t0)
[
m(t0)+m′(t0) (ti−t0)+1

2
m′′(t0) (ti−t0)2+O

(
|ti−t0|3

)]
.

(B.17)

Because m(t0) = 0 and
∫
uK(u) du = 0, both the constant and linear (ti − t0) terms

vanish under the symmetric kernel. Hence only the quadratic term contributes to

leading order:

E[Sn] = 1
2
m′′(t0)

n∑
i=1

Kh(ti − t0) (ti − t0)2 + o(nh3).

Finally, use the usual Riemann-sum approximation for the kernel moment:

n∑
i=1

Kh(ti−t0) (ti−t0)2 =
n∑
i=1

1

h
K
(
ti−t0
h

)
h2 u2

i ≈ nh3 fT (t0)

∫
u2K(u) du = nh3 µ2 fT (t0).

It follows that

E[Sn] =
1

2
nh3 µ2 fT (t0) m′′(t0) + o(nh3), m′′(t0) =

d2

dt2
[ψi(θ0) | ti]

∣∣∣
ti=t0

. (B.18)
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That’s how we derive B.15.

Now, using α-mixing CLT (A2) and finite (2 + δ) moments of ψi, it follows that

V ar(Sn) =
∑
i,j

Kh(ti − t0)Kh(tj − t0) Cov(ψi, ψj)

= (nh)fT (t0)

∫
K(u)2 du · E

[
ψi(θ0)ψi(θ0)> | ti = t0

]
+ o(nh),

Hence by the CLT for α-mixing triangular arrays,

Sn√
nh

d−→ N (0, V (t0)), (B.19)

with

V (t0) = fT (t0)

∫
K(u)2du · E

[
ψi(θ0)ψi(θ0)> | ti = t0

]
.

Now since δ̂n = arg maxδ In(δ), setting ∂In(δ)
∂δ

= 0 yields

0 = anSn − a2
nTnδ̂n + oP (1),

which implies

δ̂n = C−1
n

Sn√
nh

+ oP (1).

Expanding C−1
n using a Neumann series gives

C−1
n = I−1(t0)− hI−1FI−1 + oP (h),

where F is a suitable bias term. Then

δ̂n = I−1(t0)
Sn√
nh
− hI−1FI−1 Sn√

nh
+ oP (1).

Finally we decompose Sn = (Sn−E[Sn])+E[Sn]. Then, for the variance component,
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by equation (B.19),
Sn − E[Sn]√

nh

d−→ N (0, V (t0)),

so
1√
nh
I−1(t0)(Sn − E[Sn])

d−→ N (0, I−1V I−1).

Now for the bias component, using (B.15) and the definition

m(t) =
[
ψi(θ0) | ti = t

]
, m′′(t0) =

d2

dt2
m(t)

∣∣∣
t=t0

,

we have

E[Sn] = 1
2
nh3 µ2 fT (t0)m′′(t0) + o

(
nh3
)
,

and hence

1√
nh

Iθ(t0)−1 E[Sn] = h2 Iθ(t0)−1 µ2

2 fT (t0)
m′′(t0) + o

(
h2
)

= h2Bθ(t0) + o
(
h2
)
,

where

Bθ(t0) =
µ2

2 fT (t0)
Iθ(t0)−1m′′(t0).

Combining both, we arrive at the final expansion:

θ̂(t0)− θ0 = h2B(t0) +
1√
nh
Zn + oP

(
h2 +

1√
nh

)
,

where Zn
d−→ N (0, I−1(t0)V (t0)I−1(t0)). This completes the proof.


