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Abstract

We investigate hypothesis testing in Cox proportional hazards models under non-polynomial
(NP) dimensionality, where the ambient dimension can exceed any fixed polynomial in the
sample size. We introduce a DR-PLR test, together with a refitted version designed to tem-
per the tendency to over-select variables. The method first fits a penalized partial likelihood
to define a data-adaptive, low-dimensional working alternative space, and then conducts
inference within that space using a PLR statistic. Under standard regularity conditions
and appropriately calibrated regularization, the procedure achieves oracle-like performance
and is insensitive to moderate changes in the tuning level. To curb spurious inclusions that
can arise when p > n, we refit on the selected subset prior to testing. Theoretically, we
derive Bahadur-type first-order expansions for the penalized estimators and characterize the
asymptotic null distribution of the DR-PLR statistic. Monte Carlo experiments show consis-
tent finite-sample gains over contemporary competitors, and a case study on non-Hodgkin’s
lymphoma survival demonstrates the workflow.

Key words and phrases: non-polynomial dimensionality, dimension-reduced partial like-
lihood ratio, penalized partial likelihood, refitting safeguard, Cox proportional hazards

1 Introduction

We observe i.i.d. samples vy, ..., Vv, from the model f(v;0) with parameter 8 € ®. Under the
null, 8 € ®; C ©®. We examine the composite null Hy : 8 € O against H, : 0 € © \ Og. Let
0,(0) = >"7 , log f(vi;0). The generalized likelihood-ratio statistic is

T, = 2{ sup £, (@) — sup en(a)}.
0cO© 0O,

In the presence of nuisance components, a widely used formulation is

Hpp: v=r versus Hy1: v#r, (1)

*Correspondence should be addressed to



where 0 = (,BT,’yT)T, B € RP" are nuisance parameters and v € R% are parameters of
interest. Under the usual regularity conditions and with fixed ¢,, the LR statistic satisfies
T, = Xgn under Hy 1, and notably the limit does not involve B (Wilks, 1938). Although
classical arguments justify the local optimality of the LR via efficient MLEs, this relies on correct
specification and accurate estimation; if the working model is unnecessarily large relative to the
truth, weak nuisance effects can dilute power, and randomness induced by selection further
complicates inference.

The analysis is conducted under the Cox PH model, using the partial likelihood for inference.
In many modern studies, p, can greatly exceed n. Regularization provides a practical screening
device, but in ultrahigh dimensions, penalized fits may admit noise variables with non-negligible
probability, enlarging the working model and weakening likelihood-type tests. We therefore treat
regularization as a means to shape a data-driven target set on which the test can concentrate
its power, rather than as the final goal.

We introduce a dimension-reduced partial likelihood ratio procedure (DR-PLR) for Cox
models operating under non-polynomial (NP) dimensionality. The procedure begins with a
penalized partial-likelihood fit that selects data-supported coordinates and thereby defines a
low-dimensional working alternative; inference is then performed in that reduced space using
a PLR statistic for testing (1). Empirically, once the selected set stabilizes across a range of
regularization levels, the resulting PLR statistic varies little with moderate tuning changes,
which helps concentrate power along data-supported directions.

We also cover the linear family:
Hps: Ay —Ar=0 vs Huo: Ay —Ar #0, (2)

with A of full row rank m, and a known target r; this includes testing membership of « in a
(gn — my)-dimensional subspace and reduces to (1) when m,, = ¢,. Equivalently, because A has
full row rank, its null space has dimension ¢,, — m,. By the SVD, there exists C € R{(@n—mn)xan
with orthonormal rows spanning ker(A), i.e., CCT =1, _,,, and ACT = 0, where I, _,, is

the identity matrix of size (¢, — mn) X (gn — my). We can write the null hypothesis as
Hys: v=r+ CTa,

For an unknown vector a € R4 ~"™n (cf. Jiang and Jiang, 2011). The dimension p,, is allowed
to grow faster than any fixed polynomial in n (e.g., p, < exp{n”} with x € (0,1)), and (1M, gn)
may also diverge at rates specified later. In special cases, our setting links to earlier partial-
likelihood-based tests (see, e.g., Shi et al., 2019), which use partial penalized LR tests, and
reduces to Fan and Peng (2004) for m,, held constant and p, + ¢, = o(n'/?).



A convenient feature of PLR is that inference proceeds without modeling the baseline hazard;
robustified versions are available, and DR-PLR keeps this insensitivity while shrinking the
alternative through a screening step. To curb accidental inclusions from the screening stage,
we add a refitting step that re-estimates the model on the selected coordinates before testing;
analogous refitted Rao score and Wald versions can be formulated in the same spirit. These
refitted procedures preserve the large-sample behavior of their non-refitted counterparts across
broad practical tuning ranges while avoiding spurious effects from over-selection.

A key difficulty is the dependence of DR-PLR on a random post-screening model size. We
handle this by deriving Bahadur-type first-order expansions for MPLEs in dimension-reduced
models whose sizes are random. These expansions lead to a quadratic approximation: the PLR
statistic is asymptotically equivalent to the squared norm of a suitably standardized difference
of MPLEs under the reduced null and alternative, which delivers the asymptotic null law. We
further obtain an explicit upper bound on the post-screening model size under NP growth,
clarifying how screening interacts with inference.

Computationally, the pipeline is light: standard penalized Cox solvers on a tuning grid for
screening, followed by a low-dimensional PLR evaluation. Monte Carlo studies show accurate
size and competitive power over wide tuning ranges in NP regimes. The remainder of the article
develops the DR-PLR construction and asymptotic theory for Cox models (including a limit
on the post-screening model size); introduces refitted Rao and Wald versions together with
their asymptotic limits; and reports simulation results and an application to non-Hodgkin’s

lymphoma survival. All technical conditions and proofs appear in the Appendix.

2 DR-PLR Testing for Cox Proportional Hazards Model

2.1 DR-PLR Test Statistic

To make construction concrete, we start with the DR-PLR procedure under Cox’s proportional
hazards model (Cox, 1972), which postulates the conditional hazard of a survival time 7" con-

ditional on (X, Z) = (x,z) as
A(t]%,2) = Xo(t) exp(B87x +72), (3)

where Ao(t) denotes the hazard and handle it as a nuisance term. Let {(x;,z;, S;, d;)}/-; be an
id, with S; is the observed time which is the minimum of censoring times C; and survival time
T; and the event indicator ¢; = 1{T; < C;}. We assume that {C;} and {7;} are independent

conditional on the covariates (X;, Z;), i.e., C; L T; | (X;,Z;). Arrange the observed event times



in increasing order ¢; < --- <ty and let X ;) be the covariate vector recorded at time t;, where
(4) be the index of the unit that fails at time ¢;. Let R; = {i : S; > t;} be the risk set at ¢;.
The log partial likelihood is
— Zj = 1N{0Tw(j) - log<z exp(HTwZ)) },
i€R;

where @ = (37,47)T and w; = (x/,2]) . The maximum partial likelihood estimator (MPLE)

W; ex Twi
aQn Z{ 1€Rj ? p(0 ) } 0. (4)

Zze’/zj exp (OTwi)
It is convenient to adopt the following notation. Assume N;(t) = 0; 1{t > S;}, Yi(t) =
1{t < S;}, and N(t) = > °,6;1{t > S;}. Assume the risk-set indicator vector Y(t) =
(Yi(t),...,Y,(t))" be LCRL and Vt € [0,7] : Pr{Y(t) =1} > 0. Then

Z/ ~1og 50(0,1) L dNi(h)

solves

with
59 (0,t) = ZY ) {wi(t)}%  exp{@Twi(t)}, £=0,1,2,

and ® denoting outer product. Deﬁne

(1) (2)
En(av t) = ST(LO)(O’ t) ’ V”(gv t) = ST(LO)(G’ t) B {En(07 t)}®2‘
Sn’(0,1) Sn’ (0,

Writing w;(t) = (x;(t) 7, 2:(t) )T and 8 = (87,47 T, we also use the blockwise means

s, t s,
Eg)(eat): (01)( )7 ngz)(evt): (g)( )7
509, 1) 5O, 1)

where SU)(6,¢) = S0 Vi(t) x;(t) exp{6 w;(t)} and S)(0,) = S| YVi(t) zi(t) exp{6 w(t)}.

The score and observed information admit the familiar forms

2010 Z / {wi(t) = B, (6,)} dNi(2), (5)
92Qn (6
aaaaT_ Z/V (6,t) dNy(t). (6)

For variable screening, we maximize a penalized partial log-likelihood (e.g., Bradic et al.,

2011):

c(o,7) - anAn (16;1), (7)



and choose any maximizer 0 of C (0,7) on the compact set €, C RP that contains the true
value 0*; we refer to @ as the sparse estimator. Let the individual intensity be ;(t,0) =
Mo(1)Y;(t) exp{0 w;(t)} and A;( fo (u, 0") du, where 6" is the true value of 8 with 6* =
(B*T,4*T)T. Define M;(t) = Ni(t)—A-( ). Under information set F; = o{N;(u), w;(u™), Yi(u™) :
0<u<t1l<i<n}, {M}", are locally square-integrable martingales that are orthogonal
which means that (M;, M;); = 0 for all @ # j. These tools, together with arguments akin to
Fan and Li (2002) and Bradic et al. (2011), underlie the asymptotic theory developed later;
the same construction extends to additive hazards (Jiang and Zhou, 2007) and transformation
models (Doksum, 1987). This is also among the topics of this proposal.

For the testing task (1), the DR-PLR statistic is assembled via two steps:

(i) Screen the alternative. Obtain the partially penalized estimator
~ - T
0=(8'.4")" = argmax{Qu(0) - anA (18}, (8)

where only the nuisance block B is penalized. Partition 3 = (BIT,B;)T into its non-
vanishing and vanishing coordinates, and split 8 = (ﬁf,,@;)T accordingly. Writing
Qn(0) = Qn(Bi,By,7), we set By = 0 and hence we work with the reduced partial
likelihood @, (31, 0,~).

(ii) Form the PLR on the reduced model. Let
- AT A AT )
0o = (61,070T7rT)Ta 0, = (Bl,aaOTa’YI)T
be the MPLEs under Hy; and H, 1 for the reduced model. Define

T = 2{Qn(6a) — Qu(60)}. (9)

Large values of T}, 1 support rejection of Ho .

Two remarks are worth noting. First, Step (i) penalizes only the nuisance coefficients, so no
beta-min requirement is imposed on the components fixed by the null; weak nuisance signals
remain identifiable and underfitting is reduced. Second, unless no reduction occurs, the MPLEs
computed in Step (ii) are not the full-model MPLEs; consequently, 7}, 1 is not the classical
LR statistic for the unreduced model (in particular when some nuisance parameters are zero).
If Step (i) selects no unimportant covariates, then T}, 1 coincides with 7},. To avoid missing
relevant effects, we require the penalized estimator in (8) to possess the sure-screening property

(Fan and Lv, 2008), which is readily achieved in practice (see also Fan, Ning and Hao, 2012).



The framework extends beyond exact likelihoods: the statistic is estimator-driven, so we
continue to refer to the resulting procedures as DR-PLR tests. Concretely, in (8) one may replace
Qn(0) with the negative of a suitable loss, thereby accommodating quasi-/pseudo-likelihood
criteria (see Fan et al., 2001; Fan and Jiang, 2007). The penalty py,(-) is governed by a
tuning level \,,, which can be selected via information criteria (e.g., BIC). Examples include
ridge/Tikhonov, the nonnegative garrote (Yuan and Lin, 2007), ¢y, lasso (Tibshirani, 1996),
and folded-concave penalties—SCAD (Fan and Li, 2001). For testing purposes, penalties with
strong selection behavior—such as adaptive lasso (Zou, 2006) and SCAD/MCP (Kim et al.,
2008; Zou and Yuan, 2008)—are particularly appealing.

In Step (i), we apply shrinkage only to the nuisance coordinates, which prunes the alternative
while leaving the parameters under test untouched. This design serves two aims: it concentrates
power by reducing the dimensionality on the alternative side, and it preserves nominal size under
Hy by avoiding shrinkage on the target coordinates. In practice, one fits a Cox proportional
hazards model with penalties on nuisance indices only, carries the selected nuisance set to Step
(ii), and keeps the parameters of interest in the reduced model so that the subsequent DR-PLR
statistic is well defined.

Intuitively, by screening out negligible nuisance coefficients on the alternative side, the pro-
cedure effectively emulates an oracle that knows the zero components a priori; when the posited
model is correct up to a sparse nuisance block—a typical high-dimensional regime—the reduc-
tion step yields marked power gains over the unreduced likelihood-ratio (LR) test while keeping
type-I error at the nominal level.

Actually, DR—PLR chooses a single A\, in Step (i). Once the screened set stabilizes, the
Step (ii) statistic varies little over a broad range of A, yielding stable size and power (see §4).
Moreover, the Aop¢ that performs well for estimation typically also works well for testing, sim-
plifying calibration—an advantage not commonly enjoyed by alternative regularization—based
tests.

For the general linear hypothesis in (2),
Hps: Ay —Ar=0 Versus H,2: Ay — Ar # 0,

N AT «
the estimator under H, > remains 6, = (,817a,0T,'S/I)T with (B4 4,%,) = argmax Qn(84,0,7).
Under H0’27

« ~T R
00 = (617070T778—) = arg%ax {Qn(ﬁlaoav) : A7 —Ar = 0}
Y

We maximize @, (8;,0,7) with v = r + CT «, and obtain the MPLE

0o = (Bl,Oa o', r+C'&)")". (10)



The corresponding statistic is

T2 = 2{Qu(8a) — Qu(60)}, (11)

which reduces to 7}, ; when A is invertible.

2.2 Large-Sample Theory for the DR-PLR Procedure

Now, we develop the large—sample distributional properties of DR-PLR. A key prerequisite is
to control how large the post—screening working alternative can be; this “effective dimension”

drives both validity and power of the statistic.

Notation. For clarity, we fix notation. Let 3" = (37,. .. ,B;n)T be the true parameter vector
of B, v =(,... ,’y;n)—r be the true parameter vector of ~; then we have 8* = (8*T,v*T)T e
RPetan Let W = (w1,...,w,) | € R™(Pntan) he the covariate matrix, where w; = (x;,2; )"
stacks the nuisance and target covariates. Let D C {1,...,p, + ¢, } index the coordinates of
0 corresponding to 7y, so that 6, = ~*. Define the true support of the nuisance block by
S={je{l,....,pn}: B; # 0} and the selected set by S = {j <pn: Bj # 0}; let N = S\S
denote false inclusions. Write s, = |S| and define the minimal signal level d,, = 3 minjcg |35
(with the convention d,, = oo if S = @). For any index set N, |N| denotes its cardinality. Let
@ denote the working criterion (e.g., the Cox partial log-likelihood), and g the link if applicable

(for Cox, g(t) =t). Define

U1 (t’ y) = aQ(gil(t)v y) /8t7 U?(t7 y) = azQ(gil(t)v y) /8t2'

and collect v1(0) = (vi(w, 6,Y1),...,v1(w, 0, Yn))T. For a vector a, let ||aljcc = max; |a;| and
lallo = #{j : a; # 0}. If € is a vector and J an index set, then &5 denotes the subvector of §
with indices in J.

For sequences {£,} and {,}, denote &, ~ 1, whenever sup, |P(&, < x) — P(n, < )| — 0 as
n — oo. We write ann (n?) for the chi-square law on m,, degrees of freedom with noncentrality

parameter 77; the central case (n2 = 0) is written x2, .

Theorem 1. Under conditions (A;)—(A5) and % — 0 as n — oo, the number of false

inclusions satisfies

IN| = Op(sn + qn)-

If, in addition, (A6) holds, no spurious variables are retained w.h.p., i.e., \ﬁ| = 0.



We next state Wilks—type null limits for the ordinary partial-likelihood ratio statistic T,

and for its dimension-reduced counterpart T5 aimed at testing Hp2 : A(y —t) = 0.

Theorem 2. Under conditions (A1)—(Ag), (B1), (B2), and (By), there exist constants Cy, Co €
(0,00), independent of n, such that |AAT|op < C; and [[(AAT)"Y|op < Co. Under the null

Hy 2, we have

(i) If B — 0 (n — o00), then Ay, Ty, and X2, are asymptotically identically dis-

tributed, which is denoted by T}, ~ X72nn‘
(ii) If 3;1% — 0 (n— o0), then T), 5 ~ X2, -

Remark 1. Under non-polynomial growth, DR-PLR preserves the Wilks phenomenon provided

the effective post-screening dimension is o(n'/?).

For power analysis of the DR-PLR test, we consider Pitman local alternatives contiguous to
Ho s,
HY: y=r+CTa+A,  [Au2—0,
)

and assume there is no o € R% ™" with &n =Cla* (otherwise H, L(znz coincides with Hy o
and no test has power). Assume Null(A) = col(CT)—equivalently, rank(A) = m,,, rank(C) =
Gn — My, and ACT = 0. With A,, := A&n, this is equivalently written as

Av—-Ar=A,, |A,|l2 # 0 for all sufficiently large n.

To handle local alternatives, we first set notation and then characterize the large-sample laws
of the LR and DR-PLR tests. Define the partial-likelihood information matrix

2 T 2 T
1= o) <o (S )

and suppose I(0") is invertible. In accordance with the split 6 = (BT, ~ )T, we block-decompose

I(6) and its inverse I"(0) accordingly as

_ 1i(0) I.2(0) > 1\ _ ( I''(6) 1%(6) )
1(6) = ( 11(8) Tn(9) ) 4 T O ={ pg) 2
where 1(0) is p, X p, and I"%(0) is ¢, X q,. Assume ji,...,js, are the indices in S arranged
in increasing order, and let e be an s, X p, matrix with the j;-th column equal to the [-th

standard basis vector (I =1,...,s,) and the remaining columns equal to zero in the Euclidean



space R*". Let I,(0) denote the reduced information matrix obtained from (@) with indices

lying in Mg. That is,

_ _1( 9*Qn(0)/0Bs0Bs  0*Qn(0)/0Bs0v "
IO(G)_E{_N 1( 9%2Qn(0)/0v0B)  02Q,.(0)/0vd~T )}

with I 1(0) partitioned in the same way.

C(Ln(0) Ti(0) e (THO) TE(6)
LO=(1"e) Lae ) ™ 5O =( )

The associated Schur complement satisfies

{I22(0)} ! = Lo22(6) — Lo,21(6){Lo,11(0)} ' Lo,12(6).
Theorem 3. (Local-alternative limits) Under the assumptions of Theorem 2 and with ||A,||2 =
O(/mn/n):

(i) If B2 — 0 (n — oc), then

To ~ Xin, (), 1 = n A {AT2(0) AT} TIA,,
(ii) If s;l% — 0 (n — 00), then

Toa ™ Xp, (020),  Mho=nA{ATZ(0")AT} A,

Corollary 1. If I(6*) is invertible, then 72 < 7772170, with equality iff there is no nuisance block

or the cross-information between 3 and - vanishes.

According to Corollary 1, whenever at least one nuisance coordinate is truly zero, the large-
sample power of T;, o strictly exceeds the large-sample power of T;,, except when there is no
nuisance block or the cross-information between 3 and -« vanishes. The gain is maximized when
all nuisance effects vanish. If no nuisance entry is zero, then A, and T, ; are asymptotically
equivalent. Moreover, if the zero nuisance coordinates were known a priori and one formed the
LR test after removing them, its large-sample power would match that of DR-PLR; thus DR-PLR
enjoys an oracle property. Consequently, when many nuisance parameters are inactive, DR-PLR
effectively shrinks the alternative space and achieves higher power than LR.

In high-dimensional settings with many nuisance parameters—such as breast cancer studies
with genome-wide expression—one tests the joint significance of a target gene group while ad-
justing for the remaining genes. When most nuisance effects are zero, DR—PLR typically attains
substantially greater power than PLR-type procedures by reducing the effective alternative

dimension.



3 Refitted tests

3.1 Refitted DR-PLR test

In ultra-high—dimensional regression, achieving “sure screening” typically leads selectors to err
on the side of inclusion; as documented by Fan, Ning and Hao (2012), noise covariates can be
admitted with non-negligible probability. If the penalized fit in (8) carries such false positives
into the screened set, a natural question is how this impacts our DR-PLR: does it distort size
(inflate type-1 error), erode power, or both? We investigate these issues via extensive Monte
Carlo experiments under an extremely large ambient dimension. To blunt the influence of over-
selection, we further introduce a refitted DR-PLR: after screening, we re-estimate on the retained
coordinates and then form the test statistic, echoing the spirit of refitted cross-validation in Fan,
Ning and Hao (2012). The refitted variant aims to purge spurious effects while preserving the
tuning-insensitivity of the original DR-PLR.

For clarity of exposition, we revisit the testing problem Hpo. We assume the sample is
randomly split into two subsamples {(wgl), Si(l), (51(1)) N, and {(wZ@), @) (5(2)) L, where n =
2N and w = ({x; k)}T {z }T) for k = 1,2. For the kth subsample, arrange the observed
event times in increasing order tg )< < tg\lf) and let (j) be the index of the unit that fails
at time tﬁk). Define the risk set by ng) ={ie{l,...,N}: Sl-(k) > tg-k)}, j=1,...,N. For

dimension reduction, we fit model (3) to the kth subsample under H, o by

Lox(O;wr,...,wy) = 9()—max{ NZp,\n (1951 }
where Q%k)(e) = Z;V:l{Ong)) - IOg(Zz‘eR(’“) exp(Gngk)>)}. Let Sy, = {i : éfk*) #0,1<i<
J

pn} and s, = |Sy|, where k* =2 — |k — 1| and k can be 1 or 2.
Let

Qo Z / 107w (1)~ 1og(5)(0.0)) AN 1),

ZY““ (0} exp (07w (1)) (12)

where £ can be 0, 1, or 2, and ® means the dyadic product.

E®(0,t) = 5()(0,1)/5°)(6,t) and VF(0,1) = 52)(0,1)/59)0,1) — {E®(,1)}**.

10



To reduce the impact of spurious inclusions on the DR-PLR statistic, we re—estimate the Cox
model on the screened coordinates, enforcing Hpo and Hg o in turn. Concretely, for model (3)

we compute the MPLEs under Hy 2 and H, 2, denoted by

6.0 = arg méix{Q,(lk)(O), s.t. Bse =0, Ay — At =0}

and

9k,a = arg mgxx{lek)(a), s.t. ,Gsﬁ =0},

respectively. Evaluating the partial log—likelihood at the null and alternative fits yields lek) (ék,o)
and Q;’@(@)m) for split k. In analogy with (11), we define the DR-PLR statistic on split k by

k a) (A 5
Tl = QU (81) - QW (Br0)}-
A simple aggregate for the two splits is

pe _ Tt To
n,L 5
However, even with ideal reduction, this aggregated statistic may still fall short of 7}, 2 in power.
In fact, when S;; = S we have T(k) ~ x2,, and Ty < %X%mn, so the effective degrees of freedom
are doubled relative to T}, 2 (see Ghosh, 1973), which tends to dilute power.
We now put forward a construction of the refitted DR-PLR statistic that aggregates in-
formation from the entire sample. The recipe hinges on a Bahadur—type linearization of the

split—specific MPLEs 0y together with a second—order (quadratic) expansion of TT(LI? For the

ensuing derivations, we first set up some notation. Define

(
1,(6) = — (6)/085,08, a?@’“(9>/agska7 )

_ <82Qn 10)/0708L Q) (6)jovonT

and its empirical version

1,(0) = —N~ )(6)/08s, 085 ©” (0)/8,85k8fy )

<82@<’“ '@)/0v0BL, QY (8)/ovonT

L(6) L) i1 ((16) 1(9)
g 1hg) ) W4 11O - (izl(o) i22(g)
and 1%2(0) have dimension ¢, x ¢g,. Let W, be the split-k model matrix, with nuisance and

target submatrices denoted by X and Zj, where X; = ((x(k’l) ) (x(k)A )T)T and Zj =

17Sk N,Sk

((zgk))T, ol (zl(f))T)T. Let D C {1,...,pn+@n} denote the index set selecting the target block

Partition I,;l(a) = ( ), where both I3%(6)

in 6, so that 85 = ~*. Define T = S U D, which collects the true support of the nuisance

11



part 3 together with all coordinates of v*. In addition, suppose T = S U D, T, =S,uUD,
A; = (O x50 A), Qi(07) = {Akllzlw*);&g}_l, and 04, = ( gk,'yT)T, where k can be 1 or
2. Then ]Tk| = Tpi. Obviously,

U(e) = 8Q" Z / {wi(t) — E(0,t)} dN;(t) (13)
and Cvone o
H(o)= ) —;/0 V(0,1) dNi(1). (14)
Furthermore,
ul(e) = aoTk Z/ {wih (&) ~EL (0,0} an (1)
and
HY. (0) = gi)@"w - / V. 0,0a81),

where V,(r]i) 1, (6,1) is the submatrix of V&) (0,t) with row and column indexes in Tj,. Finally,

we obtain the following results.

Theorem 4. Under conditions (A;)-(As) and (By). If 521% — 0 (n — o0), and there exist
constants C1, Cy € (0,00), independent of n, such that [|AAT o, < C1 and [|[(AAT) 7Y |op < Co,
then under H(nQ) with ||Ay|l2 = O(y/my/n), where k can be 1 or 2, we have

(i) Sparse structure of the estimators: (8, — 0*)t,c =0 and (ékp —0%)5,c=0;
(ii) Asymptotic linear representation:

(1) Alternative estimator: \/N(ék,a—e*)fk = N1 1(6")U Sr)(H)—H’n, where [|r,||2 =
op(1);

(2) Null estimator:
VN(Bro =075, = NTPLO) I, — ALQ4(07) A (09)}UL)(6)
—1,1(0)A[ Q4 (6) A, + 17,
with [|r}[]2 i 0, where I, denotes the identity matrix of order g,;
(iii) Second-order approximation:

2{QF) (0r.0) — QP (B10)} =

(mn>7

12



where ¢, = VN{AT?(0;,)AT}/2(AAT) AL (0k.a)(Oka — Oko)s,. Moreover, un-
der Hy2, we have |G — G xll2 EiR 0, where ¢, = \/Nﬂllgﬂ(9*)1~Xk1,;1(9*)U7§’f%k(0). In
addition, if (Ag) and (Bp) hold, then (%, ~ Ny, (0, ¢Ly,,).

Remark 2. The post-screening model sizes |Sy| in Step (i) are random, because without
condition (Ag) the selected set Sk need not coincide with the true support S. Consequently, the
ensuing Bahadur expansions depart from the classical fixed—dimension form, as the estimator
dimension is data—dependent. Moreover, Theorem 4 shows that, in large samples, the partial-LR
can be represented as a quadratic form. Specifically, it is equivalent to the squared Euclidean
norm of the appropriately standardized difference between the parameter estimates obtained
under the null and under the alternative. This approximation is the key tool for deriving the
large—sample distributions of the refitted DR-PLR, as well as for the dimension-reduced Rao

score and Wald tests.

Corollary 2. If (A1), (A2), (43), (A1), (A4s5), (As), and (B;) hold, then under H" it § =

a,2?

S, = S, we have
1
Tz = 5lIGn1 + Cuallz + 0P (mn). (15)
By (15) and Theorem 4(iii), for each split k the vector ¢, i serves, up to negligible remainder,
as an asymptotic surrogate for the log—partial-likelihood ratio on that split. Summing these

surrogates therefore provides a full-sample summary of the likelihood evidence. In conjunction

with (15), this motivates defining the refitted DR-PLR statistic for the entire dataset as

. (16)

1
Tn,L = 5 HCn,l + Cn,Q‘

which has the same limiting law as T}, 2 (see Section 3.2).

By Theorem 4(iii) we have, for each split k,

k
T8 = Gukl2 + op(mn).

It follows that
Thr = T;,L + <;1€n727

where CJ, 1Cn,2 serves as a correction that recoups the power loss of 777 | caused by the inflated
degrees of freedom.
The choice of T}, 1, is justified on two grounds. First, combining (15) with (16) shows that T;, 1,

closely approximates the statistic T;, 2, and in fact they have the same asymptotic distribution
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(see Theorem 5). Second, T, y, mitigates the spurious-selection issue by aggregating the (, 1’s,
which encode the splitwise likelihood information, rather than relying on two independent chi-

square contributions.

3.2 Asymptotic distributions of the refitted tests

We now characterize the null limiting law of the refitted statistics.

Theorem 5. Under conditions (A;), (A2), (A43), (A4), (4s5), (B1), (B2), and (By), suppose
S;f/gn — 0 (n — o0), and there exist constants C1,Cy € (0,00), independent of n, such

that [|AAT|op < Oy and [[(AAT) op < Co. Then, under Hop, T ~ x2, , where T is

N a a a
Tov, Tnw, or Ty, s, which means that 1), y, ~ X?nn, Thw ~ X,?nn, and 75, s ~ X%@n.

Remark 3. For a test at level «, reject Hy whenever 1" > Xgnn,a (the upper-a quantile of ann),
with T € {T}, v, T w, Tn,s}. By Theorem 5, each refitted statistic has the same asymptotic null
law as the full-sample PLR statistic 7}, 2. A notable distinction is that the refitted procedures do
not require condition (Ag)—a key assumption used by T}, 2 and by certain regularization-based
tests (e.g., the partial-penalized LR of Shi et al., 2019) to attain an oracle screening property.
As a consequence, the refitted tests exhibit stable size and reduced tuning sensitivity across a

broad range of .

We then establish the asymptotic alternative distribution of the refitted statistics. To give
the asymptotic distributions of the refitted statistics under local alternative hypotheses, we

introduce the following notational convenience. Let

f v PQu0)/08gn 08T 9Qu(0)/08y0 0T
WO = ELN (5 @) 08umint 0.0 ov )

L'(6) 1,2(6)

where k = 1,2. Write the inverse matrix I, *(0) as I, 1(0) =

) with diagonal

blocks of dimension $,i X spr and ¢, X gn, respectively. Then
[122(0)] 7! = 199(8) — 11 (0)e™ T [eW)1,;(0)8®) T~ 1e®)1,5(8).
Define

n,=n{AJATZ(0M)AT] A, + A [ATE(6M)AT] A, }/2,
* — * — 2
nh = n||[ATZ(0)AT]TV2A, + [ATZ(01)AT]T2A, |7 /4

14



Theorem 6. (Asymptotic alternative distribution) Suppose the conditions in Theorem 5 hold,
% — 0 (n — 00), and there exist constants C;, C € (0, 00), independent of n, such that
|AAT||op < Cy and [[(AAT)Lop < Co. If |Ayll2 = O(y/my/n), then under the alternative

B B 2
HE T 803, (1), where Tis Ty, Tow, 01 s, and 02, = (46) || 23 {ATR () AT} 124,

Remark 4. Theorem 6 implies that the refitted procedures are consistent even without invoking
condition (Ag). In the boundary case A, = 0, the local alternative collapses to Hy, so the
asymptotic laws under the null and under the alternative are the same. Consequently, the

refitted tests attain the nominal level asymptotically and thus exhibit correct size under Hy.

Remark 5. Theorem 6 delivers the asymptotic local-alternative laws for the refitted procedures
without invoking condition (Ag). This permits a principled assessment of power across the wide
range of )\, values typically used in practice. If (Ag) does hold, then P(gk =8S) — 1 and

consequently 17,217L = 17,2170. In particular,

a 2 (2 a 2 2 a 2 (2
Tn,L ~ Xmy, (nn’o)v Tn,w ~ Xm,, (77”,0)7 Tn,S ~ Xmny (nn,o)’
so the refitted tests are, asymptotically, as powerful as the oracle DR-PLR benchmark.

Finally, in settings with strong covariate correlations, the refitted procedures retain appreciable

power, often rivaling the oracle PLR benchmark.

Theorem 7. (Nonignorable power) Under conditions (A;)—(4s), (B1), and (Bs), we have n2 <

and

2 2 2 2 : _ 1 _ * 1+p*
L and K(p*)nn,o < YRS < Mo with K(p*) — 1+4c+4c2 where ¢ = \/10_7 1_2*

p* €[0,1). In addition, if condition (Ag) holds, then n2 , =72 .

Remark 6. One readily checks that K(p*) € [0,1] and decreases strictly in p*. Table T1
reports how K (p*) evolves as p* varies. This implies that, in adverse high—correlation regimes,
the power of the refitted procedures is governed by p*: their power is maximized at p* = 0 and
decreases as p* grows. A lower limit for 777217]4 further guarantees a nontrivial power floor for the
refitted tests relative to the oracle PLR benchmark even under the most correlated scenarios.
Moreover, if condition (Ag) holds, the refitted tests match the oracle power regardless of the

value of p*.
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Table T1: Change in K (p*) over p*

P 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

K(p*) | 1.000 0.658 0.417 0.256 0.151 0.084 0.043 0.020 0.007 0.002

4 Simulations

For each replication, we drew n = 400 independent feature vectors W = (wy,..., wp)T from
N,(0, ) with ¥;; = pli=7l, where p = %. The whole experiment was repeated 1000 times.

The censoring time C is exponentially distributed with mean U x exp{WTO}, where U ~
Unif(1,3) was re-sampled at the beginning of each run. This design, adapted from Fan and
Li (2002), yields roughly 30% censored observations in every simulated data set. We used
adaptive LASSO and SCAD penalties, and the associated regularization parameters A, were
selected using the Schwarz information criterion (SIC) following Shi et al. (2019).

We compared DR-PLR against a quasi-likelihood ratio benchmark computed under oracle
knowledge. The oracle test assumes knowledge of the zero positions in the parameter vector
0, providing a benchmark for optimal performance. We investigated two dimensional settings:
low-dimensional with r, = p, + ¢, = 200 and high-dimensional with r,, = p, + ¢, = 2000. We
also examined two levels for the dimensionality of the parameters of interest v: ¢, = 1 and
Gn = [0.5n1/ 3] = 4. In this paper, our discussion of the DR-PLR test mainly centers on two
types of hypotheses: global-null test:

Hop:~v=7r vs. Hy1:v#r
and general linear hypothesis test:
H(LQ: A")/—AT‘:O VS. Ha72: A’)’—AT#O

For each illustrative case, we estimate the null rejection rate and power for each test by running
1000 simulations. We set n=400 in each simulation. Since we use a data-adaptive L; regularizer,
we must compute the associated weights 6. We obtain 0 by fitting the Cox partial likelihood
with an additional Ly (ridge) penalty, following the idea of Fan & Li (2002). The ridge term
guarantees that every coordinate of 6 is non-zero, so all adaptive weights % are finite. For
the DR-PLR test, we choose A, by minimizing SIC; unless noted otherwise, we denote the
SIC-minimizing choice by S\Opt. For the oracle quasi-likelihood ratio test, no A, selection is
needed since the support of the nonzero parameters is assumed known.

We analyze two hypothesis-testing problems: (i) Hoi1: v =0 vs. Hg1: v = 8¢n~1/2,

where Y= 9197; and (ii) HO’Q : A")’ =0 vs. Ha’Q : A")’ = 867171/2, where Y= (9197, 91987 9199, GQOO)T
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and A = (1,1,1,1)". We consider testing Hyj ; versus a sequence of contiguous alternatives Hy ;,
with £ € {0,0.2,0.4,0.6,0.8,1}, where j = 1,2. When & = 0, the null and alternative coincide,
so the null rejection rate should be approximately the significance level a. As the departure
parameter £ increases, the power should increase accordingly.

In each replication, we randomly split the sample into two equal halves D; and Dy. Using
Dy, we fit a penalized Cox model (adaptive LASSO or SCAD) with A, chosen by BIC to obtain
a working active set for the nuisance part. On Dy, we refit the unrestricted and restricted
Cox models (the latter imposes the linear constraint through reparameterization) and compute
the DR-PLR “information vector” ¢, ;. Then, we swap the roles of the halves to obtain (,, o
analogously. Finally, we combine the two pieces of information to form the refitted DR-PLR
statistic T}, 1 = % HCn,l + Cn72H§’ which, under Hy, is asymptotically x2,, where rank(A) = m.
The p-value is obtained from this reference distribution.

To calculate the type I error rate, we conducted 1000 simulations under Hy at each signif-
icance level o = 0.1,0.2,...,0.9, and recorded the rejection count of Hy. We then treated the
resulting rejection proportion as the empirical type I error probability for «. Figures F1 and
F2 report the empirical size under Hp; and Hp2 against the significance level a for all tests
with A\, = S\OPt. Taken together, it seems that, regardless of the dimension configuration and
whether the adaptive LASSO or SCAD penalty is employed, the DR-PLR test maintains the
significance level, and its performance is comparable to that of the oracle test.

Table T2 reports the rejection probabilities under H, o at the nominal level o = 0.05 for
three different levels \,: 0.755\0pt, j\opt, and 1.255\0pt. These three levels correspond to under-

shrinkage, right shrinkage, and over-shrinkage, respectively. From Table T2, we conclude that:

(i) Across all dimensions (r,, = 200 and r, = 2000) and all three tuning levels (0.755\0pt, ;\Opt,
and 1.255\0pt), the empirical power of the DR-PLR test is virtually indistinguishable from
that of the oracle PLR benchmark.

(ii) At S\Opt or 1.255\Opt, DR-PLR matches the oracle while maintaining the nominal 5% level,

making this range the safest choice when size control is paramount.

(iii) The 0.755\Opt level provides the highest power—especially with SCAD—but previous size

tables show a modest inflation of the null rejection rate under this tuning.

4.1 Real Data Example

For empirical analysis, we examine a gene expression dataset consisting of 191 biopsy specimens

from untreated follicular lymphoma patients—a subtype of non-Hodgkin’s lymphoma. The
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Type | Error for Two Groups of P-Values Type | Error for Two Groups of P-Values
o ] o ]
- -
o | @ |
o o
s <9 5 @ |
= o = o
= =
g < g <
2 o 7 2 o 7
N N
o o
o | o |
o o
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
a a
(¢) m = 2000, adaptive LASSO (¢, = 1) (d) n =2000, SCAD (g, =1)

Figure F1: Plot of the null rejection rate versus o under Hp 1. The blue curve depicts

DR-PLR’s null rejection rate; the red curve gives the oracle QLR counterpart.

specimens were collected at seven medical centers between 1974 and 2001. The median age of
the cohort at the time of diagnosis was 51 years, and the median time was 6.6 years. Total
RNA extracted from fresh-frozen tumors was profiled on Affymetrix Human Genome U133A
and U133B microarrays.

The initial expression matrix comprised 44 187 probe sets, of which 40 330 mapped to anno-
tated genes. The signal intensities were logy-transformed before visualization and all subsequent
analyses. For genes represented by two to seven probe sets, the median intensity was taken to
obtain a single expression measure, resulting in 15614 unique genes. The effects of these genes

were treated as nuisance parameters, while five clinical characteristics—extra-nodal site, age,
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(a) n = 200, adaptive LASSO (¢, = 4) (b) n = 200, SCAD (g, = 4)
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(¢) m = 2000, adaptive LASSO (g, = 4) (d) n = 2000, SCAD (g, =4)

Figure F2: Plot of the null rejection rate versus o under Hp 2. The blue curve depicts

DR-PLR’s null rejection rate; the red curve gives the oracle QLR counterpart.

LDH level, performance status (Pstat), and stage—were designated as parameters of interest.
Because some samples contained missing values, we ultimately retained only 156 complete cases:
78 in the training set and 78 in the test set. On the training set, we fit a penalized Cox model
(adaptive LASSO or SCAD) with \,, chosen by BIC to obtain a working active set for the
gene nuisance block. On the test set, we fit two Cox models in turn: an unrestricted model
that includes the clinical covariates, and a restricted model that imposes the null-hypothesis
constraints on the clinical covariates. Using the estimates and information matrices from the
two fits, we construct the first “information vector” ¢, ;. We then swap the roles—screen on

the test set and refit on the training set—to obtain ¢,, 5. Finally, we combine the information
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to form the statistic T}, 1, = %Hcml + Cn72| ;, from which the p-value is computed. Using the

joint constraint on the clinical block A = I5 (df = 5), the refitted DR-PLR test strongly re-

jects the global null (p < 0.001), indicating an overall clinical signal after accounting for the
screened gene set. For marginal (df = 1) tests with A = e;-r in the order (Extra-nodal site,
Age, LDH, Pstat, Stage), the p-values were: ppyua = 0.149, page = 0.001, prpr = 0.006,
PPstat = 0.011,  pstage = 0.093. Thus, Age, LDH, and Pstat remain significant after adjust-
ment; Stage is marginal (not significant at 5% but close at 10%); and Extra-nodal site shows no
independent association. These findings align with the joint rejection and underscore that the
clinical block contributes to risk, with Age and LDH carrying the strongest adjusted effects.
Table T3 displays the results of the BIC method with adaptive LASSO and SCAD penalties.
Both penalties yield sign-consistent coefficients for the genes jointly selected, but the resulting
sparsity differs: adaptive LASSO retains 20 genes plus the five clinical covariates, while SCAD
selects 13 genes plus the same covariates, producing a more compact model. Across meth-
ods, Age, LDH, performance status (Pstat), and Stage are positively associated with risk and
statistically significant, while Extra-Nodal Site is included but not significant. Among the
genes jointly selected by the two methods (e.g., KRT4, LOC339448, PCDH11X, SNN, SOX15,
YLPM1, C190rf10, Cb5o0rfl9, FLJ10815), the coefficient signs are concordant (i.e., the effect
directions agree), indicating a robust determination of effect direction. Signals such as YLPM1
and LOC339448 show robust negative associations under both methods, whereas KRT4 exhibits
a positive association; several additional genes are method-specific (e.g., GMPPB appears under
adaptive LASSO but not SCAD), indicating some sensitivity to the choice of penalty. Overall,
the two procedures agree on the dominant clinical predictors and on effect directions for many
shared genes, with SCAD offering a sparser signature and adaptive LASSO capturing a broader

set of candidates; method-specific findings warrant validation on independent data.
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Table T2: Power (%) for Cox model under H, > at a = 0.05.

Method An/Aopt Test rm €=0 02 04 06 08 1.0
DR-PLR N/A T° 200 6.7 11.2 30.6 56.6 81.5 94.2
N/A T° 2000 6 10.6 31 584 81.2 93.3
with adaptive lasso 200 7.6 12.1 324 57 80.3 92.5
2000 8 132 33 57 79.1 91.9

0.75
with SCAD 200 8.7 159 36.3 60.2 81.8 92.6
2000 129 204 39.9 64.0 81.9 93.3
with adaptive lasso 200 6.3 11.8 29.9 56.1 80 93.1
2000 5.9 129 29.7 56.2 79.4 92

1.00
with SCAD 200 6.4 11.6 30.1 56.3 80.6 93.2
2000 6 12.3 29.8 56.7 79.2 92.2
with adaptive lasso 200 6.3 11.8 29.8 56 80 93.1
2000 5.9 129 29.6 56.1 79.3 92

1.25
with SCAD 200 6.6 11.6 30.2 56.2 80.6 93.2
2000 6 12.2 29.8 56.7 79.1 92.2
Refitted DR-PLR N/A T° 200 6.7 11.2 30.6 56.6 81.5 94.2
N/A T° 2000 6 10.6 31 584 81.2 93.3
with adaptive lasso 200 6.6 11.1 30.5 53.7 79 91.6
2000 6.5 12.6 29.1 54.1 76.4 90.9

0.75
with SCAD 200 6.5 12.2 307 54 779 919
2000 6.9 12.5 29.3 53.9 76.3 90.5
with adaptive lasso 200 5.8 11.4 27.8 51.7 75.9 90.6
2000 7 119 25.8 49 71.7 86.1

1.00
with SCAD 200 6 10.3 27.3 51.7 75.9 90.6
2000 6.9 11.7 23.5 44.4 65.7 83.2
with adaptive lasso 200 6 11.6 27.5 51.4 75.8 90.4
2000 7.4 11.7 25.1 48 70.1 85.3

1.25
with SCAD 200 6 10.3 27.2 49.8 744 89.3
2000 6.8 11.7 23.5 44.4 65.8 83.2
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Table T3: Data estimation summary of the genes

Gene annotation adaptive LASSO SCAD
AOF2(AL831896) X 0.4584(0.3976)
C190rf10(BQO73612) 1.9157(0.6078)*** 0.6480(0.5147)
C200rf67(AK056553) 0.4425(0.6451) X
C50rf19(AK056193) 0.7610(0.3789)** 0.5548(0.3690)
CAPZE(CAK126650) 0.1609(0.7874) X
FLJ10815(BC063399) 0.1037(0.4539) 0.8649(0.4282)**
FLJ20580(AK092734) —0.8112(0.8082) x
FLJ20859(CR612311) —0.5694(0.6754) X
FUT10(BCO63462) 0.4219(0.3749) X
GMPPB(CR621384) 1.8080(0.5788)*** X
GUKI(AK124677) —1.1087(0.6309)* X
HERC3(D25215) X —0.3559(0.1475)**
KRT4(AK056254) 0.9590(0.2723)*** 0.7661(0.2314)***
LOC339448(AK125092) —1.9170(0.4793)*** —1.61302(0.4393)***
PCDH11X(AF332218) 0.4826(0.2186)** 0.3406(0.2154)*
POLR18(BX647683) 1.4799(0.5375)*** X
RABL4(BX537634) —1.3685(0.5941)** X
SNN(NM-003498) —1.1596(0.4687)** —0.9168(0.3629)**
SOX15(AB006867) 0.0712(0.5503) 0.0999(0.5040)
TFBIM(BU739337) —1.0437(0.5004)** X
TM9SF1(BX161390) —1.2249(0.5666)** X
UNQ846(BC071780) X 0.4623(0.2367)*
XBP1(AK093842) X 0.3118(0.2028)
YLPM1(AK090435) —2.9386(0.7165)***  —2.3165(0.6005)***
Extra Nodal Site 0.0159(0.3758) 0.3962(0.3649)
Age 0.7891(0.3285)** 1.1661(0.3246)***
LDH 0.7833(0.2987)*** 0.8772(0.2902)***
Pstat 1.2520(0.3920)*** 0.9276(0.3528)***
Stage 1.2164(0.4244)*** 1.3783(0.4225)***

Notes: X = not selected. Superscripts ***, **, * denote significance levels.
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Appendix I. Notation and conditions

First, we employ some notations to ease presentation. For a matrix C, choose M from its
column labels {1,...,p}, Suppose [M| is the count of nonzero components in M, and let Cy; be
the submatrix of C formed by column indexes in M. Given C, write Cng, M, for the submatrix
with rows indexed by M; and columns indexed by My (M; C {1,...,m}, My C {1,...,p}).
Let B € R**® be symmetric and Apax(B) and Apin(B) are maximum and minimum eigenvalues.
For a generic eigenvalue, we can use A(B). For any t x 1 vectors a and b with the i-th element
being a; and b;, respectively, we let |a| = (|ay],...,|a/)T and aob = (aiby,...,a:b;)". Further,
we let ||aljc = max; |a;| and ||al|p is the count of nonzero components of a. For any s x t
matrix F with the (¢, j)th element being Fj;, let |F||s, ||F|1, and ||F||2 be the Lo, L1, and
, [Flln = max; 35, |Fyl, and
IFll2 = {Amax(FTF)}/2. Denote by s, = ||Skllo, and d, = 27! minjjcg 07| which is the half

Ly norms, respectively, defined as ||F|joc = max; > .. | |F;;

minimum signal length of B%. Let W = (wy...,w,)' be the full-sample design matrix, and
let Py = W(WTW)"!WT be the projection matrix. Further, let W, be the j-th column of
W. Define Iy(0) = E(—n"102Q,(0)/06000,;).

Next, we introduce the following regularity conditions for our theorems.

(A7) For each A\, > 0, the penalty p(t;\,) is concave and nondecreasing on [0,00) and is
continuously differentiable with right derivative at the origin satisfying p'(0+;\,) > 0.
Moreover, for any fixed ¢ > 0, the map A — p/(¢; \) is monotone on (0, c0), while p'(0+; \)

does not depend on .

(A2) Fix a compact neighborhood B of B* for which the statements below hold:

(i) For j can be 0, 1, and 2, take sU) defined on B x [0, T]—scalar for j = 0, vector for j = 1,
and matrix for j = 2—so that the conditions below are satisfied sup(g y)ep, x[0,7] HS,(lj) (B,t)—
sV (B,1)||, = op(1).

(ii) On B x [0,7], s admits a positive lower bound and sU) are uniformly bounded.

Moreover, the collection { s\ (-, ) : (4,t) € {0,1,2} x [0,7] } share a common modulus of

continuity at 8*.

s(3, 528, y
(i) Set e(8, ) = 52, v(8,) = 2552 ~e(8,1)°2, and £g(t) = [y v(8,u) s (8", u) dAo(u).
Write v(3,,t) for the population analogue of V(83;,t), obtained by the substitution

Sy(f) — s, Let

zﬁl(t):/o v(By,u)sO (B, u) dho(u),
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Where X5, = Xg,(7). Then, for all (3,t) € B x [0,7], 9s0(8,t)/08 = s(V(B,t) and
M (8,t)/08 = 5P (B,t). There exists ¢y > 0 with Amin(¥gz) > o for all n; moreover,
Ao(T) < 0.

(iv) Suppose d;, = sup;¢o, 7 ]57(10) (B*,t)—s0(3,t)| and ¢, = suPsefo,] [1En (8% 1) —e(8", )|
dp = 0,5.(1), and ¢, = Oy5.(1).

(Az) Let ;5 = [y (Xij(t) — e;(8",t)) dM;(t), with e;(B*,t) the jth coordinate of e(8*,t). We
impose a Bernstein—Cramér moment growth condition: there is a positive value M for
which, for all integers m > 2 and all j, E|e;;|™ < m' Mm=2 2, 032' = Var(g;;) < oo.

(Ay) 7“0(25{) < (Ch, ( 5*) < Cy for some constants C7, Cy < oo.
(45) 3C < o0: Blsupgere, V(1) [w(n)3ePi O] < s,
(Ag) Assume the tuning parameter \, satisfies that
n_1/2+(%0‘+°‘1_1)+ T2 — o(\,) and Vs (Br; An) — 0
where a; as in (A8) and ag > 0.

(A7) Let No := Boo(B7, B2) = {0 €R*: ||6 — Bylloo < B, ), Ko = SUPgep;, K(p, ). Assume
)\min 2 *
Br=w(Vs 2 g (B))), e <

(Ag) Ler « be a positive value and 0 < C' < oo,

= min (C";//((%%-)), Op(nal))

where B(3%, 8) denotes the radius-3; ball in R* centered at 37, for v = (vi,07)7,
1 Mn n 1 1

V(t,v)H

sup sup
0<t<7 v1€B(B1.67)

2,00
SO (v, )82, (v, ) = S (v, £)(S (v, 1)) T
(S (v, 1)}?

and HV(t,v)HQW = maXHxH2:1 HV(t,V)XHOO.

V(t,v) = € RP—9)xs

Appendix II. Proofs of theorems

For clarity of exposition, we first fix notation and collect a few auxiliary lemmas, and then proof
these theorems.

Suppose M, = {i: ] # 0} and MS = {i: B = 0}. Then we can get

U(B,.1) = / {wi(u) — ED (B, w)} dNi(u),
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with ED(By,u) = BO((8,,0),0). Then U(B,,1) = Ly fy{wilu) = B (81, w)} dMi(u),
since >, fO{wi(u) - Eg)(ﬁl,u)}dAi(u) = 0. Use U(By,7) as U(By). Let dU(B;) be the
derivative of U(3;) over B;. Then

-NTou(E) = N / V(8,1 Nt

/Vﬂl, (87, 1) Ao(t) dt + N~ /Vﬂh)dM()
= 1, +Wp,, (A.1)

where and thereafter Sg)((ﬁl, 0),t) = Sg) (B4,t) for £ =0,1,2, and V(8,t) = V((8,0),1).

PROOF OF THEOREM 2.1. Let 3 € R? be any local maximum point of (3). Then its KKT

condition reads

Z/{X B,t)}dN;(t) — nh\,u = 0, uecdP(B),
with P(8) = 2P, p(|8:]) and OP(B) is the subgradient of P at 3. Coordinate-wise, u; =
P (18i]) sen(Bi) (i € Mx),and |ui| < p/(0+) (i € M€), with M_{s : B, # 0}. 0

PROOF OF THEOREM 4.1. Let B? is locally optimal for the problem of dimension s. It is

enough to note that

min Auin{ [ V(8L AN()} > nhus(p.By)

Bl €0

guarantees the concavity of the penalized objective C(3;,7). Under these conditions, the crite-

rion admits a single global maximizer, namely ,3(1) O

PROOF OF THEOREM 4.6. Since 52 =0 and B be a maximum point of
Z/ (87w, (1) — log (50(8.1) )y (¢ —an)\n 14)), (A.2)

f)’l is such that
U(Bl) - n>\nP’(|IB1|) °© sgn([}l) =0, (A.3)

for brevity, write U(3,) = U(B;, 7). By Taylor expansion, we can get

U(3,) = U(B}) +9U(B}) (B, — B}) + 12(By), (A.4)
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with 8, € [B}, B1], and 7,,(8,) equals

0°U(By)

1 * *
5 j:k(ﬁlj — B1;) (B — 51k)m-

Combine (A.3) and (A.4), we can get
V(B - B7) = (=NT'ou(B)'nTPU(BY)

+ (=NT'OU(BD))'n P (By)
— (=N7'OU(B) 0P Aap (11 ]) 0 sgn(By)- (A.5)

_10%U .
It can be shown that | N laﬁlj(agi,z l2 = Op(V/s) for B, € B(B7,5;;), hence

IN"'ra(B)ll2 = Op(V5B1 — Bil3).

Using (15), |18y — Bill2 < 181 — Bill2 = Op(v/s/n+ V/shap/(8})), thus

IN " 2 (B1)]l2 = OpfV/5(V/5/n + Vshap' (B;))7}-
We note that —N~19U(B}) = Zg: + Wa:. Combining Lemmas 4.1 and 3 yields that for every
b, € R® with ||by|2 = 1, if % 50 (n— oo),

n

bISY (- N LU (B) e (By)
WYy - |~ NTIOU(B))[20p(sv/5/n + sv/5A2 0 (55)?)
= nY20,(1+ 5/v/)Op(sv/5/n + sVENEH(B2)2) = 0p(1)

IN

Using the conditions stated in Theorem 6.4 we can get

bISY2 (NI OU(B]) Vadap (1B1) o sen(By)
ISH20e - | = N7'OUB)) [ov/snhal# (5))]
= Oy(1+ /)0, (/smAal 0 (B)]) = 0,(1),

IN

it demonstrates that the latter two terms in the right-hand side of (A.5), when pre-multiplied
by ng%fr’, are 0p(1). Combining this and (A.5), we can get

Vb, BEE (B = BY) = b B (=NTTOUB) I TU(BY) + 0p(1)
Pn + 0p(1).

By using Lemma 4.2, we can get
Vb S (B — BY) = b1 + 0p(1).
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We only need to show ¢, is asymptotically Gaussian; consequently, Bl is asymptotically normal

by Slutsky’s theorem. For this purpose, we define Zg- (t) fo (BT, u) S(O) (87, u)\o(u) du and
b (t) = b B0 2U(BY 1),

Let Zp: (1) = Zgz, ¢pn1(T) = ¢n1, where ¢y is a centered martingale w.r.t. (F), whose previsible

quadratic variation is

@u) = [ BIsN Z( ~EO@" W) dM(w)

t
_ / bl 3,2V (8%, u) S0 (B%,u) o ()5 by, du

1/2

= bi%, T ()2

n-

With |[b,|l2 = 1. According to Lemma 4.1, <¢n1 > = bTE 1/21' 2_1/2b 2y 1. Applying
the martingale CLT [? |, ¢p1 is asymptotically N(0,1).
O

Appendix II. Proofs of theorems

Proof of Theorem 1. Our idea is to derive from the Karush-Kuhn-Tucker (KKT) equations
an upper bound for |N||o. Our proof consists of three steps: (i) We prove that ||(8 — 6*)x|j2 =
Op{\/(sn + @n)/n} and ||(8 — 0*)xe||y = Op{t,/(nAn)}, where t,, = min{log 7y, s, 4 ¢n}; (ii)
To build the inequality, ||p(6x,  n)ll2 > c1 \/MS (iii) To establish the desired bound in the
theorem; (iv) To show that, under condition (4g), P(S =S) — 1

Step (i). Let 8 = 0 — 0* and r,, = p, + ¢. By Lemma 4(ii), we have

102]l2 = Op{V/(sn + qn)/n} and [|dze[ly = Op{ta/(nAn)}, (A.6)

where t,, = min{logr,, $n + qn}-

Step (ii). Since 8 maximizes the objective function in (8), by the KKT conditions, we have
U(6) — nA\,h =0, (A7)

where h; = 0 for i € D, h; = p’)\n(\éi\)sgn(éi) for i € S, and h; € [—p/(0+), ' (0+)] for i € T°.
This implies that

Ué(é) - TL)\np(ég, >\n) =0,
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where p(0s, \n) = {p/\n(\e )sgn(6;),i € S} T collects the entries of h whose indices lie in S. In
the same way, we can use p(ON, An) to collect the entries of h whose indices lie in N. Note that

N=S \ S. Combining subadditivity of the norm with the mean—value theorem, we get

AnllpBs, M)z = [[Ux(0)]2
< [[Ux(8)]|2 + [[Ux(6) — Ug(8%)]2,
= [[Ux(07)]]2 + |Hg,x(0+)6]|2, (A.8)

where 0, lies between 6* and 6. An application of Lemma 4(i) leads to
1Ux(8)lle < 1U(8)lloc = Op(+/10g(ra) /1),
which, combined with A, 1\/m — 0, yields that
P(|Ux(0)]loo < c1An/2) — 1, (A.9)
where ¢; is defined in condition (A;). For any j € N, (A.6) ensures that
051 = 16 = 051 < |62l = Op{tn/(nAn)},
which, combined with ¢, = min{log 7y, s, + ¢} and A\;'\/log(r,)/n — 0, leads to
P(l6;] <A) =1, jeN.

By infycpo,x, p(; An) > c1 in condition (A;), we establish that

lo@s M)l = 3, 05D Pr(lp@s Al = ey/INT) 51 (a0

Step (iii). It follows from (A.8)-(A.10) and Hélder’s inequality that, w.p. 1-o(1),

M/ IN[lo < [[Us(07)|2 + |[Hx x(65)5]|2
INJlo [Us(6%)]loo + || Hx 1 (0:)]2

0.5e0 00y N0 + /[ H (0212 - 6" Ho e (6.)3]]2,

IN

IN

which combined with condition (As) yields that

VINIo < 200 2ei0) ™1 Hs (0. 2 - (18203 + [155113). (A1)

Applying the mean value theorem, then we can get

va(0:) = v2(0") + diag[va(6") o (W3},
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with 8° ¢ [0, 07 and d =6, — 6*. Thus, by Wé = Widp + Weedpe and the definitions of
©1(+), p2(+) and ¢3(+) in condition (A4), we get

N

[Hex(0:)]2 < [[Hyx(07)]|2 + | N "W ldiag[vs(8") o {W5} W]l
e1(IIN]j0) + @2(IINlo) 1011 + @3 ([N [0)]|dx<]1-

IN

This, combined with (A.6), (A.11), max{\/(sn + qn)/n, /10g(pn + ¢n)/n} = 0(\,) in Condition
(Ay), yields that

VINTo < 2001 e0) {1 (INllo) + 2 (INl0) 1811 + 5 (INo) 18z |1}/ {AR (8712 + 167 1)}
< (050, 1)*{e1(INIlo) + 2(IINIlo) (sn + an) v/en/n+ V/tu/n3(INJl0) }/2 - (A.12)

holds with probability going to one, where the last equality follows from ||dz|l1 < (sn +
)|zl = op((Sn + qn)\Ven/n) and ||0pely < |0ze]i = OP(ntTnn) in (A.6) for ¢, — oc.

This provides an upper bound of HNHO But this upper bound is not an ideal one. Next, we

derive an ideal upper bound, which independent of HNHO Define the set
M ={m e N| m>p;{pi1(m) + pa(m)(sn + gu)Ven/n + Vtn/npz(m)}},
and let m = 3pa(s, + ¢n)/p1. Using condition (A4), we get

w1(m) + @a(m)(sp + gn) vV en/n + p3(m)\/tn/n < 3pa(sp + gn). (A.13)

This implies that 3p2(s, + qn)/p1 € M, i.e. M is well defined and not empty. We will show
that

INlo < 0.5p1" min {1 (m) + @a(m)(sn + an) v/ Cn /1 + V/tn /103 (m)}. (A.14)

In fact, for any M € M, if |N|lo > M, then, by (A.12),

A

INJlo < 0-5pfl{901(||N||0)+¢2(IINH0)(Sn+qn) cn/n+ vVt /nps(INJo)}

= 055 o (50001) 400 (10 01) (s, 4+ )y + tn/mp(H o 5y

0.507 {1 (M) + o (M )sn+qn cn/n + tn/nwa(M)}[HNHO/M]a

IA

where we can get the final step from Lemma 3 and [a] represents the minimum integer greater

INJo) < 9Nl

than a. Since { we have

INTlo
M )

INJlo < pr* 01 (M) + @2 (M) (sn + gn)Ven/n + VV/to/1ps (M)]
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which implies that

M < p7 o1 (M) + 2 (M) (50 + an)Ven/n + Vtn/nps (M)].

This is in contradiction with M € M. Thus, ||N|lo < M holds for any M € M, which combined
with functions ¢;(-) being increasing leads to (A.14). It follows from (A.13) and (A.14) that
INlo < 1.507 ' pa(sn + ¢n). Thus, P{|N|lo < cosn} — 1, where co = 1.5p7 *pa.

Step (iv). Under Condition (Ag), we can show that P(S = S) — 1, following the argument
of Theorem 2.1 in Shi et al. (2019). Then the result holds. To this end, it suffices to verify that

their conditions are satisfied, that is,

(1) there is a local mazimum point @ of Q,(6) — n Y5 pa, () with the constraint Oz =0
such that ||é — 0%z = OP(\/m)i
(2) 0 is indeed a local mazimizer Qn(0) — nZ?Zl D, (0).

Similar to proof of Lemma 4, we have result (1). To prove result (2), by Theorem 1 in Fan

and Lv (2011), it suffices to show that
1U2<(8)lloo < nAnp(0+),

which can be proved by adapting the argument for Theorem 2.1 in Shi et al. (2019). O

Proofs of Theorems 2 and 3. For convenience, the proofs are put behind the argument

for Theorem 6. O

Proof of Corollary 1. Using Lemma 13(i) that the result holds. In particular, if there
is no nuisance block or the cross-information between 3 and = vanishes, we note tha that the

equality holds. O

Proof of Theorem 4.
(i). The sparsity results are proven in Lemma 8.
(ii). Result (a) is obtained in Lemma 8(i), and Result (b) is straightforward from Lemma 8(ii).
(iii). Applying Lemma 11(ii),(iii) leads to
2{QW(0x) — Q) (B0,)} = IGu,k 13 + op (ma),

Using Lemma 11(iii) with A,, = 0, we establish that

ot = N720,%(09) AL 107U (0%) + 0,(1) = ¢ i + 0p(1).

Ty
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Denoted by Ay = (O, xs,,A) and Qo {A I;4(6%) AT}_ . For convenience, by the
definition of Wy, let Wy = (w(lk%, . wg\l;)T) . Under condition (A4g), P(S =S) — 1. Then

N
Ge= Y NTV20Y2(0M)A1;1 (07U (67) ka,

i=1
which be a sum of iid RVs for which En;, = 0 and En;k(nzk)T = N~1¢I,, . Applying the
Cauchy-Schwarz inequality, condition (Bz)(i), and ||Q(1,/2(0*);&OI;1/2(0*)||% < 1, then we can
get

N N
mY ST Bkl = mi/S EINTY2QY2(6) AL, (6°)UY (673
3 =1

N
mi/ AN N Bl 200 Ul (6%)3 — 0.
=1

IN

This, combined with Theorem 1 of Bentkus (2004), yields that

N n
sup |P(D>_nfy € 9) — P(Z € )| < eemi/* Y Elnill3 — 0,
i=1 =1
with Z be a Gaussian random vector for which E(Z) = 0 and Cov(Z) = ¢I,,,, and the supre-

mum is taken for all convex subsets in R™n. OJ
Proof of Corollary 2. It follows from Lemma 11(iv) that
Too = [{AIZHO)AT} V20 2AIH(07)UW (67) + n' 2 ALY |2 + op(mn),

~ ~

where A, = (OmnXHSllo’A)' Under condition (Ag), we have P(S; = Sy = S) — 1. Then
Ux(6%) = Y7, UY(67), and

(AT (AT PALILY (07) = /(07 AT (67),

where Q4(6%) = {AI;H(07)A]} ! and Ay, = (0, xs,,, A) with s, = [|[Skllo. This implies
that

2
Too =271 Y N7V20%(0) {NTV2AL (01U (%) + NYV2AL Y| + op(my),

k=1
which, combined with Lemma 11(iii), leads to the result of Corollary 2. O
Proof of Theorem 5. A specialization of Lemma 9 and A,, = 0. O
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Proofs of Theorems 5 and 6. Theorem 5 be a specialization of Theorems 6, so we
only prove Theorem 6. Since the random index sets S®) and S depend on the sub-samples
{Yj(2), (2) ,j=1,...,N} and {Yj(l), (1) ,7 = 1,..., N}, respectively, it is challenging to es-
tablish the limiting distribution of the refitted statistic 7', where T"is T}, 1., Ty, w, or T}, s, since
the degrees of freedom are random. We surmount this difficulty by using the Bahadur repre-
sentation in Theorem 4, approximating 7" with a quadratic form in Lemma 11, and drawing a
parallel to the quadratic form of the oracle GLR test statistic.

Denoted by A, = (0 mnxsnk,A), Ay = (Ompxs, A), D4(0%) = (AL N (69)A]}

Q( {A I;1(6* AT}

e = 9% (0" A1 (01U (0,

and €% = Q1/%(0%)A,L, " (09 UY (67),
(k)

are subvectors of w,

(k)

i, T

(k)

where w, . and w, ./ with indexes in T and T, respectively.

Step (i). From Lemma 11, we obtain that

2
1 * — N T— * *
i Z QU5 (0") NS AL (01U (0%) + NOOA,] |2 + op(m)

*”ZN OSZ{E(k Q1,(6)"° An} 3 + op(mn), (A.15)
where T is Ty,1, Thw or Tpg. In the following, we will prove that
T =T.+ op(mn), (A.16)

— — k’ *
where T, = 27| 22, N05 N (6 1 (9,,(6%)°5 A, }I3.

Case (a). Assume that m,, is fixed. Given k and Sy, {¢& (k)}’ s be iid with 0 mean and variance
k){égk)}—r = I, , and {5 }’s be iid with 0 mean and variance E£w {£w }' =1, By
condition (Bz) and Theorem C (Serfling, 1980, p.36), with probability going to one, we have

N gk N (k)
2iz1&i — 1 and Lt Sio — 1.
\/2]\7 log (log \/N) \/2N log (log \/ﬁ)
_ A
Put A,r = (NQ(6%))°A,. Note that H n’; = 0O(1) and A\pax(2%(0)) = O(1) in
mp/n

Lemma 7, therefore

1Anxll2 < N Anax{ (24(0%))*}H Anllz = O(v/mn) = O(1). (A.17)

32



Hence, with probability going to 1,
Rt A s N0 R )3 ol V)
ISR A N0, €D og0g V)

This, combined with (A.15) and E||A,, ; + N~ Ef\;l fgk) 13 = O(my,) in Lemma 8(iv), yields
that

2 N
T o= =27 Y A+ N0 €M B(R — 1) + op(ma)
k=1 i=1
= T.+op(my),
which establishes (A.16).
Case (b). Assume that m, — co. Let L1 = Yo N7} Z%Zl[{ﬁgk)}ngk) - {£§ko)}T£l(lz)],
Lo =253, NN, AL -6}, and Ly =200, T NIHE ) 6P (€50} el

Then it can be rewritten that

HZN °5Z{€k) Qu(07)°An}3 = IIN_OBZZ{SZO Qi(07)"° An} 3

k=1 1=1
+Ln,1 + Ln,2 + Ln,3a

and (A.16) holds if L, ; = op(my) for j = 1,2,3. In the following we will show that L, ; =
op(my,) for each j.
k k k k k
(b1). Let TV = {1 e — (e%1Tel®) Then

Lny = —ZZ{&““ 1Tel — (e N T

=1 j=1
1 N k 1 N al k
S SIS DI SR VAR
i=1 =1 j=1(#1)
Notice that, for ¢ # 7,

BEHEMY T =1, BELHEINT =1, BEP (€Y =0, and BN (€10} = 0. (A18)
Then ET;; = 0 for any 1 < i, < N. Tt follows from E(¢"{&™}7 | §) = 1,,.,, and conditional
independence of {gk) and ﬁg-k) (given S, for i # j) that

EHEPY e = Trace(me {6} e €V} T]
= Trace[B{E(£{ ("} € {£]"17 | 81)}]
= Trace[B{E(¢/"{€"}7 | S) - B(€V{€}"}T 1 8k)}]

= mn
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for ¢ # 7. Similarly, E]{é’ }TE |2 my, for i # 5. Vi,j € [N]={1,...,N}, i # j, It follows
that

BT = ENe TP 1+ Be T2 2B (e e (e e
= 2m, — 2Trace(E [Z {ELO}T]- El¢ k){é } ])

which, combined with E[¢\" {¢")1T] = (2,(6*))~/22/%(6"), yields that

BIPSP = 2m, — 2Trace{ (94(6%) 07007 (0°)(2(607))**0°(6")}
= 2m,, — 2Trace{(Q4(67)) (6% (2 (6) 7},

where Trace(C' C) = Trace(C?), for any square matrix C. Thus, Var(Fz(-?) = O(m,,) for i # j.
Applying Lemma A (Serfling, 1980, p.185), we obtain that

N N
%Z >y
%J
N Var( ) i=1 j=1(#i)
It follows that L, 12 = NZZ 12] 1(40) E ) — Op(y/my) = op(my,), if m, — oo. Further,

since EI‘Z(A’) = 0, it is easy to show that L, 11 = ZN I’( ) — = op(my,). Thus, L, 1 = op(my,).
(b2). Obviously, L2 = 0 if A, = 0. In the following, we consider A,, # 0. Observe that

N
YA P
=1

Using Chebyshev’s inequality, we establish that

(1)

N*O.E)

N
—0.5) A AT &) A
N Al Y0 A /1Al
=1

" N N
j— A A - - A T A A
P<N 0'5‘ E A:;lgz(k)/HAn,lHQ‘ > an> < a,?N7! E § E[An,zfgk){Egk)}TAn,l/HAnJHg}

i=1

i=1 j—1

IN

a, "N~ IZZ sup  |aT Ble (€} ],

=1 j= 1 a€R™n [laf2=1

for any a,, — +o00. This, combined with (A.18), yields that
T L) A
P(N“( > ALEY AL, > ) < a2 0.
i=1

Hence, N 70| PR ALEEI{:)/HAnJHﬂ = Op(1), which together with (A.17) yields

N —
Z Az,lfz(k) =Op

i=1

N0 ()
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Similarly, We prove that N—0-5 Zf\il A;lﬁg’? = Op(y/my). Therefore,

2 N
Ln’Q = 2N_0'5 Z Z A;l{gik) - EEZ)} = OP(\/ mn) = OP(mn)'

k=1 i=1

(b3). Rewrite Ly, 3 as

N N
Lng=2N"" Y ()€ —oN=t S (ely el = Ll - 13

i,j=1 i,j=1

2

n,

independent and F ) _ pe® _ 0, where i,5 = 1,..., N. Notice that |[N—05 J\L @ 9 =
7,0 7,0 1=151%

Op(m2?) and

Computing the mean and variance, we can show that L 2)) = op(my,), since Eglo) and 5520) are

N N
1 — 2 — 1
Ly = 2N 023" e@Y TN el
i=1 j=1

We can replace A,, with N0 Zf\il EZ@) in Part (b2) and show that LS)S = op(my,). Thus,
Ln,g = Op(mn).
Step (ii). Let §;, = {51(10) + 51(20)}/\/5 Note that Eéglo) = Eﬁ?o) = 0 and 55,10), and 5520)

are independent. It follows from (A.18) that Cov(§;,) = Eﬁi,oﬁz o = I, Combining Cauchy-

Schwarz inequality and Jessen’s inequality, we can get

N N N 2

k
STE(lED < STELUED I+ 16213y <23 Blet)3
=1 =1

=1 k=1
N 2
N\ A T— * k *
= 233 EIRSO)AL (07U (673,
i=1 k=1

This, combined with [|[Q2(6%)A{L,(6*)}%5|]2 < 1, yields that

N N 2
STE(ELID < 23 Ell{L6%)) Ul (843
=1

i=1 k=1
= 2) E|{L,(6)} U (6")]3.
i=1
It follows from condition (Bsy) that
mYBN 1Y B{L(0°)) U (67} - 0.
i=1
Thus, by Theorem 1 of Bentkus (2004), we get
N N
sup |P(Y_ N7%;, € 9) - P(Z )| < eomp®™ NN E(|€,l3) =0,  (A19)

weRMn i=1
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with Z € R™» be a Gaussian random vector for which E(Z) = 0, Cov(Z) = I, and the

supremum is taken for all convex subsets in R™". Now, let ¥ in (A.19) be the special convex

set
2
w(@) = {T e R™ [ T+275 3 Al <}
k=1
Then
N
sup |[P()  N79%¢; , € ¢p(x)) — P(Z € ()| — 0. (A.20)

i=1

Notice that T, = [| N, N-05¢, , + 2705522 A, 4|3, PIXY, N-0%¢,, € $(a)} = P(T. <
z), and P{Z € ¥(x)} = P{x3, (n2.) < z}, where ;. = [2705 ZZ:I A, 1|13 In particular,
(A.20) coincides with

sup |[P(T. < @) — P{xi, (n) < x}| = 0,
X
which, together with (A.16), implies for every t > 0,

PG (RL) <@ —mat) < P(Tu < —myt) +o(1)

IN

P(T <x)+o0(1)
< P(T. < x4 mpt) +0(1) < P{xz,,(na) < 2+ mpt} + o(1).
By Lemma S.7 in Shi et al. (2019), we have
i | P, (1) < @ = mat) = PO, (1) < @+ mat)] = 0.
Therefore, sup, |P(T < z) — P(x2,, (17,2%,4) < )| — 0. Notice that A, = (NQ4(6%))*°A,, with

N = 0.5n, therefore

2 2
Mo = (40) "0l D P (07) A5 = (49) 0| Y _{ALZ(0)AT} A3 =
k=1 k=1

Proofs of Theorems 2 and 3. Theorem 2 is a special case of Theorems 3, so we omit the

argument for Theorem 2. According to Lemma 11(iv), we can get
Too = [{AIZHO)A]} 05 [0 OO AL (04)U(6%) + 0O A, |12 + op(mn), (A.21)

where A, = (0, x 8]0 A)- Note that, by Theorem 1, P(S = S) — 1, if condition (Ag) holds.
It follows that, with probability going to one,

Tpo = |[{A{Ix(0%)} 1AL} 02 [0 0P AL {11 (6%)} " UL(07) + n*°A,] H§ + op(my),
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where KO = (0, xs,,A). Then, using the argument in step (ii) for the argument for Theo-
rem 6, we can get sup, |P(Th2 < z) — P(x2, (n2,) < )| — 0. This finishes the argument for

the second result. For the first result, it can be proven similarly. O

Proof of Theorems 7. Recall that
2
_ " _o. 2 " _
Mor = (46)"'n| > {ATZ(61)AT} %A, |; and 7l , = nA, {AI?(6")AT} A,
k=1

Then applying the Jensen inequality and Lemma 13(i), we obtain that

2
My < <270 nA{ATP(0MAT} A, < nA{ALZ(O)ATY A, =0,
k=1

Using the triangle inequality and Lemma 13(ii), we establish that

2
Vo —/13n < (40)70%Vn|l2{ALP(0) AT} OPA, = Y {ATR(6M)ATY A, ||, < e ..

k=1

Thus, 2., > (14 2¢) 7202 , = K(p*)n2 ,. O
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SUPPLEMENTAL MATERIAL TO “DIMENSION-REDUCED TESTS FOR GENERALIZED
QUASI-LIKELIHOOD MODELS BASED ON REGULARIZATION”

Lemma 1. Assume that (A.26)—(A.27) holds. Then
(i) if (A.22) holds, conditions (As) and (A4) hold for the linear regression;

(ii) if max;<;<n |[w;' 0% = O(1) and (A.22) hold, conditions (A3) and (A4) hold for the logistic

and Poisson regressions;

(iil) if max;<;<, |[w, 8% = O(1) and condition (Az) and (A.31) hold, conditions (A3) and (Ay4)

hold for the Gamma and inverse Gaussian regression models with the log-link function.

Proof of Lemma 1. Firstly, we verify that, for m = O(s, + ¢n),

a' W Wa a' W Wa

infi min ——— >¢, sup max = 0(1), A.22
oLhuachiizo nllaxlp ~ oL M n(ar Bt D) O (422
bW/ . Wb

di(m)=  max T TR e L), A23

() = o2 0 n|bl3 ( : A2
bW l.diag{|W,|} Wb

m) = sup max max = 0(\/n/c,), A24

1/}2( ) GGII'L JET ||bllo<m,b#0 n||b”% ( / ) ( )
bW . .di W [}W b

t3(m) = sup max = max rediag{|W, |} W = O{(sp + @) Vn/tn},  (A.25)

6 € It JET® [bllo<m, b0 n||bl|3

where ¢, — oo and ¢,/ logn — 0.

Applying Cauchy—Bunyakovsky—Schwarz, CBS inequality, we can get

N1la™W'wa < 2N Ya /W Wiar +al.W .. Wreare)

< 2INTIWrWalollarll3 + 2N Y Jajax] - W Wy
j,k‘ETC
< 2||N_1WIWTHz||aTII§+2IIaTcllf§g@r>§N_1||WjII§,

and
N'a'W'wa > N YalW] Wiar +2a W Wicare)
> Amin(N'WIWL)laz|3 — 2N /alWIW.a, - ale WL W reage
= Amin(N T W W) a3 — 2l laz | max INTIW | WL W52
] C

— - 1/2
Amin (V 1WIWT)HaTH§—o(HaTHé)?ggHN W[ W W l5%,
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where the last equality follows from a € TI;. This, combined with |[N"'W, Wqt|l2 = O(1),
Amin(NTTWI W) > ¢, and maxjere N71|[W;[|3 = O(1), establishes (A.22). Note that

Yi(m) < maxNTHW[3x  sup IIbe/IlbllgSmg.gfggN_lllellgv

JeTe |Ibljo<m,bx£0
Ya(m) < max N~'|Wj[Zmax|[Wjlw x  sup  [[b]I7/[bl]3
jeET® JeT [|b]lo<m,b#0
< mmax N|Wj[3 max | W]|,
JjeT® JET
Y3(m) < max N~'|[Wj[imax [Wjlw x  sup [|b]|7/[bl]3
jETS JjeT* [Ibllo<m,b#£0

IN

ax N ™YW |12 max || W | oo
™ Iax I JH2§%T}§H illoo

It follows from ﬁ Maxi<;j<pn+qn || Will2 = O(1), ¢, = O(logn),

max [ Wl = O/ 108(r)), max [ W oe = O(n"(s, + ) (logn) /%), (A.26)
jetre jET
and m = O(sy, + gqn) that (A.23)-(A.25) hold.

(i). For linear regression models, conditions (A3) and (A4) are implied by (A.22)-(A.25).

.. .. . _ _ t_ 2t
(ii). For logistic regression, va(g~'(t),y) = —m and v3(g~1(t),y) = —m; for
Poisson regression, v2(g71(t),y) = —exp(t) and v3(g~1(¢),y) = —exp(t). By (A.26), 6 € II,

and ¢, < +/logn, we have

sup |w;' (6 —60%)| < [wr(6r —05)| + [WimpeOre]

0, i, T
< sup [[0r — 07 s max [[Willoo + sup [0 [ max [[W ]|
0 €Il JET 6 €Iy jET®
= (sn+ an)n ™" 2/eamax|[Wlloo + o(v/log(ra) /1)O(v/n/ log )
= o(1), (A.27)
uniformly for i = 1,...,n and 6 € Iy, since sup, ¢ p, ||@r<|1 = supy ¢ 1, ||@r — 0%||1. This,

combined with max;<;<, |[w, 8*| = O(1), yields that

sup max |w; 8] = O(1). (A.28)

0 € 11 1<i<n
Hence, sup, ¢, [|[v2(0)|l2 = O(1), infy ¢ n, mini<i<y, [v2(g~ (W, 6),Y;)| > 0, and sup,, ¢, [|v3(0)]]2 =
O(1). Then for logistic regression and Poisson regression models, conditions (A3) is implied by
(A.22), and condition (A4) by (A.23)-(A.25).
(iii). For the Gamma and inverse Gaussian regressions, the results can be proven similarly.
In the following we only show the result for the Gamma regression.
(a) For Gamma regression models with the log-link function, we get

vilg™ (1)) = yp’?;)(” 0297 (1).9) = —yexp(~t), and vs(g™'(1).y) = yexp(~1).
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Then
diag{v1(0™)} = —vo(60") — 1,,. (A.29)

Let u= (ug,...,u,) = Wa. Then

|aTWT{—v5(0) + vo(0")}Wa| = [u{—vs(8) + v2(6")}u|

= 3 To* —w. 0) — 1\2Y; —w/!*
‘Zz::l{exp<w10 w; 9) 1}uz}Qexp< w,; 6 )‘

< max ]exp(wiTB* —WZ-TH) -1} ’ZU?YQGXP(—WZTG*)

1<i<n ,
=1

This, combined with (A.27), yields that

sup |aTWT{—V2(0) + v2(0*)}Wa| = o(1) sup a'W'{—vy(6%)}Wa. (A.30)
0 € Iy o€,
Thus, condition (A3) holds if
Tw T * Tw T *
min 2 w V2(02 JWa > p1 and max — a W 2v2(0 )W;; = O(1). (A.31)
acry a0 nllac|3 az0  n([lacl|; + [lare[{)

It suffices to show that (A.31) holds. By (A.31), we have

—a'WTvy (0 )Wa > —alW.vy(6")Wiar — 2a. W vy(6*)Weare

V

nllacl} — O(llarlo)y/ ~af- WEva(0 ) Weaze  (432)
and
—a' Wlvy (0 Wa < —2alW. vy(6")Wrar — 2ale W.Lvo (0" )W peaqe
= O(n)|ar]2 + aje W levo(0* )W reare. (A.33)
By (A.29), we get

—alc W vy(0")Woeare <  max \W]T{—VQ(G*)}Wk| a3

j,kere

= max (W{=v2(8") — L} Wi + W] Wi - [laze]

max {|W diag{v1(8")}Wy| + [W; |3} laze|[].  (A.34)

J,keTe
Put ¢j, = [[W; o W|[3v0 + [[W; 0 Wy|[aon My, where vy and M are defined in condition (Asz).
It follows from (A.26) that

IN

n

max c¢jr < max w
j,kere J,keTe 4 1
1=

< max [|W[3][Wi 200 + max [W;leol|[Wh|leonMo
j,kere j,kere

2

2
;Wi pvo + max max |w; jw; k|nMo

jkeTe 1<i<n

= O(n?/logry).
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Then using condition (Az), Bonferroni’s inequality and (21) in Fan and Lv (2011), we obtain

that, for any e,, — oo,

P{ max |[W/ diag{vi(0")}Wi| > e,n} < >  P{{W/diag{vi(6")}Wy| > e,n}

j,kere

J,kere
< 2 Z exp(—0.5enn2/cj,k)
jvkeTc
< 2exp <10grn — 0.5e,n?/ max c; k> — 0.
j.kere

Hence,

max [W] diag{v1(6")} W] = Op(n).
j,kere

This, combined with (A.34), max; pere [W;|2 = O(y/n) in condition (As), yields that
~a7eWpeva(0")Wreare = O(n) a1, (A.35)
which, together with (A.33), leads to

TwT *
a'W'vy(0*)Wa _ o).

max — =
a20  n(|lar(3 + [laz-]?)

Applying (A.32) and |lar<||1 = o(||ar||3) by a € II;, we establish that
—a' WTvy(8")Wa > (¢ — o(1))n|jaz|?

for any a € II;. Hence, There is a constant p; € (0, ¢) for which

. a' W'vy(6*)Wa
min — 3 > p1.
act, a0 n|lar||3

That is, (A.31) holds.
(b) Due to diag{|v3(0)|} = v2(0) for the Gamma regression, it holds that

bW .diag{|v3(8)| o [W;[} Wb bW .diag{|vs(6)[} Wr<b

Wil

nbl3 - n|[bl3
b "W.l.vo(0)Wicb
= Wil Lo AMESLY
n|/bll3
By condition (As), we have
~b"W.l.vo(8)Wicb —mb T Wl.vo(8)W b
sup  max T V2 <2) T~ < sup  max m T V22( )W = O(m).
0 € 11z [|bllo<m.b70 n|b|3 0 € 11z [|bllo<m.b70 nbl[y
This, combined with (A.26), yields condition (Ay4). O
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Lemma 2. Assume that supjyj,<i 1vTwWillg, < a0, maxi<i<, |W,) 0% = O(1), and (s, +
qn)*{log(nr,)}3/? = o(n), where ag is some positive constant and r, = p, + ¢,. Then the

following results hold:
(a) condition (Bj)(#i7) holds for linear, logistic and Poisson regression models;

(b) if maxi<j<p, ||w;jv1,:(0%)|y, < @i holds for some constant «; > 0, then condition

(B1)(ii7) holds for gamma and inverse Gaussian regression models.

Proof of Lemma 2. Note that (s, + ¢,)?{log(nr,)}*? = o(n), it follows that
log(n) log(nry) (sn + gn) = o(n'/?) and (s, + ¢,) log(nry) log(r,) = o(n). (A.36)

By (S5.41) in Shi et al. (2019), we have

P{ max |wij| > cy/log(nry)} — 0 (A.37)

1<i<n,1<j<rn

for any large constant ¢. Thus,

sup ]W;r(a —0")| < sup [0 —60%|; x max |w; j| = Op{+/log(nry)} sup |0 — 0.

9 c I 6 € s 1<i<n, 1<j<ry, 0 € Ilg

This, combined with maxj<;<, |[w; %] = O(1) and (A.36), yields that

sup |w, (0 —0*) =op(1) and sup |w, 6] = Op(1). (A.38)
0 € s 0 €
(a) Notice that v3(g~1(t),y) = 0 for linear regression models, v3(g~1(t),y) = —#;;W
for logistic regression models, and v3(g~1(t),y) = — exp(t) for Poisson regression models. Since
SUP, ¢ 11, [W; 0] = Op(1), condition (By)(iii) holds if
SUp MAX Apax (N~ W diag(|[W; )W) = Op(1), (A.39)

M ey 1<j<ra

where Y = {M C {1,...,7,} : T C M, |[M]|o < ¢(sp + ¢n)} for some constant ¢ > 0. Let

N
t1 = Supy ¢ y maxi<j<r, [|[Bwijwinw, 2 and

tog = sup max )\maX{N_IWI\T/IdiagﬂWjDWM — Ewi,ijMwZM}.

M ey 1<i<rn
By norm subadditivity, we get
SUp Max Apax{ N W] diag(|W;|) Wy} < 1 +to.

M ey 1<i<ra
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Using Cauchy—Schwarz, sup|y|,<i v Wil < ap, and the Strum theorem about eigenvalues

that

1 <  ax. | Ew; jwiw, ||2 <  Jax HVIlp \/E|w”’2\/E O(1).

Let t3 = maxi<i<n,i<j<r, |Wi j|. Using (A.37), we obtain that

P(tQ > 2) = P{tz > 2,t3 > c\/log(m“n)} + P{tQ > 2,13 < c\/log(nrn)}
= P{ts > 2,t3 < cy/log(nry)} +o(1)

Then (A.39) holds if

n
P 1\iuepy lgagn )\max{ N1 Z ]wi’iji’MvT/Z — Elw; ;|W; mW; M} > 2] — 0, (A.40)

where w; v = W m1(t3 < ¢y/log(nry,)) and 1(t3 < ¢y/log(nry,)) equals one when t3 < ¢y/log(nry,)
and zero otherwise.

By the definition of the Orlicz norm and supjjy,<; ||VTW2‘H¢2 < oy, we obtain that

< max Hw”||w2/\/log2 < ap/+/1og2.

Then, following the argument for Lemma C.2 in Shi et al. (2018), For all j and M, we can get

1I<nax ||ww

2n? }
apl|M||ony/log(nry,) '

{ maX< - Z |wi | Wi, MW - E|wi7j|v~vi,MV~VZM) > 2} < [[Mllo exp{—

where &g = 2cag/v/1og 2+4c3a/log 2. This, combined with Bonferroni’s inequality and (A.36),
yields that

n
P[Sup max )\max{ _12:|wm|v~vi,1\,[\7v;r E|ww\szW }>2}

Mecy 1<]<7'n

< Z [ max{ -1 Z ‘wz]’Wz MW E‘wz,]’ﬁ}z,szm} > 2}

MeY,1<j<rn

2 2
— CTSZ(S7L+Qn)+1(Sn + qn) exp{— n

— } — 0.
aopc(sy + gn)ny/log(nry)

This establishes (A.40).
(b) We only prove the result for the gamma regression. Similarly, we can prove the result for
the inverse Gaussian regression. For the gamma regression, v3(g~1(t),y) = yexp(—t). Similar

o (A.30), we can show that
W {diag(|vs(8)|o| W) —diag(|va(8")|o|W;|)} Wiz = op(1)[Wydiag(|va(8")|o|W;|) W2,
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uniformly for M € Y. Then (Bj)(iii) follows if
SUp Max Amax{ Woydiag(|vs(0*)] o |[W;| )Wy} = Op(n). (A.41)
Mey ]-SJSTW,
Since v1(g71(t),y) = yexp(—t) — 1, it holds that
SUp MAxX Amax{ Woydiag(|vs(0*)] o [W;|) Wy}

M ey 1<j<ra
< sup max )\maX{W&diagﬂWﬂ)WM}

Meyl<j<ra

+ sup max Amax | Wy {diag(|vs(6*)] o [W;|) *diag(Ile)}WM}

Meyl1<i<r,

= sup max )\maX{WI\T/Idiag(|Wj|)WM}+ sup max Amax [WI\T/Idiag{vl(O*)o\Wﬂ}WM]

M ey 1<ji<rn Meyl<j<rn

Since maxi<j<p, |wijv1,i(0%)|y, < a1, similar to (A.39), we get

SUp  Max Amax{ Wy diag(v1(8%) o |[W;| )Wy} = Op(n).

Mey 1§]ST’VL

Thus, condition (Bs)(iii) holds for Gamma regression models. O

Lemma 3. Given any k € N and ¢ > 1, we have

e([1k])
o(k)

where ¢() is ¢1(+), 2(-) or ¢3(-), and [I| = min{ala > I,a € N4} with N1 being the positive

< [,

integer set.

Proof of Lemma 3. Since —W Levo(0*)Wre and W .diag{|v3(0)| o [W;|}W e are posi-
tive semidefinite matrices, the result can be proven along the same line for the proof of Lemma 3

in Belloni and Chernozhukov (2013). O

Lemma 4. Let § = 0—0* and t,, = min{log(r,), Sn+qn }, where r,, = p, +¢,. Under conditions
(A1) to (As). We can get

(1) 1U(0")lloc = Op{/log(rn)/n} and |[Un,x(67)[l2 = Or{v/(sn + qn)/n};

(i) [|0z]l2 = Or{\/(sn + qn)/n} and [[0z<|[1 = Op{tn/(nAn)}.

Proof of Lemma 4. (i) Under conditions (A2) and (As), using (S5.13) in the supplementary
of Shi et al. (2019), we establish that***

1U(0%)lloc = Op(v/108(gn + pn)/n). (A.42)
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Applying Chebyshev’s inequality and condition (Asz), we obtain that

Trace[E{U+(0*)}%?]
ann(Sn + qn)
O(l)(sn + Qn)
an(Sn + qn)

P{Ux(6%)]5 > ann(sn +an)} <
—0
for any a, — oco. Hence,
1U=(6%)ll2 = Op(\/ (s + an) /1) (A.43)
(ii) Define

t
Q, ={6"+a:|agls <™ lare||r < Z‘T”7 and a € RPrHan},

n

where 7, = 00, Tu\/(sn + qn)/n < dp, THE = o(v/n=21og(pn + qn)), and 7,/v/Togn — 0.
By the concavity of @, (@), It is enough to verify that, w.h.p., a local maximizer 0 lies in the

interior of €2, , or equivalently

Qu(0) — 1S oA (85D — {Qu(®" +2) — 1S pa (07 +as)} >0, (Add)
j=1 Jj=1

for all 0% + a € 00, where 9€2,, is the boundary of closed set €2, . Recall that v{(0) =
(vl(wlTH,Yl),...,vl(wZB,Yn))T,, vo(0) = diag(va(w{ 6,Y1),...,v2(w, 0,Y,)) with v (t) =

% and v (t) = %. By Taylor’s expansion, we can get
Qn(0*+2a) —Q,(0°) = a'U(6*) +0.5a"H(0))a, (A.45)

where 0 € [0*, 6" + a]. Because A, '\/log(gn + pp)/n — 0, by (A.42), for some ¢ > 0,
An > c|[nTU(0%) || o (A.46)
Combining Holder’s inequality with (A.46), we can get

a' U6

IN

arUr(0") + |ag. Uz<(6")|
ap Uz (07) +n||[N"'U(0") | a1

IN

< alUL(0") + ¢ ny|lage:. (A.47)
Combining (A.45) and (A.47) leads to

Qn(6%) — Qn(6* +a) > —0.5a H(8))a — al Ur(6%) — ¢ 'n\,|lar |1,
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which, together with condition (As) and the definition of 0€2;,, yields that

Qu(6") = Qu(6" +2a) > 0.5npifac]3 — ¢ 'ninllaze|li — ar Ux(6%)
> 0.50172(5n 4 Gn) — ¢ (50 + ¢n) —al Up(6%).  (A.48)

Applying the mean—value formula, we have

Pn Pn Pn
oo (0D =D oA (16 +a5]) = =D ph, (10:])aisgn(6:)
=1 =1 =1
= =Y o\ (Bihaisen(8:) = A Y P/ (16i], An)aisgn (6:)
€S 1ETC
= —ajpy, (16s]) = A0 D P10, An)assgn(6:),  (A.49)

1ET®

with @ € [0*, 0" + a] and ﬁ)\n(\ésD = (pg\n(|5z|)sgn(9vl),z € S)". By condition (A3), we have
165 — 65l < llaslloc < llaslla = v/ (sn + qu)/n < da,
which implies that
0;] > 167 — dy, > min |07| — dy, = dn. (A.50)
Since p\ (t) > 0 and p} (t) <0 for t € [0, 00) for given A,, which implies that

| D A5 (6iDagsen(6)] < D o (1iDlail < D p'(0+)lail = #'(0+) axe1,

1ET® 1ETS 1€ET®

which together with (A.49) and the definition of Q. , yields that

Pn Pn
n Y oa (107 +ail) =n Y pa(167]) = nadpy, (10s)) +nXa Y o, (10:])aisgn(6)
=1 =1

1ET®

v

nag py, (18s)) — nhnp'(04)|are |
> nag py (|0s]) — p'(0+)Tntn. (A.51)

Under (A.48) and (A.51), we obtain that

Pn Pn
Qu(0) = Qu(0" +a) +n Y pr (16; +ail) =Y pa,(167])

i=1 1=1
> 0'5917}%(5% +qn) — C_lTn(Sn +qn) — a:rrUmT(e*) + ”agpAnﬂéSD - p/(0+)7'n(5n + qn)

= 050172 (80 + an) = (¢ 4§/ (00))7u(sn + 4n) — arUn(6%) +nalpy, (10s).  (A.52)
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Note that p\ (t) is decreasing in ¢t € [0,00) and p)\ (d,) = O(n~1/?), it follows from Holder’s
inequality, (A.50), and the definition of €2, that

Inag 2, (18sDI3 < llas|3n® D {w), (16:1)}?

€S

< nTr%(Sn + qn) Z{pl)\n (dn)}2

= O{ri(sn+am)*}. (A.53)

Again, from Holder’s inequality and €2, , yields

laz Uz(6%)ll2 < lax|l2Ux(8) |2 = 7u/ N~ (s + 4u) [Ux(87) |2 = Op{ma(sn + ¢n)}-

This, combined with (A.52) and (A.53), establishes (A.44). O

Lemma 5. Under conditions (A4;)-(As) and (By). For both k =1 and k = 2,
INTTH(6,0) + T6(8) 2 = Op (1" (sn + an)}.
Proof of Lemma 5. By condition (Bj), therefore

E(INTHY (8,1) + 1.(67)3)
N
2
<N 2 Y B[ {ul e nwy e v, ) - Bl u v ((wy o v, ) ]
7,lESKUD i=1

= O{N"Yspx +an)?}, (A.54)

Since the summands are independent (hence uncorrelated), Var( > X¢> = >, Var(X;). By
Theorem 1, we know that s,x + ¢, = O(sy, + gn) with probability going to 1. This, combined
with (A.54), completes the proof. O

Lemma 6. Under conditions (A4;) to (45) and (By), If S::/Z” — 0 (n — o0), and there

are two constant numbers C,Cy € (0,00), independent of n, for which |[AAT|,, < C; and

AAT)L on < Oy, and ||ALlls = O(y/my /1), then for k£ =1,2,
p
(i) under HE, (|05 — 6*[la = Op(v/(sn + qn)/);

(ii) under Hoo, |80k — 6*[2 = Op(\/(sn + qn)/n).
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Proof of Lemma 6. (i) Define

H={6"+a: |a|2 =1\ (sn+ qn)/n,afﬁ =0},

where 7, — 00, 7,/v/logn — 0, and 7,(s,, + gn)/n — 0. By the concavity of QS{“(@), It will be
enough to verify that, w.p.a.1, the objective attains a local optimum at some 6c int(H). That
is,

P{maxQ{(8) — Q)(6") < 0} — 1. (A.55)

By the mean value theorem and the CBS inequality, we can get

1
QP®e) - QM@ = v afk+fa¥kH‘;“><o*>aTk

7/ (30 4 4) /0 U Il2 + 5 Lal HY (0.)as,
TnV Sn +an /TLI4 — I,

with 0, € [0*, 0]. Hence, (A.55) holds if

IN

Pmax{r,\/(sn + qn)/nls — Is} < 0] =1, as n — occ. (A.56)
By Theorem 1 and s, + ¢, = o(n'/?), we get
Snk + Gn = O(5n + qn) = o(n!/?). (A.57)

Applying Taylor’s expansion, condition (B1)(iii), (0+—0")zs = 0,and [|(8.—0")z, |2 < |laz, |2 =
O(Tny/(Sn + qn)/n), we obtain that

INTHER (0.) — H (07} 2

< e bW, diag{|v31(60)| o [Wr(0x — 0%)1, [JWib/N

2

< 16— 6%)a, N ma e [WF, dicg(v3(60)] o [ W[} Wi,

= Op{Tn(sn + gu)n "%}, (A.58)
where 6y is between 0, and 6*. This, combined with 7, (s, + ¢,)/n — 0 and Lemma 5, yields

that
INTHE (0.) + 14(6%) 2 = Op{7a(sn + 4u)n ™2} = op(1).

Note that Apin (Ix(0%)) > 1/p4 in condition (By), it follows that

Mo (=N TTHE(6.)) = (2p0) 7,
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with probability going to one. For the term I5, we have 2N ~1I5 > (2p4) 7! ||al|3 = (2p4) 172 (sn+
dn)/n. This implies that
I5 > (8p4) 73 (sn + an)-

Since E{U®) (6*)}%2 = ¢Trace(N1,(0*)), by Chebyshev’s inequality, we get
P(IZ > Taon(sy + qn)) < Aman(s, + qn)}_lE(Lf) = {mn(sn + qn)}_lngrace(NIk(B*)).
By Condition (B;) and (A.57), we have

Trace(I;(6")) < ($nk + @n) Amax(T(67)) = O{pa(sn + qn)}-

This, combined with 7,, — 0o, yields that

O(Tnn(sn + Qn))
ﬁQn(Sn + Qn)
Then |I4| < \/Tpn(sn + ¢) with probability going to 1. Therefore, 7,1/ (Sn + qn)/nly = op(I5).

Since I5 > 0, (A.56) holds.
(ii) Similar to Lemma 6 (i), the result holds. O

P{IZ > Tnn(snk + Qn)} < — 0.

Lemma 7. Let ,(0) = {Ak(ik(e))fll&;}fl Under conditions (A;)-(As) and (By). If

8;:/%" — 0 (n — o00), and there are two constant numbers C7,Cs € (0,00), independent of

n, for which |[AAT|[op < C1 and [[(AAT)7Y|op < Ca., then the following results hold:

(i) [15,1(6") =L, (0") |2 = Op((sn + @n)n%%), Amax(Ie(67)) = O(1), Amax(1x(0%)) = Op(1),
Amax(I;1(87)) = O(1), and Apax(I;1(8%)) = Op(1);

(ii) [Q2%(6%) — Qk(0%)]2 = Op((sn + @)1 "), Amax((07)) = O(1), Amax(Q(0%)) =
Op(1), (0 All2 = Op(1), [|92%4(6")Akll2 = O(1), |A]Q(0")ALll2 = Op(1), and
1AL Q21(0%)Akll2 = O(1);

(iii) AL (Q2%(6%) — (0)]2 = Op{(sn + ga)n "%}, and A (2(6%) — R (67))Akll2 =
OP{(Sn + qn)n70'5}.

Proof of Lemma 7. (i) From condition (B;) and (A.57), we obtain that

1/p1 < Amin(T5(67)) < Amax (1(6%)) < p.
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In view of 5, |1x(6%) — 14(6%)|l2 = Op(n~°%(s, + qn)), which, combined with s, + ¢, = o(n'/3),
leads to
A (L(67)) < Amax (15(67)) + | Le(6%) — 1(6%)||2 = Op(1);
Amin(T£(0%)) = | T6(0%) = Le(67)[|2 = 1/p1 — 0p(1).
Thus, )\min(i;l(e*)) = Op(1) and )\max(i;l(O*)) = Op(1). This, combined with the CBS
inequality, yields
I, 1(6%) = L1 (62 < 1L, (6912 - 1L (6912 - 11 (67) — L (67) |2 = Op(n=" (50 + n))-
(ii) Notice that

Do (0N} = inf aT Ay(1,(6%) 'Ala

llall2=1

v

P (@) ot aTAkA L2
= Anin(ARAD) Amax (15(6")).
It follows from Amax((AAT)™Y) = O(1) and result (i) that
Amiae ((87)) < Mna(AAT) ™) Amax (14(67)) = Op(1).
Similarly, we get that Amax(Q%(0%)) = O(1). Using the CBS inequality and
€257 (07 Ar{T(67)) "7la = 192, (0" Ar{1u(0)) AL 27 (6737 = 1.
we establish that

1€2(6%) Axllz = 12(07) Ax{Te(67)} " {Lu(67)}% 12 < I{Tw(6")} 2 - | (24(67))*l2;

1AL () Arllz = [HLK(07)}**{Tk(67)} " AL € (67) A {T1(67)} > {1(67)} Iz
< I{Lk(69)1°%)3,

where the last inequality holds because {ik(H*)}*0'5;&2(};@(0*).&;@{1/@(9*)}*0'5 is a projection
matrix. Thus, H:&gflk(e*):&ng = Op(1) and [|€2,(6*)A.|l2 = Op(1) . Similarly, we can prove
that |A]Q2(6")Akl2 = O(1), and || Q(6*)Ak[2 = O(1).

With |[1,1(6%) =1, (8%) |2 = Op((sntga)n=0%), |0(6")Ak]l2 = Op(1) and ||Q24(6*) A2 =
O(1), we establish that

I90(07) ~ @)z = [2(6) AL 67) - 10 )AL (6 (A.59)

900 Al - 190 Al - T (6%) 1 (0°)11

IA

= Op((sn+ qn)n"?).
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(iii) Combining the Holder inequality with (A.59), we can get
1AL (©24(0%) — Qk(07) Akl < |A] (6 Akl2 - AL Qk(07)Axll2 - [IT, ' (87) — T, (67)|o,
and
1AL (2(67) = 2(67)l2 < || AL 20 (07) Az - | AL 21 (07) 2 - 1T (67) — T, (67)]|2-
This, combined with results (i)-(ii), establishes result (iii). O

Lemma 8. Under conditions (A;)-(As) and (B;). If Szl% — 0 (n — o0), and there

are two constant numbers Cj,Cy € (0,00), independent of n, for which |[AAT|,, < C; and

n An
I(AAT)"1|op < Cs. Under H") and [An]l2

“ My /N

= O(1)., we obtain

(i) (05—0%)2; =0, and (0—6")1, = {NTL(6")} UL (6%)+r(), where [r)]|2 = op(n~0?);

n,1» ’
(i) (B0 —60%)zc = 0 and
(B0 — 0%)z, = NTIY(O9)UL(0%) —1,1(6")A]2(6%)A,
—NTINOM)AL (07 AT (67 UL (67) +rl),

where [[rl) | = op(n~1/?);
(iii) [[(Bx — Bo k)2, |l2 = Op(y/mn/n) and
0k — o)1, = N1 (0 AL (09 ALL (09U (0%) + 1,1 (0")AL (69 A, + 1),

(iv) |[{1e(6%)} 2 ATQu(0%) [NV ALT; 1 (0%)UL (%) + NY2A,] ||, = Op (/).

Proof of Lemma 8. (i)-(ii). Results (i) and (ii) can be proven similarly, so we only show

result (ii). Notice that the optimization problem

meax{lek)(O), s.t. ﬂéﬁ =0, A(7 - t) = O}

is equivalent to

min {-QF(0) + ] Ay —t) + pg Bse + 0.5f11|A(y — t)[13 + 0.5f2(|Bs¢ 15},

0,11, 1o

where pu; € R™, puy, € RPr~*nk and f1, fo are some positive constants. The definition of 90,k

and the first order stationary condition imply that

o1



(2) (B —6%)rc =0, A(Jg, —t) = 0, and IQ\ (8o ) /96, = 0.

(b) There exists some p; € R™ satisfies that QP (B0.1)/00n = AT ;. That is,

k

where fi; = (07, )"

Applying the Taylor expansion yields that

UL )(90 k) = Uéi) (6%) + H(T’f(a*)(é% — 0%, +0.5R, £,

Uék)(éo,k) = A} jiy, (B0 — 0")zs =0, and A(¥, —t) =0,

(A.60)

(A.61)

where R, = {(Bo,x — 0%) ], W diag(vs(0r) o Wi ;) Wi (8o — 0%)5,,1 < j < spi + g} with

05 lying in the line segment joining é(],k and 6*. Hence,

(B0 — )1, = (N1, (6} UL (%) — Al Ry +0.5R .},

where the identity NI (6%) = —H(T’jf(e*) is used. By (A.60) and A(y* —t) =

Ak(éQk — 604, = —A,. Thus, solving (A.62) for ji;, we get

fin = Nu(0%)[A, + AR {NT(6")} 1{U (o) +0.5R,, 1 }].

Then replacing fi; in (A.62) by (A.63) gives us that

(Bok — 0%z, = N*li—l(e*)U(T)(a*) 116" Al Q(6MA,
S < AL (6%)ALTL (69U (67)
(s

+0 5N
ZF,W-.
j=1

Let Gp1 = NI 1(01)UL(6%), Gio = ~I;1(0%) A Q24(6°) Ay, and

Gz = —N 'L (0")A] Q(6) AT 1 (6%)UL (67).

Then

(0o — Z Gy,j + I"n ).

(A.62)

A,,, we have

(A.63)

>{Rnk—Akﬂk<0*>Ai (6")R,, 1.}

where 2% = 23 1(Frj — G j) + Fia. From here, it is enough to establish that Hr(k%Hg =

op(n~'/2). In the following, we prove that n'/?||Fy ; — Gy |2 2, 0 with j can be 1, 2, and 3,

and ||F4lla = op(n~'/?), which leads to result (ii).
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First, using condition (B;) and (A.57), we get
Trace{E( (0*))®2} Trace{ N¢I;(0%)} = O(n(sn + qn))- (A.64)
Thus,
1UR)(0)l2 = Op (Vs + a0)): (A.65)
This, combined with Lemma 7(i) and s, 4+ ¢, = o(n'/3), yields that

[Fr1— Gralla < [T.1(6%) =T (02 [N~ ol (9*)"
= Op((sn+g)n™"%) - Op(\/ (50 + ) /n) = 0p(n™"9).

Second, by Lemma 7 and [|Ap[l2 = O(y/mn/n), it holds that

IFr2— Gralz = [I[I;'(07) — I, (67)]AL (6% A, + T, (67) AL (21(607) — 21(67)) A

< 5O — L0l 1AL % (07)]]2 - | Al

HILO") 2 AL (2(87) — 24(07))]]2 - | Al

= Op((sn+ an)n""%) - Op(\/ma/n).
Since my, < sp + gn = 0(n'/?), we have [|[Fyz — Gpal2 = op(n=0%).
Thirdly, using the subadditivity of the norm, we establish that
< INTUENOY) - LN OM)IAL (01 AL (67 UL (67)])
HINTII (0% AL (S (67) - nk<e*>>1ki-1<e*>uﬁ’“> (0"
+||N*11-1w*)Hﬂk(e*)Ak[i—l(e*> 201U (67)]|2
I, (6%) — 1,1(67)]]2 - ||ATnk<0*>Ak||2 1162 - IN IO (%) 1
+||I,;1<0*>||2-||Ak (2(67) — Qu(07) A2 - || T, ! (e*>||2 IN~ 1U“" (6|2
HILO) 2 - | AL Qu(07) Akllz - [T;(67) = (0% 2 - [INTTUL) (6% o

|Fr,3 —

IN

This, combined with Lemma 7 and (A.65), yields that

IFs — Graslls = Op((sn + n)n %) - Op(\/(5m + @) /) = 0p(n ).

Lastly, by Lemma 6(ii), condition (Bi), s, + ¢, = o(n'/?), and (A.57), it holds that

”Rn,k||2 S \V Snk + dn max (éOJc — H*),—i‘rkwgdiagOVg,k(ékﬂ @) |Wk,j|)Wk:(éO,k — 0*)'i‘k

1<j<snk+qn

< (80 +qn)Y/*NTH max Amax{ W1, diag(|v3(x)| o [W;|) Wi, }

= op(n'/?). (A.66)
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This, combined with Lemma 7(i)—(ii) and ||A,||2 = O(y/mn/n), yields that

Frale < 05N YL (O7)2{1 + | AL (0 Akllz - 1T (67) 12} [ Rallz = op(n~2).

(iii)-(iv). The asymptotic representation is obtained from (i)-(ii). To complete the proofs,
it suffices to show [|[(0x — Ook)s,|l2 = Op(y/mn/n) and results (iv). By Lemma 7(i)~(ii) and
1Az = O(y/mu/n), we have |L;1(8")AL@,/%(8%)]l2 < |51 (672 - | AL 2,/*(6%)]]2 = O(1)
and

L (0°) AL (0 Anllz < [I,1(8%)2 - AL Q1(0%)2 - | Anllz = Op(v/mn/n).  (A.67)
This, combined with E||€2,/*(6") AL, (6*)UL (6")]3 = Nmy¢, yields that
1T (07 A] (67 AL (67U (6%)]5
— £\ A 1/2/ nx 12/ p\ X 1— * k *
< AL %092 192,767 AT (67 UL (67) 12 = Op(y/iimy).  (A.68)

Note that [|T;(8%)||2 = O(1), it follows from (A.67)-(A.68) that ||(6x —00.1) 1, |2 = Op(y/mn/n).
O

Lemma 9. Let U®) (9) = N-1oQY ( )/0~. Under conditions (A1)-(A4s) and (By). If S”T/Z” —
0 (n — o0), and there are two constant numbers Cq,Cs € (0, 00), independent of n, for which
IAAT lop < Cy and [(AAT) ! [lop < Co, then under H('Y, we have
(i) UM (Bor) = NTTATQu(0%)ALL (07U (0%) + ATQ(0%) A, + 1), where [rl)]]2 =
op(n=1/?).
(ii) [(AAT)PAUR B 4)[l2 = Op(y/mn/n).
Proof of Lemma 9. (i). Let e; = (04, x5, 1g,). Then ekA—r AT. By (A.61), we have
NUB(By) = N lepUl(6%) + N leyHY (0%)(8o, — 0%)2, + 05N LRy
= NleyUL(6%) — ei(67)(Box — ")z, +0.5N 'er Ry
+er{NTHY (0%) + 1,(0%)} (B0 — 7)1,
Then, by Lemma 8(ii),

_1U(k)(é0,k) _ N_lekUgi)(G*) _ eka(B*){N_ll_l(e*)U(—k)(B*) _ _1(0*);&Tﬂk(0*)
~NTU N0 AT (09 AL (01 UL (0%) + 1)) + 0.5N ey Ry
+ec{NTTHE) (6%) + 1(6")} (B0 — "),

= NTIATQuOM)ALL L (0)UY (6%) + AT A, — eIk (6071
+er{NTTHLY (67) + 1,(0") (B0, — 0%)1, + 0.5N ey Ry,
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where | R, x|l2 = op(n'/?) and Hr Hg =op(n~1/?). Let

rl) = —er(0)rl) + 05N " er Ry, + e {NTTHL (67) + 1,(6%) (B0, — 0%)s,
Then, by Lemmas 5 and 6,

lex{N"HE (0%) + 14(67)} (B0 — 0%)2, 12 = Op((sn + )N ") = 0p(1/V/n).

Thus, [£%*)]l2 = 0p(1/v/n).
(ii). Now we prove |[(AAT)"LAU® (8 1)|l2 = Op(\/mn/n). Since |[(AAT) 1Ay = O(1),

we obtain that

I(AAT)TAUB (84) ]2

= [NT'Q(07) AT, (01 UL (0%) + 24(0°) Ay + (AAT) T Arl) |2

< INT12,(09) AL (01 UL (67)12 + [|924(67) A o+ op(1/ D)

< 192072 - N1/ %(07) AL (0F) UL (6%) 2 + 19240712 - [ Anllz + 0p(1/v/n).

This, combined with E|€*(8*) AT, (6*)UL (6%)||3 = Ny, Lemma 7(i)-(ii) and || Ayl2 =

O(\/my/n), yields that
I(AAT)PAUB (Bo )12 = Op(v/mn/n). 0

Lemma 10. Under conditions (A;)-(As) and (Bp). Suppose s”nl% — 0 (n — o0), and

there are two constant numbers C1,Cs € (0,00), independent of n, for which HAATHop <

and [[(AAT) Ylop < Co. If |0 — 0%[]2 = O(\/(5n + gn)/n) and (8 — 6%)4, c = 0, the following
results hold:

(i) [15(8) — T(6)]|2 = Op((sn + gn)/v/n) and [[Tg(6) — T (0%)]l2 = Op((sn + ¢)/V/R);
(i) [[€24(6) — 24(60")]|2 = Op((sn + an)/V/n);
(iii) 1€2/°(0) — 20"l = Op((sn + 30) /V/7);

. A —1/2 _ .
(iv) 1€ 77(0) — 2, 2(07) |2 = Op((sn + gn) /).
Proof of Lemma 10. (i) By Taylor’s expansion, we can get
HN_lwk{vlk(O) —vo (@) Wil < max aTW’}c diag{|vsx(6o)| o ]Wk(ék — 0"+ |} Wra/N

llall2=1

< ||0 - 0*||1N_1 ?éa’fX)\max [W'—i*rkdlag{|v3(00)| ° ‘W]|}W'fk:|
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with 6 € [6,6"]. Since —L2=912_ — O, (1) and |0 — 6* o = O(sn + qn), We know that 6 € II;

(snt+qn)/n
and ‘fs“eﬂi b — = Op(1). In the same way as (A.58), we obtain that

IN"HHE () ~HY (07)}l2 = Op (02 (s0 + an)). (A.69)

Using Lemma 5, together withthe definition of Ik(O), yields that

11:(60) ~ 1u(6%) 2 = || - N"'HE)(8) — 1(67)]l>
= |-N'H ><> HY (%) - NTTHY (0%) — 1k(67) 2
< |N'H ‘T><0> HE (6%)]]2 + | NTUHY (0%) + 1 (607) 2
= Op(n~ 1/2(sn+qn))

By condition (Bj), we have

1/pa < Amin(Ix(0%)) < Amax(1x(67)) < pa, (A.70)

which, combined with (A.69), leads to

1/(204) < Amin(15(0)) < Amax (I (0)) < 2p4, (A.71)
with probability going to 1, since || — 6*||2 = Op(\/(Sn + qn)/n) and (0 — 6%)4 c = 0. Thus,
1T (8) — 1,1 (6%)ll2 < 1T (B)l120T;; (67211 Tk (8) — T(8%)ll2 = Op (™" (s + an)).

(ii). Notice that

Amin { AL O)A] L = | 1‘1‘[1f1a AT N @)A]a
al|2
> min{Ikl(B)}” lllnf a ALA]a
> )\mln(;&k;&g) min{Ik (0)}

= )\min(AAT)/)\max{ik:(o)}'

It follows that

1

) | .
Amin{ AxI 1 (@)A]} < Amax{Lk(0)}/ Amin(AA ") = Op(1)

I{ALL (O AL} 2 =

bY Amax{(AAT)"1} = O(1) and Amax (11(8)) < 2p4. Similarly, we get that |[{Ag(I(0)) Al } 712 =
O(1). This, together with Apax(AAT) = O(1) and Hi;l(ﬂ) —I.10%)]2 = Op(n™Y2(sy, + qn))
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in Lemma 10(i), implies that

HAIL ' (O)AL} ! — (AL <0*>A } 1||2

= [{ARL (09 AL} AL{T1(0) — (16(67) ' AL {AK(Tk(0) ' AL} s

< |1;(8) — (Te(67) "'z - W%{AJ <>Ak}1m IAT{AL(T(6%) " AL} l2
= Op(n " (sn + an))-

(iii) Obviously,

1/2

1/2, pey & L/2 1/2
(2,%(6)%,°(6) - O

0)2 07} =~ 09, 0) - 0 9)9107).

For any squared matrix C with CT = —C, let a and v be the eigenvalue and corresponding

eigenvector of C. Then
A|v|d=v'C'Cv=—v'CCv=—-d?|v|3 (A.72)

Thus, all eigenvalues of C' C are 0. Hence,

1/2

2/ () J

) — " (0)2,%(6%)]|2 = 0. (A.73)

Note that the identity

2 (0) + 220 (0) - 22(07) = u(0) — 2(67) + 220997 (0)
-0,%0)9,%(6"). (A74)

For any positive definite matrix C; and square matrix Cq, we have

IC1Ca3 = “ S‘TlplaTC;ChCnga > Amin(C2)[|Ca2.
ajl|l2=

Hence, ||C1Call2 > Amin(C1)[|Cz2||2. Then, by (A.73)-(A.74),

1(€2%(0) + Q/(07) (€2, (6) — 212(67) 12
< [192:(8) — Q1(0)] 2. (A.75)

* A 1/2 *
Amin(Q12(07))[1€2,° () — 1/ (6%) 10

IN

A

By the definition of Q(8%), Anax(AAT) = O(1), and (A.70), It is straightforward to check that
)‘maX(Qizl(e*)) < )‘maX(AAT)/)‘min(Ik(O*)) =0(1).

Then, by result (ii) and (A.75), we have [[€2)°(8) — ©@/2(8) ]l = Op((sn + )~ "/2).
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(iv) Similar to (A.75), we can show that

IN

162, %(0) + 27 2(07) (€2,

192, (0) — 2, (60 l2.

Ain (€4, 20160, 2(0) — 22012 (6) — 2, 2(0"))]l»

IN

That is,

190, %(0) - 2,20 < [ AIZH0%) — T (O)}A] 2/y/ Ain( AL (67) Ag)
)‘maX(Ik(e*)))‘maX(AAT) HI;I(H*) - ilzl(e)||2/>‘min(AAT)~

IN

Hence, by result (i), Amax(AAT) = O1), Auin((AAT)™D) = O(1), and Apax(Ix(0%)) < p4
n (A.70), we get

A —1/2 _ . _
1€, 2(0) — Q20712 = Op((sn + ga)n~2). O

Lemma 11. Let w,, j, = N_l/QAkllzl(G*)U,gri)(H*) + N'/2A,,. Under conditions (4)-(A5) and
(By). If s“f/%“ — 0 (n — o0), and there are two constant numbers Cj,Cy € (0,00),
independent of n, for which [[AAT||o, < Cy and |[(AAT)7Y|op < Ca, then the following results
hold:

() T = (20) [ Saey /20w ill3 + 0p(ma), where T is T, Tow or Tns;
(i) 2{QW(Br) — QW (Box)} = |20 )wn i[5 + 0p(ma);
(iii) VNG p = (9*)wn k +op(1);
(iv) if condition (Ag) holds, then

T2 = [{AILN(0M)A]}  n V2AI (0°)WLvi (%) + /2 A, H§ + op(my),

where A, = (0, x8]105 A)-

Proof of Lemma 11. (i) We divide the proof into three steps for (1) T = T, 1, (2)
T=T,w,and (3) T =T,s.

Step (1). Let Ly = (AAT) Ay, € = 0 *(0,)Lil(81)(0x — Bos)r,, and Cp =
Q2 (0% LT (67) (8 — O 1)z, - Tt follows from AT22(8,)AT = A,i,(9,)A] and the definition
of T), 1, that

2 (01) LTk (01) (01 — B0 o3 = — HC1 +Col3+ Lna,  (A.76)
2¢R k=1 20r
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where L, = ﬁ(uél + Call2 + [|C1 + Ca|l2) (|IC1 + Call2 — |C1 + Cal2). Now we prove
that L1 = op(my). By Qk(0x) = {AxTk(0) AL}, Qi(07) = {ArTL(0") A}, A Lllo =
|A(ATAT) 1Az = 1, (A.70)-(A.71), Lemma 8(iii), and Lemma 10(i)&(iv), we obtain that

192,20 LT (0%)]13 < |ILL ARLy(0%) AL Lil2 - |[14(6%) |2 = O(1), (A.77)

e 1/2 —1/2, hx . «
ICk2 + ICkllz < {119 " Ox)Lillz - 116(8x) 12 + €2 /2 (0" )Licll2 - 1Tk (Bx) 12} - 1Bk — Bo 1)1, |12
= (L] Apdi (1) AL LAl + L] ArLu(8") AL L1y *yOp(v/mn/n)

= Op(v/mp/n),
and
. D12 a1, ¢ (3 5 _ 2
[Ck — Crllz < (12 " (0k) — 2, "7(6%)l2 - 1Lgll2 - 1T (Ok)|l2 - (O — Ook) 1, |2

192,20 Lilla - 1T(Bk) — Tk(0%) ]2 - Bk — Box), |I2
= Op((sn + gu)n”*)Op(v/mn/n), (A.78)

for k = 1,2. Applying the triangle inequality and s, + ¢, = o(nl/ 3), we establish that

N . N 2.
|Lnal < ﬂ(HClJrCzHQﬂLHClJrCsz)HZ(Cj—Cj)HQ

IN

2
Z IC1 + Call2 + [|C1 + Call2) | €5 — Gy,

2

2R
N . .
> UGz +ICkIIC; — Cjlla

IN

= op(my). (A.79)

This, combined with (A.7 6), yields that

T ¢ 2O LTk (07) Ok — o), |3 + 0p(my). (A.80)

’ 2¢R k=1

Applying Lemma 8(iii), we obtain that

Tor = V20w + N2, (07 LT (0°)r )13 + 0p(my),

7 2¢R k=1

where ||r£f:),)]|2 = op(n~'/?). Using Lemma 8(iv) and (A.77), we get

12,/*(6%) = |{1e(6")} " V2A] (6" wn |l = Op(y/in):
(A.81)

INY20, (07 LT (0°)r) 2 = op(1).

99



Similar to (A.80), using (A.81), we arrive at

2
1 1/2, o4
Tow = S/ (07)wnnl +op(mn)

k=1

2
1
= 3122 O )wn il +op(ma). (A.82)
k=1

Step (2). Under H(EHQ), we have A(v* —r) = A,,. Then
Al —1) = AG =7 +7" =) = Ag(0), — 0%)s, + A,

Note that [| A, |2 = O(v/mn/n), [|Alla = |Allz = O(1), and [|(85—0")1, |2 = Op(\/(sn + an)/n)
in Lemma 6(i). It follows that

[A(F5 —r)ll2 = Op(1). (A.83)

Sn +Qn

This, combined Lemma 7(ii) and Lemma 10(iii), implies that

000 ALl = 0r(); [t 19207 AG )|, = 0p(1). (A8

It follows from Lemma 8(i) that

n
Sn+qn

Q2 (09AG, —t) = Q%(0)A{NL(6")) UV (6) + 9,20 Aprl) + 2,76 A,

n,l

N2 (0% )w, + 97 (0%)Arll). (A.85)

Similar to (A.80), by Lemma 10(iii) and (A.83)-(A.84), we can show that
A 1/2
Thw = *H Z Ay — I‘)Hz
N 1/2 0%\ A (2 2
= Sl Z 9, 7(07)A (Y, — 1)z + op(mn).
k=1
Thus, by (A.85), we have
1 < K
1/2 px 126\ K
= 1Y 207w+ NP0 Arrll 3 + op ().
Then, similar to Step (1), we can show that

2
Tow = oY /2 (0" )wnll} + op(mn). (A.86)
k=1
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Step (3). Using AmaX{(AAT)il} = 0(1), )\max(AAT) = 0(1), [[€2(67)[]2 = O(1), (A.81),

Lemma 7(ii), and Lemma 9, we obtain that
(AAT) 'AU(Bp ) = NV2Qp(0")w i + (AAT) LAY,
and

INY200(0 ) w2 + [(AAT) AL
INT2 207 12, (67) (AAT) 2z - el

= Op(y/mn/n),

where the second line is obtained by Holder inequality and

I(AAT)" AU (8o,1)2

IN

IN

I(AAT)TAS = [(AAT)TTAAT(AAT) T o = (AAT) 7|2,

This, combined with (A.70)-(A.71), Q(80x) = {Axlr(B0x)AL} 7!, and Ama{(AAT)"1} =
O(1), yields that

1%, (Bo0) 5 *I(AAT) L AU B 1) 2
= Op(v/ma/n) |1 Bo)lI5% - [(AAT)1|?
= Op(y/my/n).

Similarly, |2, "/*(6*)(AAT)"1AU(8 )2 = Op(y/mn/n). Similar to (A.80), it holds that

A —1/2 A _ A
195, % (B0.4) (AAT) " AU (B9 1) |2

IN

Tns = 7HZQI§ 90k AAT) 1AU(00k>H2

)

N . ¥ _ A
= 3l S0 6 (AAT) AU@ou) + op(ma)
k=1

2
1 1/2 o —1/2/ o k)
= SISO wn e+ NP0 (AAT) AT S + op(m).
k=1

With the same argument as used in Step (1), we can also show that

2
Tos = (20)711 3 (0 )wn 3 + 0p ().
k=1
(ii) For the k-th dataset, combining the mean value theorem with Lemma 8, then
QP (B0r) — QP (O) = {U,3, (80} (B - ékm
+0.5{( (8o — Or) Tk} H Gk)(eo k=01, , (A.87)
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with @ € [Bg,0]. Since 8, = argmaX{Q,(lk)(G), s.t. Bg: = 0}, we get U,gklk(ék) =0. By
Lemma 6(i), we have |0y — 6% |2 < [0 —0*||2 = Op(\/(sn + qn)/n). Recall that (8), — %), c =
(6}, — 6*)4.c = 0 in Lemma 8(i). Then, by Lemma 8(iii) and Lemma 10(i), we get

N{(Box — 0i)5, } {HE) (0)/N + 1,8} B0 — Bk)z, = Op{mn(sn + gu)n ™"/},

Note that [[{T,(6%)}/2AT k(6 )wn k|3 = 92/%(8%)wn k|- Tt follows from Lemma 8(iii) and
(A.87) that

201 (61,) — 2Q) (89 1,)
= N{(6o - ék)Tk}TIk(G*)(éO,k — 1)1, +op(my)
= [{Lx(6")} P AL (07w + N'2{L (O} 5 + 0 ()
= 1192/% (8" )wn kI3 + NILLL(O)} 2313 + 2NV 20 T AT k(0" )wn i + 0 ()
= 1192,/ )wnill3 + 0p(my),
where the last equality follows from H{Ik(e*)}l/?rfféllz = op(n~1/?) and H{Ik(e*)}*l/ﬁgnk(e*)wmkH2 =
Op(y/my) in Lemma 8(iv).
(iii) By the definition of {, j in Theorem 4, (A.78), (A.81), Lemma 8(iii) and m, < s, +¢n =

o(n'/?), we obtain that

= Q207w + N2 207 L, (07)r () + 0p(1)

n,3

= 26" wn i + op(1).
(iv) By Theorem 1, we know that P(S = S) — 1. Similar to result (ii), it can be shown that
Tho = [{AIZ (09)AT} 2 [0 PAIL (67)UR(67) + 02 A] |5 + o (my).
Then
Too = |{AI;H(69)A]} V2 [0 A I (09U (67) + 024, ] |2 + op(my). O

Lemma 12. (Bentkus, 2004, Th1) Let (X;)}_, be independent random wvectors in R™ with
E(X;) =0, Y0, Cov(X;) = C? and Z be a Gaussian random vector for which E(Z) = 0,
Cov(Z2) = C2. Choose ¢, > 0 for which

sup [P()_ X € 9) — P(Z € 9)| < eu(m)/* Y E[CT13,
i=1 i=1

with the supremum over C C R™convex.
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Lemma 13. Let 7712,,k = nAJ{AT?(6*)AT} A, for k = 1,2. Assume conditions (A;)-(A5)
and (Bsg) hold. Then

(i) m2 <ni,and 2 <n2, <n;

.. * _ * _ 2 * *

(ii) n||[2{ATZ2(6")AT} 12 =320 {AT2(0")AT} 2] A, ||; < 16¢%2 1, where ¢ = £/t
and p* € [0, 1) is the constant specified in (Bs).

Proof of Lemma 13. For convenience, let 3 = I(6*). By the definitions of 52, n7 ,, and 2 ,,

we obtain that
n2 =nA) {A(Zp — Zp.peEpe Bpe.n) TATFIA,;
i, = nAy{A(Sp — z:D,gkzgklzsk,D)—lAT}—lAn;
Mo =nAN{A(Sp — Bps35 ' Bsp) ATITA,

For any ¢, x g, positive definite matrix E; and positive semi-definite matrix Eo, we have

I(AETIAT)"2A(E, + Ey) 'AT(AETAT) 12|,
—1/2 —1/2\— —1/2 _ _
< (T, + E; PEET ) o BT PAT(ARTTAT) V22
< {14 Ao (B; PERE] Y21,

which implies that

A{AE, +Ey) AT} 1A,
= [[(AE"AT) VA (B + By) TAT(AETAT) T2 (AETTAT) T2, 3
> {1+ A (B] 2EoE; /2 AT {AETAT A,
> AM{AETAT A,
(i) Take E; = Zp — Bp peBpe Epe.p and Ey = Ty pe X5l Tpe p — B 5(Bs) ' Bs.p. To
show 72 < 7]%’0, It is enough to establish that Eg is positive semidefinite. Let N = D¢/S,

2N 2N, S

e

)7 and f3D°,D = (ED,NaED,S)T-
Thus one can find a permutation matrix U for which UX¥pe p = ’EV]DcyD. It follows from the

property of U that

p o
S pUT

N EN,s

T R _—
) = (Udpe v, Udpe s) = ( Ysn s

(USpUNT = ( ) = Spe.
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Since UUT =1 (the property of permutation matrix), we have
Y g Epep = ZppU USIUTUDLe
~T ~
== ZDC,D(UEDCUT)_lzDCYD
~T ~ ~
— EDC’D(ZDc)ilch’D. (ASS)

Using the inverse formula of a block matrix, we obtain that

o1 G~! ~G7!1En s 25!
e = ( _y—1 -1 -1 -1 -1 -1 )7
SIB NG BN 420 WGTIEy o3

where G = Xy — By 525 ' s ~. Then it is straightforward to verify that
~ ~ -1~ _ _ _ _
ZD,DCEDC EDC,D = ED,SZS 125,13 + 21:>,s25 12S,NG 12N,st 12D,s
_ED,Szglzs,NGilzN,D - ZD,NGilzN,stilES,D
+2D,NG712N,D7

which, combined with (A.88), leads to

Y50 ZpeEpep = (Zpn—ZpsXs Bsn)G  (Enp — BnsZs Zsp)
+35. 25126 p. (A.89)

This implies that Es is a positive semi-definite matrix. Hence, n2 < 7772170. Similarly, we can show

M < p ke < Mo
(i) Let A® = (0,1, x5, A), Nj = S1./8, F, = diag(Zx,, o us), and

ES ES,D

. Similar to (A.88), we obtain that
2D,s >b ) ( )

where Xp s = (
AIZ(09)AT = A(Zp — Eo,skﬁgklﬁsk,p)_lAT = AP AR T,
AIEQ(G*)AT = A(ED — ED,Szglzs’D)ilAT — A(k)(f‘k)fl{A(k)}T

Put Hy, = {A®FH{AR®}T1-1/2 and H = {A®(F),)" {A®}T}-1/2] Then it holds that

2
|[2{AIZ(6")AT} /2 — Z{AI@?(@*)AT}*/Z]A”H; = |{2H — (H; + Hy)}A, 3. (A.90)
k=1

It follows from the Cauchy-Schwarz inequality that

IN

n|[{2H — (H, + Ha) }A, |3 n|[{2H — (Hy + Hy)} (Hy + Ha) 7|3 - [|(Hy + Ha) A3

= 42 |{2H — (H; + Hy) }(H; + Hy) 7|3, (A.91)
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Notice that {H,H — HH;}T = —{H,H — HH,}. By (A.72), we get |[H,H — HH|2 = 0.

Further,
(H + Hy)(H — H;,) = H?> — H} + H,H — HH;,.

This, combined with Jensen’s inequality, yields that
2
I{2H — (Hy + Ho) }(Hy + Ho) M5 < 2> |(H — Hy)(Hy + Ha) 7'J3
k=1
2

= 2 |[(H + Hy,) "' (H + Hy) (H — Hy)(H; + Ha) ™3

k=1
2

= 2 ||(F + Hy)~H(E? - H)(H; +Hy) U3

k=1

Applying the CBS inequality, we have
I(F + H) ™! (H? — HR)(Hy + Ha) ™ '[13
= [|(H + H;,)""HH(H? - H?)H, "H,(H, + H,)}|3
< |(H +Hy) "HI - [[H™ (H? - H)H,' |3 - [[H(Hy + H) '3,
for k =1,2. Using Theorem 1.3.22 in Horn and Johnson (1985), we establish that
IC1Call2 = [|C2Crf2.
for any square matrixes C; and C,. Hence,
I(H + Hy) "' H|5 = [HY2(H + Hy) 'HY| < 1;
L (L ) ™3 < 2 (EL + Ho) ™ H ) < 0.

Therefore, by (A.92)-(A.93),

2
{2H — (Hy + Ho)}(Hy + Hp)7HJ5 < 22 (2 - H)H 3

= QZHH H; ) Hy|f5.

(A.92)

(A.93)

(A.94)

(A.95)

From the definitions of H; and H, |H, A®F 1/ |2 =1, and [|[HA® (F;)~1/2||]y = 1, it follows

immediately that
[FL(H > — H, *)Hg||2
_ ||HkA(k 1/2 1/2{F 1 Fk)—l}(f\k)l/2(fwk)—l/2{A(k)}Tﬁ||2
< || 1/2{F— Fk —1} Fk 1/2H2

= (F) 2 (Fp) "2 {la, — (F) 2(F, — F) (F) 2 = I (Fr) ™2 (F ) 2o,
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where a,, = my, + s, and the last equality is from simple algebra. Thus,

IHH? -H ) Hl: < [I(F)Y*(F) )
X|[{La, = )2 @y = F)(Fr) 23 =Ml (A96)

Applying the Cauchy-Schwarz inequality, we get

VT (F)V2(Fr — F)(Fr) Y2 = 2v{ (Bx,) Y Expos(Epus) v

2||v1||2”V2||2||(2Nk)_1/22NkYDu S(ED US)_1/2||2

IN

for any v = VT,VT T with ||v]]s = 1. Using condition (B3) and ||vi||2||vel]l2 < 1/2, we get that
1:V2

I(Fx) ™2 (Fp — Fr) (F) " 2)l2 < p* < 1. (A.97)

Then, by (A.97) and Taylor’s expansion,

{Ia, — (F) " 2(Fp — Fp)(Fo) 72 =10 e = 11D _{(Fr)"V2(F, — Fo)(Fr) "2},
i=1
< D NE)TVAE — Fr)(F) V2l
i=1
< pf/(1=p"); (A.98)
I(FR)2(F) 25 = |[(F) "2 {Fy — Fr+ Fi}(Fr) ™22
< L+ (o) 2 (Fr — Fr)(Fr) 72
< 1+ p% (A.99)

Combining (A.96)-(A.99) yields that
IH(H - H;*)Hy2 < c,

where ¢ = 9*17 V_lptp*. This, together with (A.91) and (A.95), leads to

2
n||[2{AI2(0) AT} 2 - ST{ATR(0)AT} V2 AL S < 16c%2 . O
k=1
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