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Abstract

We investigate hypothesis testing in Cox proportional hazards models under non-polynomial
(NP) dimensionality, where the ambient dimension can exceed any fixed polynomial in the
sample size. We introduce a DR-PLR test, together with a refitted version designed to tem-
per the tendency to over-select variables. The method first fits a penalized partial likelihood
to define a data-adaptive, low-dimensional working alternative space, and then conducts
inference within that space using a PLR statistic. Under standard regularity conditions
and appropriately calibrated regularization, the procedure achieves oracle-like performance
and is insensitive to moderate changes in the tuning level. To curb spurious inclusions that
can arise when p ≫ n, we refit on the selected subset prior to testing. Theoretically, we
derive Bahadur-type first-order expansions for the penalized estimators and characterize the
asymptotic null distribution of the DR-PLR statistic. Monte Carlo experiments show consis-
tent finite-sample gains over contemporary competitors, and a case study on non-Hodgkin’s
lymphoma survival demonstrates the workflow.

Key words and phrases: non-polynomial dimensionality, dimension-reduced partial like-
lihood ratio, penalized partial likelihood, refitting safeguard, Cox proportional hazards

1 Introduction

We observe i.i.d. samples v1, . . . ,vn from the model f(v;θ) with parameter θ ∈ Θ. Under the

null, θ ∈ Θ0 ⊂ Θ. We examine the composite null H0 : θ ∈ Θ0 against Ha : θ ∈ Θ \Θ0. Let

ℓn(θ) =
∑n

i=1 log f(vi;θ). The generalized likelihood-ratio statistic is

Tn = 2
{

sup
θ∈Θ

ℓn(θ)− sup
θ∈Θ0

ℓn(θ)
}
.

In the presence of nuisance components, a widely used formulation is

H0,1 : γ = r versus Ha,1 : γ ̸= r, (1)

∗Correspondence should be addressed to

1



where θ = (β⊤,γ⊤)⊤, β ∈ Rpn are nuisance parameters and γ ∈ Rqn are parameters of

interest. Under the usual regularity conditions and with fixed qn, the LR statistic satisfies

Tn ⇒ χ2
qn under H0,1, and notably the limit does not involve β (Wilks, 1938). Although

classical arguments justify the local optimality of the LR via efficient MLEs, this relies on correct

specification and accurate estimation; if the working model is unnecessarily large relative to the

truth, weak nuisance effects can dilute power, and randomness induced by selection further

complicates inference.

The analysis is conducted under the Cox PH model, using the partial likelihood for inference.

In many modern studies, pn can greatly exceed n. Regularization provides a practical screening

device, but in ultrahigh dimensions, penalized fits may admit noise variables with non-negligible

probability, enlarging the working model and weakening likelihood-type tests. We therefore treat

regularization as a means to shape a data-driven target set on which the test can concentrate

its power, rather than as the final goal.

We introduce a dimension-reduced partial likelihood ratio procedure (DR–PLR) for Cox

models operating under non-polynomial (NP) dimensionality. The procedure begins with a

penalized partial-likelihood fit that selects data-supported coordinates and thereby defines a

low-dimensional working alternative; inference is then performed in that reduced space using

a PLR statistic for testing (1). Empirically, once the selected set stabilizes across a range of

regularization levels, the resulting PLR statistic varies little with moderate tuning changes,

which helps concentrate power along data-supported directions.

We also cover the linear family:

H0,2 : Aγ −Ar = 0 vs Ha,2 : Aγ −Ar ̸= 0, (2)

with A of full row rank mn and a known target r; this includes testing membership of γ in a

(qn−mn)-dimensional subspace and reduces to (1) when mn = qn. Equivalently, because A has

full row rank, its null space has dimension qn−mn. By the SVD, there exists C ∈ R(qn−mn)×qn

with orthonormal rows spanning ker(A), i.e., CC⊤ = Iqn−mn and AC⊤ = 0, where Iqn−mn is

the identity matrix of size (qn −mn)× (qn −mn). We can write the null hypothesis as

H0,2 : γ = r+C⊤α,

For an unknown vector α ∈ R qn−mn (cf. Jiang and Jiang, 2011). The dimension pn is allowed

to grow faster than any fixed polynomial in n (e.g., pn ≤ exp{nκ} with κ ∈ (0, 1)), and (mn, qn)

may also diverge at rates specified later. In special cases, our setting links to earlier partial-

likelihood–based tests (see, e.g., Shi et al., 2019), which use partial penalized lr tests, and

reduces to Fan and Peng (2004) for mn held constant and pn + qn = o(n1/5).
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A convenient feature of PLR is that inference proceeds without modeling the baseline hazard;

robustified versions are available, and DR–PLR keeps this insensitivity while shrinking the

alternative through a screening step. To curb accidental inclusions from the screening stage,

we add a refitting step that re-estimates the model on the selected coordinates before testing;

analogous refitted Rao score and Wald versions can be formulated in the same spirit. These

refitted procedures preserve the large-sample behavior of their non-refitted counterparts across

broad practical tuning ranges while avoiding spurious effects from over-selection.

A key difficulty is the dependence of DR–PLR on a random post-screening model size. We

handle this by deriving Bahadur-type first-order expansions for MPLEs in dimension-reduced

models whose sizes are random. These expansions lead to a quadratic approximation: the PLR

statistic is asymptotically equivalent to the squared norm of a suitably standardized difference

of MPLEs under the reduced null and alternative, which delivers the asymptotic null law. We

further obtain an explicit upper bound on the post-screening model size under NP growth,

clarifying how screening interacts with inference.

Computationally, the pipeline is light: standard penalized Cox solvers on a tuning grid for

screening, followed by a low-dimensional PLR evaluation. Monte Carlo studies show accurate

size and competitive power over wide tuning ranges in NP regimes. The remainder of the article

develops the DR–PLR construction and asymptotic theory for Cox models (including a limit

on the post-screening model size); introduces refitted Rao and Wald versions together with

their asymptotic limits; and reports simulation results and an application to non-Hodgkin’s

lymphoma survival. All technical conditions and proofs appear in the Appendix.

2 DR-PLR Testing for Cox Proportional Hazards Model

2.1 DR-PLR Test Statistic

To make construction concrete, we start with the dr-plr procedure under Cox’s proportional

hazards model (Cox, 1972), which postulates the conditional hazard of a survival time T con-

ditional on (X,Z) = (x, z) as

λ(t | x, z) = λ0(t) exp
(
β⊤x+ γ⊤z

)
, (3)

where λ0(t) denotes the hazard and handle it as a nuisance term. Let {(xi, zi, Si, δi)}ni=1 be an

id, with Si is the observed time which is the minimum of censoring times Ci and survival time

Ti and the event indicator δi = 1{Ti ≤ Ci}. We assume that {Ci} and {Ti} are independent

conditional on the covariates (Xi,Zi), i.e., Ci ⊥ Ti | (Xi,Zi). Arrange the observed event times
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in increasing order t1 < · · · < tN and let X(j) be the covariate vector recorded at time tj , where

(j) be the index of the unit that fails at time tj . Let Rj = {i : Si ≥ tj} be the risk set at tj .

The log partial likelihood is

Qn(θ) =
∑

j = 1N
{
θ⊤w(j) − log

(∑
i∈Rj

exp
(
θ⊤wi

))}
,

where θ = (β⊤,γ⊤)⊤ and wi = (x⊤
i , z

⊤
i )

⊤. The maximum partial likelihood estimator (MPLE)

solves

∂Qn(θ)

∂θ
=

N∑
j=1

{
w(j) −

∑
i∈Rj

wi exp
(
θ⊤wi

)∑
i∈Rj

exp
(
θ⊤wi

) }
= 0. (4)

It is convenient to adopt the following notation. Assume Ni(t) = δi 1{t ≥ Si}, Yi(t) =

1{t ≤ Si}, and N̄(t) =
∑n

i=1 δi 1{t ≥ Si}. Assume the risk-set indicator vector Y(t) =

(Y1(t), . . . , Yn(t))
⊤ be LCRL and ∀ t ∈ [0, τ ] : Pr{Y (t) = 1} > 0. Then

Qn(θ) =
n∑
i=1

∫ τ

0

{
θ⊤wi(t)− logS(0)

n (θ, t)
}
dNi(t),

with

S(ℓ)
n (θ, t) =

n∑
i=1

Yi(t) {wi(t)}⊗ℓ exp{θ⊤wi(t)}, ℓ = 0, 1, 2,

and ⊗ denoting outer product. Define

En(θ, t) =
S
(1)
n (θ, t)

S
(0)
n (θ, t)

, Vn(θ, t) =
S
(2)
n (θ, t)

S
(0)
n (θ, t)

− {En(θ, t)}⊗2.

Writing wi(t) = (xi(t)
⊤, zi(t)

⊤)⊤ and θ = (β⊤,γ⊤)⊤, we also use the blockwise means

E(1)
n (θ, t) =

S
(1)
n1 (θ, t)

S
(0)
n (θ, t)

, E(2)
n (θ, t) =

S
(1)
n2 (θ, t)

S
(0)
n (θ, t)

,

where S
(1)
n1 (θ, t) =

∑n
i=1 Yi(t)xi(t) exp{θ

⊤wi(t)} and S(1)
n2 (θ, t) =

∑n
i=1 Yi(t) zi(t) exp{θ

⊤wi(t)}.
The score and observed information admit the familiar forms

∂Qn(θ)

∂θ
=

n∑
i=1

∫ τ

0

{
wi(t)−En(θ, t)

}
dNi(t), (5)

∂2Qn(θ)

∂θ ∂θ⊤
= −

n∑
i=1

∫ τ

0
Vn(θ, t) dNi(t). (6)

For variable screening, we maximize a penalized partial log-likelihood (e.g., Bradic et al.,

2011):

C(θ, τ) = Qn(θ)− n

p∑
j=1

pλn(|θj |), (7)
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and choose any maximizer θ̂ of C(θ, τ) on the compact set Ωp ⊂ Rp that contains the true

value θ∗; we refer to θ̂ as the sparse estimator. Let the individual intensity be λi(t,θ) =

λ0(t)Yi(t) exp{θ⊤wi(t)} and Λi(t) =
∫ t
0 λi(u,θ

∗) du, where θ∗ is the true value of θ with θ∗ =

(β∗⊤,γ∗⊤)⊤. DefineMi(t) = Ni(t)−Λi(t). Under information set Ft = σ{Ni(u),wi(u
+), Yi(u

+) :

0 ≤ u ≤ t, 1 ≤ i ≤ n}, {Mi}ni=1 are locally square-integrable martingales that are orthogonal

which means that ⟨Mi,Mj⟩t = 0 for all i ̸= j. These tools, together with arguments akin to

Fan and Li (2002) and Bradic et al. (2011), underlie the asymptotic theory developed later;

the same construction extends to additive hazards (Jiang and Zhou, 2007) and transformation

models (Doksum, 1987). This is also among the topics of this proposal.

For the testing task (1), the dr-plr statistic is assembled via two steps:

(i) Screen the alternative. Obtain the partially penalized estimator

θ̃ = (β̃
⊤
, γ̃⊤)⊤ = argmax

θ

{
Qn(θ)− n

pn∑
j=1

pλn(|βj |)
}
, (8)

where only the nuisance block β is penalized. Partition β̃ = (β̃
⊤
1 , β̃

⊤
2 )

⊤ into its non-

vanishing and vanishing coordinates, and split β = (β⊤
1 ,β

⊤
2 )

⊤ accordingly. Writing

Qn(θ) ≡ Qn(β1,β2,γ), we set β2 = 0 and hence we work with the reduced partial

likelihood Qn(β1,0,γ).

(ii) Form the PLR on the reduced model. Let

θ̂0 = (β̂
⊤
1,0,0

⊤, r⊤)⊤, θ̂a = (β̂
⊤
1,a,0

⊤, γ̂⊤
a )

⊤

be the MPLEs under H0,1 and Ha,1 for the reduced model. Define

Tn,1 = 2{Qn(θ̂a)−Qn(θ̂0)}. (9)

Large values of Tn,1 support rejection of H0,1.

Two remarks are worth noting. First, Step (i) penalizes only the nuisance coefficients, so no

beta-min requirement is imposed on the components fixed by the null; weak nuisance signals

remain identifiable and underfitting is reduced. Second, unless no reduction occurs, the MPLEs

computed in Step (ii) are not the full-model MPLEs; consequently, Tn,1 is not the classical

LR statistic for the unreduced model (in particular when some nuisance parameters are zero).

If Step (i) selects no unimportant covariates, then Tn,1 coincides with Tn. To avoid missing

relevant effects, we require the penalized estimator in (8) to possess the sure-screening property

(Fan and Lv, 2008), which is readily achieved in practice (see also Fan, Ning and Hao, 2012).
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The framework extends beyond exact likelihoods: the statistic is estimator-driven, so we

continue to refer to the resulting procedures as dr-plr tests. Concretely, in (8) one may replace

Qn(θ) with the negative of a suitable loss, thereby accommodating quasi-/pseudo-likelihood

criteria (see Fan et al., 2001; Fan and Jiang, 2007). The penalty pλn(·) is governed by a

tuning level λn, which can be selected via information criteria (e.g., BIC). Examples include

ridge/Tikhonov, the nonnegative garrote (Yuan and Lin, 2007), ℓ0, lasso (Tibshirani, 1996),

and folded-concave penalties—SCAD (Fan and Li, 2001). For testing purposes, penalties with

strong selection behavior—such as adaptive lasso (Zou, 2006) and SCAD/MCP (Kim et al.,

2008; Zou and Yuan, 2008)—are particularly appealing.

In Step (i), we apply shrinkage only to the nuisance coordinates, which prunes the alternative

while leaving the parameters under test untouched. This design serves two aims: it concentrates

power by reducing the dimensionality on the alternative side, and it preserves nominal size under

H0 by avoiding shrinkage on the target coordinates. In practice, one fits a Cox proportional

hazards model with penalties on nuisance indices only, carries the selected nuisance set to Step

(ii), and keeps the parameters of interest in the reduced model so that the subsequent DR–PLR

statistic is well defined.

Intuitively, by screening out negligible nuisance coefficients on the alternative side, the pro-

cedure effectively emulates an oracle that knows the zero components a priori; when the posited

model is correct up to a sparse nuisance block—a typical high-dimensional regime—the reduc-

tion step yields marked power gains over the unreduced likelihood-ratio (LR) test while keeping

type-I error at the nominal level.

Actually, dr–plr chooses a single λn in Step (i). Once the screened set stabilizes, the

Step (ii) statistic varies little over a broad range of λn, yielding stable size and power (see §4).

Moreover, the λopt that performs well for estimation typically also works well for testing, sim-

plifying calibration—an advantage not commonly enjoyed by alternative regularization–based

tests.

For the general linear hypothesis in (2),

H0,2 : Aγ −Ar = 0 versus Ha,2 : Aγ −Ar ̸= 0,

the estimator under Ha,2 remains θ̂a = (β̂
⊤
1,a,0

⊤, γ̂⊤
a )

⊤ with (β̂1,a, γ̂a) = argmaxQn(β1, 0,γ).

Under H0,2,

θ̂0 = (β̂
⊤
1,0,0

⊤, γ̂⊤
0 ) = argmax

β,γ
{Qn(β1, 0,γ) : Aγ −Ar = 0 }.

We maximize Qn(β1,0,γ) with γ = r+C⊤α, and obtain the mple

θ̂0 = (β̂1,0,0
⊤, (r+C⊤α̂)⊤)⊤. (10)
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The corresponding statistic is

Tn,2 = 2{Qn(θ̂a)−Qn(θ̂0)}, (11)

which reduces to Tn,1 when A is invertible.

2.2 Large-Sample Theory for the DR–PLR Procedure

Now, we develop the large–sample distributional properties of dr-plr. A key prerequisite is

to control how large the post–screening working alternative can be; this “effective dimension”

drives both validity and power of the statistic.

Notation. For clarity, we fix notation. Let β∗ = (β∗1 , . . . , β
∗
pn)

⊤ be the true parameter vector

of β, γ∗ = (γ∗1 , . . . , γ
∗
qn)

⊤ be the true parameter vector of γ; then we have θ∗ = (β∗⊤,γ∗⊤)⊤ ∈
Rpn+qn . Let W = (w1, . . . ,wn)

⊤ ∈ Rn×(pn+qn) be the covariate matrix, where wi = (x⊤
i , z

⊤
i )

⊤

stacks the nuisance and target covariates. Let D ⊂ {1, . . . , pn + qn} index the coordinates of

θ corresponding to γ, so that θ∗D = γ∗. Define the true support of the nuisance block by

S = {j ∈ {1, . . . , pn} : β∗j ̸= 0} and the selected set by Ŝ = {j ≤ pn : β̃j ̸= 0}; let N̂ = Ŝ \ S
denote false inclusions. Write sn = |S| and define the minimal signal level dn = 1

2 minj∈S |β∗j |
(with the convention dn = ∞ if S = ∅). For any index set N, |N| denotes its cardinality. Let

Q denote the working criterion (e.g., the Cox partial log-likelihood), and g the link if applicable

(for Cox, g(t) ≡ t). Define

v1(t, y) = ∂Q
(
g−1(t), y

)
/∂t, v2(t, y) = ∂2Q

(
g−1(t), y

)
/∂t2.

and collect v1(θ) =
(
v1(w

⊤
1 θ, Y1), . . . , v1(w

⊤
n θ, Yn)

)⊤
. For a vector a, let ∥a∥∞ = maxj |aj | and

∥a∥0 = #{j : aj ̸= 0}. If ξ is a vector and J an index set, then ξJ denotes the subvector of ξ

with indices in J.

For sequences {ξn} and {ηn}, denote ξn
a∼ ηn whenever supx |P (ξn ≤ x)−P (ηn ≤ x)| → 0 as

n→ ∞. We write χ2
mn

(η2n) for the chi-square law on mn degrees of freedom with noncentrality

parameter η2n; the central case (η2n = 0) is written χ2
mn

.

Theorem 1. Under conditions (A1)–(A5) and sn+qn
n1/2 −→ 0 as n → ∞, the number of false

inclusions satisfies

|N̂| = Op(sn + qn).

If, in addition, (A6) holds, no spurious variables are retained w.h.p., i.e., |N̂| = 0.
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We next state Wilks–type null limits for the ordinary partial–likelihood ratio statistic Tn

and for its dimension–reduced counterpart T2 aimed at testing H0,2 : A(γ − t) = 0.

Theorem 2. Under conditions (A1)–(A6), (B1), (B2), and (B4), there exist constants C1, C2 ∈

(0,∞), independent of n, such that ∥AA⊤∥op ≤ C1 and ∥(AA⊤)−1∥op ≤ C2. Under the null

H0,2, we have

(i) If pn
n1/3 −→ 0 (n → ∞), then λn, Tn,2, and χ2

mn
are asymptotically identically dis-

tributed, which is denoted by Tn
a∼ χ2

mn
.

(ii) If sn+qn
n1/3 −→ 0 (n→ ∞), then Tn,2

a∼ χ2
mn

.

Remark 1. Under non-polynomial growth, dr-plr preserves the Wilks phenomenon provided

the effective post-screening dimension is o(n1/3).

For power analysis of the dr-plr test, we consider Pitman local alternatives contiguous to

H0,2,

H
(n)
a,2 : γ = r+C⊤α+ ∆̃n, ∥∆̃n∥2 → 0,

and assume there is no α∗ ∈ R qn−mn with ∆̃n = C⊤α∗ (otherwise H
(n)
a,2 coincides with H0,2

and no test has power). Assume Null(A) = col(C⊤)—equivalently, rank(A) = mn, rank(C) =

qn −mn, and AC⊤ = 0. With ∆n := A∆̃n, this is equivalently written as

Aγ −Ar = ∆n, ∥∆n∥2 ̸= 0 for all sufficiently large n.

To handle local alternatives, we first set notation and then characterize the large-sample laws

of the lr and dr-plr tests. Define the partial-likelihood information matrix

I(θ) = E
{
−N−1∂2Qn(θ)/∂θ∂θ

⊤} = E
{
−N−1

( ∂2Qn(θ)/∂β∂β
⊤ ∂2Qn(θ)/∂β∂γ

⊤

∂2Qn(θ)/∂γ∂β
⊤ ∂2Qn(θ)/∂γ∂γ

⊤

)}
and suppose I(θ∗) is invertible. In accordance with the split θ = (β⊤,γ⊤)⊤, we block–decompose

I(θ) and its inverse I−1(θ) accordingly as

I(θ) =
( I11(θ) I12(θ)

I21(θ) I22(θ)

)
and I−1(θ) =

( I11(θ) I12(θ)
I21(θ) I22(θ)

)
where I(θ) is pn × pn and I−1(θ) is qn × qn. Assume j1, . . . , jsn are the indices in S arranged

in increasing order, and let e be an sn × pn matrix with the jl-th column equal to the l-th

standard basis vector (l = 1, . . . , sn) and the remaining columns equal to zero in the Euclidean
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space Rsn . Let Ir(θ) denote the reduced information matrix obtained from I(θ) with indices

lying in M0. That is,

Io(θ) = E
{
−N−1

( ∂2Qn(θ)/∂βS∂β
⊤
S ∂2Qn(θ)/∂βS∂γ

⊤

∂2Qn(θ)/∂γ∂β
⊤
S ∂2Qn(θ)/∂γ∂γ

⊤

)}
.

with I−1
o (θ) partitioned in the same way.

Io(θ) =
( Io,11(θ) Io,12(θ)

Io,21(θ) Io,22(θ)

)
and I−1

o (θ) =
( I11o (θ) I12o (θ)

I21o (θ) I22o (θ)

)
The associated Schur complement satisfies

{I22o (θ)}−1 = Io,22(θ)− Io,21(θ){Io,11(θ)}−1Io,12(θ).

Theorem 3. (Local–alternative limits) Under the assumptions of Theorem 2 and with ∥∆n∥2 =

O(
√
mn/n):

(i) If pn
n1/3 −→ 0 (n→ ∞), then

Tn
a∼ χ2

mn
(η2n), η2n = n∆⊤

n {AI22(θ∗)A⊤}−1∆n.

(ii) If sn+qn
n1/3 −→ 0 (n→ ∞), then

Tn,2
a∼ χ2

mn
(η2n,o), η2n,o = n∆⊤

n {AI22o (θ∗)A⊤}−1∆n.

Corollary 1. If I(θ∗) is invertible, then η2n ≤ η2n,o, with equality iff there is no nuisance block

or the cross-information between β and γ vanishes.

According to Corollary 1, whenever at least one nuisance coordinate is truly zero, the large-

sample power of Tn,2 strictly exceeds the large-sample power of Tn, except when there is no

nuisance block or the cross-information between β and γ vanishes. The gain is maximized when

all nuisance effects vanish. If no nuisance entry is zero, then λn and Tn,1 are asymptotically

equivalent. Moreover, if the zero nuisance coordinates were known a priori and one formed the

lr test after removing them, its large-sample power would match that of dr-plr; thus dr-plr

enjoys an oracle property. Consequently, when many nuisance parameters are inactive, dr-plr

effectively shrinks the alternative space and achieves higher power than LR.

In high-dimensional settings with many nuisance parameters—such as breast cancer studies

with genome-wide expression—one tests the joint significance of a target gene group while ad-

justing for the remaining genes. When most nuisance effects are zero, dr–plr typically attains

substantially greater power than PLR-type procedures by reducing the effective alternative

dimension.
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3 Refitted tests

3.1 Refitted DR-PLR test

In ultra-high–dimensional regression, achieving “sure screening” typically leads selectors to err

on the side of inclusion; as documented by Fan, Ning and Hao (2012), noise covariates can be

admitted with non-negligible probability. If the penalized fit in (8) carries such false positives

into the screened set, a natural question is how this impacts our dr-plr: does it distort size

(inflate type-I error), erode power, or both? We investigate these issues via extensive Monte

Carlo experiments under an extremely large ambient dimension. To blunt the influence of over-

selection, we further introduce a refitted dr-plr: after screening, we re-estimate on the retained

coordinates and then form the test statistic, echoing the spirit of refitted cross-validation in Fan,

Ning and Hao (2012). The refitted variant aims to purge spurious effects while preserving the

tuning-insensitivity of the original dr-plr.

For clarity of exposition, we revisit the testing problem H0,2. We assume the sample is

randomly split into two subsamples {(w(1)
i , S

(1)
i , δ

(1)
i )}Ni=1, and {(w(2)

i , S
(2)
i , δ

(2)
i )}Ni=1, where n =

2N and w
(k)
i = ({x(k)

i }⊤, {z(k)i }⊤)⊤ for k = 1, 2. For the kth subsample, arrange the observed

event times in increasing order t
(k)
1 < · · · < t

(k)
N and let (j) be the index of the unit that fails

at time t
(k)
j . Define the risk set by R(k)

j = {i ∈ {1, . . . , N} : S
(k)
i ≥ t

(k)
j }, j = 1, . . . , N . For

dimension reduction, we fit model (3) to the kth subsample under Ha,2 by

Ln,λ(θ;w1, . . . ,wn) = θ̃
(k)

= max
θ

{
Q(k)
n (θ)−N

pn∑
j=1

pλn(|θj |)
}
,

where Q
(k)
n (θ) =

∑N
j=1

{
θ⊤w

(k)
(j) − log

(∑
i∈R(k)

j

exp
(
θ⊤w

(k)
i

))}
. Let Ŝk = {i : θ̃(k

∗)
i ̸= 0, 1 ≤ i ≤

pn} and snk = |Ŝk|, where k∗ = 2− |k − 1| and k can be 1 or 2.

Let

Q(k)
n (θ) =

N∑
i=1

∫ τ

0
{θ⊤w(k)

i (t)− log
(
S
(0)
n,k(θ, t)

)
} dN (k)

i (t),

S
(ℓ)
n,k(θ, t) =

N∑
i=1

Y
(k)
i (t){w(k)

i (t)}⊗ℓ exp
(
θ⊤w

(k)
i (t)

)
(12)

where ℓ can be 0, 1, or 2, and ⊗ means the dyadic product.

E(k)(θ, t) = S
(1)
n,k(θ, t)/S

(0)
n,k(θ, t) and V(k)(θ, t) = S

(2)
n,k(θ, t)/S

(0)
n,k(θ, t)−

{
E(k)(θ, t)

}⊗2
.

10



To reduce the impact of spurious inclusions on the dr-plr statistic, we re–estimate the Cox

model on the screened coordinates, enforcing H0,2 and Ha,2 in turn. Concretely, for model (3)

we compute the MPLEs under H0,2 and Ha,2, denoted by

θ̂k,0 = argmax
θ

{Q(k)
n (θ), s.t. βŜc

k
= 0, Aγ −At = 0}

and

θ̂k,a = argmax
θ

{Q(k)
n (θ), s.t. βŜc

k
= 0},

respectively. Evaluating the partial log–likelihood at the null and alternative fits yieldsQ
(k)
n (θ̂k,0)

and Q
(k)
n (θ̂k,a) for split k. In analogy with (11), we define the dr-plr statistic on split k by

T
(k)
n,L = 2{Q(k,a)

n (θ̂k)−Q(k)
n (θ̂k,0)}.

A simple aggregate for the two splits is

T ∗
n,L =

T
(1)
n,L + T

(2)
n,L

2
.

However, even with ideal reduction, this aggregated statistic may still fall short of Tn,2 in power.

In fact, when Ŝk = S we have T
(k)
n,L

a∼ χ2
mn

and T ∗
n,L

a∼ 1
2χ

2
2mn

, so the effective degrees of freedom

are doubled relative to Tn,2 (see Ghosh, 1973), which tends to dilute power.

We now put forward a construction of the refitted dr-plr statistic that aggregates in-

formation from the entire sample. The recipe hinges on a Bahadur–type linearization of the

split–specific MPLEs θ̂k together with a second–order (quadratic) expansion of T
(k)
n,L. For the

ensuing derivations, we first set up some notation. Define

Ik(θ) = −N−1E
( ∂2Q

(k)
n (θ)/∂βŜk

∂β⊤
Ŝk

∂2Q
(k)
n (θ)/∂βŜk

∂γ⊤

∂2Q
(k)
n (θ)/∂γ∂β⊤

Ŝk
∂2Q

(k)
n (θ)/∂γ∂γ⊤

)
,

and its empirical version

Îk(θ) = −N−1
( ∂2Q

(k)
n (θ)/∂βŜk

∂β⊤
Ŝk

∂2Q
(k)
n (θ)/∂βŜk

∂γ⊤

∂2Q
(k)
n (θ)/∂γ∂β⊤

Ŝk
∂2Q

(k)
n (θ)/∂γ∂γ⊤

)
.

Partition I−1
k (θ) =

( I11k (θ) I12k (θ)
I21k (θ) I22k (θ)

)
and Î−1

k (θ) =
( Î11k (θ) Î12k (θ)

Î21k (θ) Î22k (θ)

)
, where both I22k (θ)

and Î22k (θ) have dimension qn×qn. Let Wk be the split-k model matrix, with nuisance and

target submatrices denoted by Xk and Zk, where Xk =
(
(x

(k)
1,Ŝk

)⊤, . . . , (x
(k)
N,Ŝk

)⊤
)⊤

and Zk =(
(z

(k)
1 )⊤, . . . , (z

(k)
N )⊤

)⊤
. Let D ⊂ {1, . . . , pn+qn} denote the index set selecting the target block

in θ, so that θ∗D = γ∗. Define T = S ∪ D, which collects the true support of the nuisance

11



part β together with all coordinates of γ∗. In addition, suppose T̂k = Ŝk ∪D, Tk = Sk ∪D,

Ãk = (0mn×snk
,A), Ωk(θ

∗) = {ÃkI
−1
k (θ∗)Ã⊤

k }−1, and θT̂k
= (β⊤

Ŝk
,γ⊤)⊤, where k can be 1 or

2. Then |T̂k| = τnk. Obviously,

U(θ) ≡ ∂Qn(θ)

∂θ
=

n∑
i=1

∫ τ

0

{
wi(t)−E(θ, t)

}
dNi(t) (13)

and

H(θ) ≡ ∂2Qn(θ)

∂θ∂θ⊤
= −

n∑
i=1

∫ τ

0
V(θ, t) dNi(t). (14)

Furthermore,

U
(k)
T̂k

(θ) ≡ ∂Q
(k)
n (θ)

∂θT̂k

=
N∑
i=1

∫ τ

0

{
w

(k)
i,T̂k

(t)−E
(k)
T̂k

(θ, t)
}
dN

(k)
i (t)

and

H
(k)
T̂k,T̂k

(θ) ≡ ∂2Q
(k)
n (θ)

∂θT̂k
∂θ⊤T̂k

= −
N∑
i=1

∫ τ

0
V

(k)
T̂k,T̂k

(θ, t) dN
(k)
i (t),

where V
(k)
T̂k,T̂k

(θ, t) is the submatrix of V(k)(θ, t) with row and column indexes in T̂k. Finally,

we obtain the following results.

Theorem 4. Under conditions (A1)-(A5) and (B1). If
sn+qn
n1/3 −→ 0 (n→ ∞), and there exist

constants C1, C2 ∈ (0,∞), independent of n, such that ∥AA⊤∥op ≤ C1 and ∥(AA⊤)−1∥op ≤ C2,

then under H
(n)
a,2 with ∥∆n∥2 = O(

√
mn/n), where k can be 1 or 2, we have

(i) Sparse structure of the estimators: (θ̂k,a − θ∗)T̂k
c = 0 and (θ̂k,0 − θ∗)T̂k

c = 0;

(ii) Asymptotic linear representation:

(1) Alternative estimator:
√
N(θ̂k,a−θ∗)T̂k

= N−1/2I−1
k (θ∗)U

(k)
T̂k

(θ)+rn, where ∥rn∥2 =

oP (1);

(2) Null estimator:

√
N(θ̂k,0 − θ∗)T̂k

= N−1/2I−1
k (θ∗){Iτnk

− Ã⊤
kΩk(θ

∗)ÃkI
−1
k (θ∗)}U(k)

T̂k
(θ)

−I−1
k (θ∗)Ã⊤

kΩk(θ
∗)∆n + r∗n,

with ∥r∗n∥2
P−→ 0, where Iqn denotes the identity matrix of order qn;

(iii) Second-order approximation:

2{Q(k)
n (θ̂k,a)−Q(k)

n (θ̂k,0)} = ∥ζn,k∥22 + oP (mn),

12



where ζn,k =
√
N{AÎ22k (θ̂k,a)A

⊤}1/2(AA⊤)−1ÃkÎk(θ̂k,a)(θ̂k,a − θ̂k,0)T̂k
. Moreover, un-

der H0,2, we have ∥ζn,k − ζ∗n,k∥2
P−→ 0, where ζ∗n,k =

√
NΩ

1/2
k (θ∗)ÃkI

−1
k (θ∗)U

(k)
n,T̂k

(θ). In

addition, if (A6) and (B2) hold, then ζ
∗
n,k

a∼ Nmn(0, ϕImn).

Remark 2. The post–screening model sizes |Ŝk| in Step (ii) are random, because without

condition (A6) the selected set Ŝk need not coincide with the true support S. Consequently, the

ensuing Bahadur expansions depart from the classical fixed–dimension form, as the estimator

dimension is data–dependent. Moreover, Theorem 4 shows that, in large samples, the partial-LR

can be represented as a quadratic form. Specifically, it is equivalent to the squared Euclidean

norm of the appropriately standardized difference between the parameter estimates obtained

under the null and under the alternative. This approximation is the key tool for deriving the

large–sample distributions of the refitted dr-plr, as well as for the dimension–reduced Rao

score and Wald tests.

Corollary 2. If (A1), (A2), (A3), (A4), (A5), (A6), and (B1) hold, then under H
(n)
a,2 , if Ŝ1 =

Ŝ2 = Ŝ, we have

Tn,2 =
1

2
∥ζn,1 + ζn,2∥22 + oP (mn). (15)

By (15) and Theorem 4(iii), for each split k the vector ζn,k serves, up to negligible remainder,

as an asymptotic surrogate for the log–partial–likelihood ratio on that split. Summing these

surrogates therefore provides a full–sample summary of the likelihood evidence. In conjunction

with (15), this motivates defining the refitted dr-plr statistic for the entire dataset as

Tn,L =
1

2

∥∥ζn,1 + ζn,2
∥∥2
2
, (16)

which has the same limiting law as Tn,2 (see Section 3.2).

By Theorem 4(iii) we have, for each split k,

T
(k)
n,L = ∥ζn,k∥ 2

2 + oP (mn).

It follows that

Tn,L = T ∗
n,L + ζ⊤n,1ζn,2,

where ζ⊤n,1ζn,2 serves as a correction that recoups the power loss of T ∗
n,L caused by the inflated

degrees of freedom.

The choice of Tn,L is justified on two grounds. First, combining (15) with (16) shows that Tn,L

closely approximates the statistic Tn,2, and in fact they have the same asymptotic distribution

13



(see Theorem 5). Second, Tn,L mitigates the spurious-selection issue by aggregating the ζn,k’s,

which encode the splitwise likelihood information, rather than relying on two independent chi-

square contributions.

3.2 Asymptotic distributions of the refitted tests

We now characterize the null limiting law of the refitted statistics.

Theorem 5. Under conditions (A1), (A2), (A3), (A4), (A5), (B1), (B2), and (B4), suppose

sn+qn
n1/3 −→ 0 (n → ∞), and there exist constants C1, C2 ∈ (0,∞), independent of n, such

that ∥AA⊤∥op ≤ C1 and ∥(AA⊤)−1∥op ≤ C2. Then, under H0,2, T
a∼ χ2

mn
, where T is

Tn,L, Tn,W, or Tn,S, which means that Tn,L
a∼ χ2

mn
, Tn,W

a∼ χ2
mn

, and Tn,S
a∼ χ2

mn
.

Remark 3. For a test at level α, reject H0 whenever T > χ2
mn,α (the upper-α quantile of χ2

mn
),

with T ∈ {Tn,L, Tn,W, Tn,S}. By Theorem 5, each refitted statistic has the same asymptotic null

law as the full–sample plr statistic Tn,2. A notable distinction is that the refitted procedures do

not require condition (A6)—a key assumption used by Tn,2 and by certain regularization–based

tests (e.g., the partial–penalized LR of Shi et al., 2019) to attain an oracle screening property.

As a consequence, the refitted tests exhibit stable size and reduced tuning sensitivity across a

broad range of λn.

We then establish the asymptotic alternative distribution of the refitted statistics. To give

the asymptotic distributions of the refitted statistics under local alternative hypotheses, we

introduce the following notational convenience. Let

Ik(θ) = E
{
−N−1

( ∂2Qn(θ)/∂βŜ
(k)∂β⊤

Ŝ
(k) ∂2Qn(θ)/∂βŜ

(k)∂γ⊤

∂2Qn(θ)/∂βŜ
(k)∂γ⊤ ∂2Qn(θ)/∂γ∂γ

⊤

)}

where k = 1, 2. Write the inverse matrix I−1
k (θ) as I−1

k (θ) =
( I11k (θ) I12k (θ)
I21k (θ) I22k (θ)

)
with diagonal

blocks of dimension snk × snk and qn × qn, respectively. Then

[I22k (θ)]−1 = I22(θ)− I21(θ)ẽ
(k)⊤[ẽ(k)I11(θ)ẽ

(k)⊤]−1ẽ(k)I12(θ).

Define

η2n,L = n
{
∆⊤
n [AI22r,1(θ

∗)A⊤]−1∆n +∆⊤
n [AI22r,2(θ

∗)A⊤]−1∆n

}
/2,

η2W = n
∥∥[AI22r,1(θ

∗)A⊤]−1/2∆n + [AI22r,2(θ
∗)A⊤]−1/2∆n

∥∥2/4.
14



Theorem 6. (Asymptotic alternative distribution) Suppose the conditions in Theorem 5 hold,

sn+qn
n1/3 −→ 0 (n→ ∞), and there exist constants C1, C2 ∈ (0,∞), independent of n, such that

∥AA⊤∥op ≤ C1 and ∥(AA⊤)−1∥op ≤ C2. If ∥∆n∥2 = O(
√
mn/n), then under the alternative

H
(n)
a,2 , T

a∼ χ2
mn

(η2n,L), where T is Tn,L, Tn,W, or Tn,S, and η
2
n,L = (4ϕ)−1n

∥∥∥∑2
k=1{AI22k (θ∗)A⊤}−1/2∆n

∥∥∥2
2
.

Remark 4. Theorem 6 implies that the refitted procedures are consistent even without invoking

condition (A6). In the boundary case ∆n = 0, the local alternative collapses to H0, so the

asymptotic laws under the null and under the alternative are the same. Consequently, the

refitted tests attain the nominal level asymptotically and thus exhibit correct size under H0.

Remark 5. Theorem 6 delivers the asymptotic local–alternative laws for the refitted procedures

without invoking condition (A6). This permits a principled assessment of power across the wide

range of λn values typically used in practice. If (A6) does hold, then P (Ŝk = S) → 1 and

consequently η2n,L = η2n,o. In particular,

Tn,L
a∼ χ2

mn
(η2n,o), Tn,W

a∼ χ2
mn

(η2n,o), Tn,S
a∼ χ2

mn
(η2n,o),

so the refitted tests are, asymptotically, as powerful as the oracle dr-plr benchmark.

Finally, in settings with strong covariate correlations, the refitted procedures retain appreciable

power, often rivaling the oracle plr benchmark.

Theorem 7. (Nonignorable power) Under conditions (A1)–(A5), (B1), and (B3), we have η
2
n ≤

η2n,L and K(ρ∗)η2n,o ≤ η2n,L ≤ η2n,o, with K(ρ∗) = 1
1+4c+4c2

, where c = ρ∗√
1−ρ∗

√
1+ρ∗

1−ρ∗ and

ρ∗ ∈ [0, 1). In addition, if condition (A6) holds, then η
2
n,L = η2n,o.

Remark 6. One readily checks that K(ρ∗) ∈ [0, 1] and decreases strictly in ρ∗. Table T1

reports how K(ρ∗) evolves as ρ∗ varies. This implies that, in adverse high–correlation regimes,

the power of the refitted procedures is governed by ρ∗: their power is maximized at ρ∗ = 0 and

decreases as ρ∗ grows. A lower limit for η2n,L further guarantees a nontrivial power floor for the

refitted tests relative to the oracle plr benchmark even under the most correlated scenarios.

Moreover, if condition (A6) holds, the refitted tests match the oracle power regardless of the

value of ρ∗.
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Table T1: Change in K(ρ∗) over ρ∗

ρ∗ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

K(ρ∗) 1.000 0.658 0.417 0.256 0.151 0.084 0.043 0.020 0.007 0.002

4 Simulations

For each replication, we drew n = 400 independent feature vectors W = (w1, . . . , wp)
⊤ from

Np(0,Σ) with Σij = ρ|i−j|, where ρ = 1
4 . The whole experiment was repeated 1000 times.

The censoring time C is exponentially distributed with mean U ∗ exp
{
W⊤θ

}
, where U ∼

Unif(1, 3) was re-sampled at the beginning of each run. This design, adapted from Fan and

Li (2002), yields roughly 30% censored observations in every simulated data set. We used

adaptive LASSO and SCAD penalties, and the associated regularization parameters λn were

selected using the Schwarz information criterion (SIC) following Shi et al. (2019).

We compared DR–PLR against a quasi-likelihood ratio benchmark computed under oracle

knowledge. The oracle test assumes knowledge of the zero positions in the parameter vector

θ, providing a benchmark for optimal performance. We investigated two dimensional settings:

low-dimensional with rn = pn + qn = 200 and high-dimensional with rn = pn + qn = 2000. We

also examined two levels for the dimensionality of the parameters of interest γ: qn = 1 and

qn = ⌈0.5n1/3⌉ = 4. In this paper, our discussion of the DR-PLR test mainly centers on two

types of hypotheses: global-null test:

H0,1 : γ = r vs. Ha,1 : γ ̸= r

and general linear hypothesis test:

H0,2 : Aγ −Ar = 0 vs. Ha,2 : Aγ −Ar ̸= 0

For each illustrative case, we estimate the null rejection rate and power for each test by running

1000 simulations. We set n=400 in each simulation. Since we use a data-adaptive L1 regularizer,

we must compute the associated weights θ̃. We obtain θ̃ by fitting the Cox partial likelihood

with an additional L2 (ridge) penalty, following the idea of Fan & Li (2002). The ridge term

guarantees that every coordinate of θ̃ is non-zero, so all adaptive weights 1
θ̃

are finite. For

the DR-PLR test, we choose λn by minimizing SIC; unless noted otherwise, we denote the

SIC–minimizing choice by λ̂opt. For the oracle quasi-likelihood ratio test, no λn selection is

needed since the support of the nonzero parameters is assumed known.

We analyze two hypothesis-testing problems: (i) H0,1 : γ = 0 vs. Ha,1 : γ = 8ξn−1/2,

where γ = θ197; and (ii)H0,2 : Aγ = 0 vs. Ha,2 : Aγ = 8ξn−1/2, where γ = (θ197, θ198, θ199, θ200)
⊤
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andA = (1, 1, 1, 1)⊤. We consider testingH0,j versus a sequence of contiguous alternativesHa,j ,

with ξ ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}, where j = 1, 2. When ξ = 0, the null and alternative coincide,

so the null rejection rate should be approximately the significance level α. As the departure

parameter ξ increases, the power should increase accordingly.

In each replication, we randomly split the sample into two equal halves D1 and D2. Using

D1, we fit a penalized Cox model (adaptive LASSO or SCAD) with λn chosen by BIC to obtain

a working active set for the nuisance part. On D2, we refit the unrestricted and restricted

Cox models (the latter imposes the linear constraint through reparameterization) and compute

the DR-PLR “information vector” ζn,1. Then, we swap the roles of the halves to obtain ζn,2

analogously. Finally, we combine the two pieces of information to form the refitted DR-PLR

statistic Tn,L = 1
2

∥∥ζn,1 + ζn,2∥∥22, which, under H0, is asymptotically χ2
m, where rank(A) = m.

The p-value is obtained from this reference distribution.

To calculate the type I error rate, we conducted 1000 simulations under H0 at each signif-

icance level α = 0.1, 0.2, . . . , 0.9, and recorded the rejection count of H0. We then treated the

resulting rejection proportion as the empirical type I error probability for α. Figures F1 and

F2 report the empirical size under H0,1 and H0,2 against the significance level α for all tests

with λn = λ̂opt. Taken together, it seems that, regardless of the dimension configuration and

whether the adaptive LASSO or SCAD penalty is employed, the DR-PLR test maintains the

significance level, and its performance is comparable to that of the oracle test.

Table T2 reports the rejection probabilities under Ha,2 at the nominal level α = 0.05 for

three different levels λn: 0.75λ̂opt, λ̂opt, and 1.25λ̂opt. These three levels correspond to under-

shrinkage, right shrinkage, and over-shrinkage, respectively. From Table T2, we conclude that:

(i) Across all dimensions (rn = 200 and rn = 2000) and all three tuning levels (0.75λ̂opt, λ̂opt,

and 1.25λ̂opt), the empirical power of the DR-PLR test is virtually indistinguishable from

that of the oracle PLR benchmark.

(ii) At λ̂opt or 1.25λ̂opt, DR-PLR matches the oracle while maintaining the nominal 5% level,

making this range the safest choice when size control is paramount.

(iii) The 0.75λ̂opt level provides the highest power—especially with SCAD—but previous size

tables show a modest inflation of the null rejection rate under this tuning.

4.1 Real Data Example

For empirical analysis, we examine a gene expression dataset consisting of 191 biopsy specimens

from untreated follicular lymphoma patients—a subtype of non-Hodgkin’s lymphoma. The
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Figure F1: Plot of the null rejection rate versus α under H0,1. The blue curve depicts

DR–PLR’s null rejection rate; the red curve gives the oracle QLR counterpart.

specimens were collected at seven medical centers between 1974 and 2001. The median age of

the cohort at the time of diagnosis was 51 years, and the median time was 6.6 years. Total

RNA extracted from fresh-frozen tumors was profiled on Affymetrix Human Genome U133A

and U133B microarrays.

The initial expression matrix comprised 44 187 probe sets, of which 40 330 mapped to anno-

tated genes. The signal intensities were log2-transformed before visualization and all subsequent

analyses. For genes represented by two to seven probe sets, the median intensity was taken to

obtain a single expression measure, resulting in 15 614 unique genes. The effects of these genes

were treated as nuisance parameters, while five clinical characteristics—extra-nodal site, age,
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Figure F2: Plot of the null rejection rate versus α under H0,2. The blue curve depicts

DR–PLR’s null rejection rate; the red curve gives the oracle QLR counterpart.

LDH level, performance status (Pstat), and stage—were designated as parameters of interest.

Because some samples contained missing values, we ultimately retained only 156 complete cases:

78 in the training set and 78 in the test set. On the training set, we fit a penalized Cox model

(adaptive LASSO or SCAD) with λn chosen by BIC to obtain a working active set for the

gene nuisance block. On the test set, we fit two Cox models in turn: an unrestricted model

that includes the clinical covariates, and a restricted model that imposes the null-hypothesis

constraints on the clinical covariates. Using the estimates and information matrices from the

two fits, we construct the first “information vector” ζn,1. We then swap the roles—screen on

the test set and refit on the training set—to obtain ζn,2. Finally, we combine the information
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to form the statistic Tn,L = 1
2

∥∥ζn,1 + ζn,2∥∥22, from which the p-value is computed. Using the

joint constraint on the clinical block A = I5 (df = 5), the refitted DR-PLR test strongly re-

jects the global null (p < 0.001), indicating an overall clinical signal after accounting for the

screened gene set. For marginal (df = 1) tests with A = e⊤j in the order (Extra-nodal site,

Age, LDH, Pstat, Stage), the p-values were: pExtra = 0.149, pAge = 0.001, pLDH = 0.006,

pPstat = 0.011, pStage = 0.093. Thus, Age, LDH, and Pstat remain significant after adjust-

ment; Stage is marginal (not significant at 5% but close at 10%); and Extra-nodal site shows no

independent association. These findings align with the joint rejection and underscore that the

clinical block contributes to risk, with Age and LDH carrying the strongest adjusted effects.

Table T3 displays the results of the BIC method with adaptive LASSO and SCAD penalties.

Both penalties yield sign-consistent coefficients for the genes jointly selected, but the resulting

sparsity differs: adaptive LASSO retains 20 genes plus the five clinical covariates, while SCAD

selects 13 genes plus the same covariates, producing a more compact model. Across meth-

ods, Age, LDH, performance status (Pstat), and Stage are positively associated with risk and

statistically significant, while Extra-Nodal Site is included but not significant. Among the

genes jointly selected by the two methods (e.g., KRT4, LOC339448, PCDH11X, SNN, SOX15,

YLPM1, C19orf10, C5orf19, FLJ10815), the coefficient signs are concordant (i.e., the effect

directions agree), indicating a robust determination of effect direction. Signals such as YLPM1

and LOC339448 show robust negative associations under both methods, whereas KRT4 exhibits

a positive association; several additional genes are method-specific (e.g., GMPPB appears under

adaptive LASSO but not SCAD), indicating some sensitivity to the choice of penalty. Overall,

the two procedures agree on the dominant clinical predictors and on effect directions for many

shared genes, with SCAD offering a sparser signature and adaptive LASSO capturing a broader

set of candidates; method-specific findings warrant validation on independent data.
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Table T2: Power (%) for Cox model under Ha,2 at α = 0.05.

Method λn/λ̂opt Test rn ξ = 0 0.2 0.4 0.6 0.8 1.0

DR–PLR N/A TO 200 6.7 11.2 30.6 56.6 81.5 94.2

N/A TO 2000 6 10.6 31 58.4 81.2 93.3

0.75

with adaptive lasso 200 7.6 12.1 32.4 57 80.3 92.5

2000 8 13.2 33 57 79.1 91.9

with SCAD 200 8.7 15.9 36.3 60.2 81.8 92.6

2000 12.9 20.4 39.9 64.0 81.9 93.3

1.00

with adaptive lasso 200 6.3 11.8 29.9 56.1 80 93.1

2000 5.9 12.9 29.7 56.2 79.4 92

with SCAD 200 6.4 11.6 30.1 56.3 80.6 93.2

2000 6 12.3 29.8 56.7 79.2 92.2

1.25

with adaptive lasso 200 6.3 11.8 29.8 56 80 93.1

2000 5.9 12.9 29.6 56.1 79.3 92

with SCAD 200 6.6 11.6 30.2 56.2 80.6 93.2

2000 6 12.2 29.8 56.7 79.1 92.2

Refitted DR–PLR N/A TO 200 6.7 11.2 30.6 56.6 81.5 94.2

N/A TO 2000 6 10.6 31 58.4 81.2 93.3

0.75

with adaptive lasso 200 6.6 11.1 30.5 53.7 79 91.6

2000 6.5 12.6 29.1 54.1 76.4 90.9

with SCAD 200 6.5 12.2 30.7 54 77.9 91.9

2000 6.9 12.5 29.3 53.9 76.3 90.5

1.00

with adaptive lasso 200 5.8 11.4 27.8 51.7 75.9 90.6

2000 7 11.9 25.8 49 71.7 86.1

with SCAD 200 6 10.3 27.3 51.7 75.9 90.6

2000 6.9 11.7 23.5 44.4 65.7 83.2

1.25

with adaptive lasso 200 6 11.6 27.5 51.4 75.8 90.4

2000 7.4 11.7 25.1 48 70.1 85.3

with SCAD 200 6 10.3 27.2 49.8 74.4 89.3

2000 6.8 11.7 23.5 44.4 65.8 83.2
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Table T3: Data estimation summary of the genes

Gene annotation adaptive LASSO SCAD

AOF2(AL831896) × 0.4584(0.3976)

C19orf10(BQ073612) 1.9157(0.6078)∗∗∗ 0.6480(0.5147)

C20orf67(AK056553) 0.4425(0.6451) ×

C5orf19(AK056193) 0.7610(0.3789)∗∗ 0.5548(0.3690)

CAPZE(CAK126650) 0.1609(0.7874) ×

FLJ10815(BC063399) 0.1037(0.4539) 0.8649(0.4282)∗∗

FLJ20580(AK092734) −0.8112(0.8082) ×

FLJ20859(CR612311) −0.5694(0.6754) ×

FUT10(BCO63462) 0.4219(0.3749) ×

GMPPB(CR621384) 1.8080(0.5788)∗∗∗ ×

GUKI(AK124677) −1.1087(0.6309)∗ ×

HERC3(D25215) × −0.3559(0.1475)∗∗

KRT4(AK056254) 0.9590(0.2723)∗∗∗ 0.7661(0.2314)∗∗∗

LOC339448(AK125092) −1.9170(0.4793)∗∗∗ −1.61302(0.4393)∗∗∗

PCDH11X(AF332218) 0.4826(0.2186)∗∗ 0.3406(0.2154)∗

POLR18(BX647683) 1.4799(0.5375)∗∗∗ ×

RABL4(BX537634) −1.3685(0.5941)∗∗ ×

SNN(NM-003498) −1.1596(0.4687)∗∗ −0.9168(0.3629)∗∗

SOX15(AB006867) 0.0712(0.5503) 0.0999(0.5040)

TFBIM(BU739337) −1.0437(0.5004)∗∗ ×

TM9SF1(BX161390) −1.2249(0.5666)∗∗ ×

UNQ846(BC071780) × 0.4623(0.2367)∗

XBP1(AK093842) × 0.3118(0.2028)

YLPM1(AK090435) −2.9386(0.7165)∗∗∗ −2.3165(0.6005)∗∗∗

Extra Nodal Site 0.0159(0.3758) 0.3962(0.3649)

Age 0.7891(0.3285)∗∗ 1.1661(0.3246)∗∗∗

LDH 0.7833(0.2987)∗∗∗ 0.8772(0.2902)∗∗∗

Pstat 1.2520(0.3920)∗∗∗ 0.9276(0.3528)∗∗∗

Stage 1.2164(0.4244)∗∗∗ 1.3783(0.4225)∗∗∗

Notes: × = not selected. Superscripts ∗∗∗, ∗∗, ∗ denote significance levels.
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Appendix I. Notation and conditions

First, we employ some notations to ease presentation. For a matrix C, choose M from its

column labels {1,. . . ,p}, Suppose |M| is the count of nonzero components in M, and let CM be

the submatrix of C formed by column indexes in M. Given C, write CM1,M2 for the submatrix

with rows indexed by M1 and columns indexed by M2 (M1 ⊆ {1, . . . ,m}, M2 ⊆ {1, . . . , p}).
Let B ∈ Rs×s be symmetric and λmax(B) and λmin(B) are maximum and minimum eigenvalues.

For a generic eigenvalue, we can use λ(B). For any t× 1 vectors a and b with the i-th element

being ai and bi, respectively, we let |a| = (|a1|, . . . , |at|)⊤ and a◦b = (a1b1, . . . , atbt)
⊤. Further,

we let ∥a∥∞ = maxj |aj | and ∥a∥0 is the count of nonzero components of a. For any s × t

matrix F with the (i, j)th element being Fij , let ∥F∥∞, ∥F∥1, and ∥F∥2 be the L∞, L1, and

L2 norms, respectively, defined as ∥F∥∞ = maxj
∑s

i=1 |Fi,j |, ∥F∥1 = maxi
∑t

j=1 |Fij |, and

∥F∥2 = {λmax(F
⊤F)}1/2. Denote by snk = ∥Ŝk∥0, and dn = 2−1minj∈S |θ∗j | which is the half

minimum signal length of β∗
S. Let W = (w1 . . . ,wn)

⊤ be the full-sample design matrix, and

let PW = W(W⊤W)−1W⊤ be the projection matrix. Further, let Wj be the j-th column of

W. Define IM(θ) = E
(
−n−1∂2Qn(θ)/∂θM∂θ

⊤
M

)
.

Next, we introduce the following regularity conditions for our theorems.

(A1) For each λn > 0, the penalty ρ(t;λn) is concave and nondecreasing on [0,∞) and is

continuously differentiable with right derivative at the origin satisfying ρ′(0+;λn) > 0.

Moreover, for any fixed t ≥ 0, the map λ 7→ ρ′(t;λ) is monotone on (0,∞), while ρ′(0+;λ)

does not depend on λ.

(A2) Fix a compact neighborhood B of β∗ for which the statements below hold:

(i) For j can be 0, 1, and 2, take s(j) defined on B×[0, τ ]—scalar for j = 0, vector for j = 1,

and matrix for j = 2—so that the conditions below are satisfied sup(β,t)∈B1×[0,τ ]

∥∥S(j)
n (β, t)−

s(j)(β, t)
∥∥
2
= op(1).

(ii) On B × [0, τ ], s(0) admits a positive lower bound and s(j) are uniformly bounded.

Moreover, the collection { s(j)(·, t) : (j, t) ∈ {0, 1, 2} × [0, τ ] } share a common modulus of

continuity at β∗.

(iii) Set e(β, t) =
s(1)(β,t)
s(0)(β,t)

, v(β, t) =
s(2)(β,t)
s(0)(β,t)

−e(β, t)⊗2, andΣβ(t) =
∫ t
0 v(β, u) s

(0)(β∗, u) dΛ0(u).

Write v(β1, t) for the population analogue of V(β1, t), obtained by the substitution

S
(ℓ)
n 7→ s(ℓ). Let

Σβ1(t) =

∫ t

0
v(β1, u)s

(0)(β∗
1, u) dΛ0(u),
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Where Σβ1 = Σβ1(τ). Then, for all (β, t) ∈ B × [0, τ ], ∂s(0)(β, t)/∂β = s(1)(β, t) and

∂s(1)(β, t)/∂β = s(2)(β, t). There exists c0 > 0 with λmin(Σβ∗
1
) ≥ c0 for all n; moreover,

Λ0(τ) <∞.

(iv) Suppose dn = supt∈[0,τ ] |S
(0)
n (β∗, t)−s(0)(β, t)| and cn = supt∈[0,τ ] ∥En(β∗, t)−e(β∗, t)∥∞.

dn = Oa.s.(1), and cn = Oa.s.(1).

(A3) Let εij =
∫ τ
0

(
Xij(t) − ej(β

∗, t)
)
dMi(t), with ej(β

∗, t) the jth coordinate of e(β∗, t). We

impose a Bernstein–Cramér moment growth condition: there is a positive value M for

which, for all integers m ≥ 2 and all j, E|εij |m ≤ m!
2 M m−2 σ2j , σ2j = Var(εij) <∞.

(A4) rσ
(
Σβ∗

1

)
≤ C1, rσ

(
Σ−1
β∗
1

)
≤ C2 for some constants C1, C2 <∞.

(A5) ∃C <∞ : E
[
sup0≤t≤τ Y (t) ∥w(t)∥22 eβ

∗T
1 w(t)

]
≤ C s.

(A6) Assume the tuning parameter λn satisfies that

n−1/2+ (
1
2α+α1−1)+ +α2 = o(λn) and

√
sλnρ

′(β∗n;λn) → 0,

where α1 as in (A8) and α2 > 0.

(A7) Let N0 := B∞(β∗
1, β

∗
n) = {δ ∈ Rs : ∥δ − β1∥∞ ≤ βn}, κ0 := supδ∈N0

κ(ρ, δ). Assume

β∗n = ω
(√
s
{
n−1/2 + λn ρ

′(β∗n)
})
, λn <

λmin(Σβ∗1
)

κ0
.

(A8) Ler α be a positive value and 0 < C <∞,

sup
0≤t≤τ

sup
v1∈B(β∗

1,β
∗
n)

∥∥∥Ṽ(t,v)
∥∥∥
2,∞

= min
(
C
ρ′(0+)

ρ′(β∗n)
, Op(n

α1)
)

where B(β∗
1, β

∗
n) denotes the radius–β∗n ball in Rs centered at β∗

1, for v = (vT1 ,0
T )T ,

Ṽ(t,v) =
S
(0)
n (v, t)S

(2)
n21(v, t)− S

(1)
n2 (v, t)(S

(1)
n1 (v, t))

T

{S(0)
n (v, t)}2

∈ R(p−s)×s,

and ∥Ṽ(t,v)∥2,∞ = max∥x∥2=1 ∥Ṽ(t,v)x∥∞.

Appendix II. Proofs of theorems

For clarity of exposition, we first fix notation and collect a few auxiliary lemmas, and then proof

these theorems.

Suppose M∗ = {i : β∗i ̸= 0} and Mc
∗ = {i : β∗i = 0}. Then we can get

U(β1, t) =
n∑
i=1

∫ t

0
{wi(u)−E(1)(β1, u)} dNi(u),
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with E(1)(β1, u) = E(1)((β1,0),u). Then U(β1, t) =
∑n

i=1

∫ t
0{wi(u) − E

(1)
n (β1, u)} dMi(u),

since
∑n

i=1

∫ t
0{wi(u) − E

(1)
n (β1, u)} dΛi(u) = 0. Use U(β1, τ) as U(β1). Let ∂U(β1) be the

derivative of U(β1) over β1. Then

−N−1∂U(β1) = N−1
n∑
i=1

∫ τ

0
V(β1, t) dNi(t)

=

∫ τ

0
V(β1, t)S

(0)
n (β∗

1, t)λ0(t) dt+N−1

∫ τ

0
V(β1, t) dM̄(t)

≡ Iβ1 +Wβ1 , (A.1)

where and thereafter S
(ℓ)
n ((β1,0), t) = S

(ℓ)
n (β1, t) for ℓ = 0, 1, 2, and V(β1, t) = V((β1,0), t).

PROOF OF THEOREM 2.1. Let β̂ ∈ Rp be any local maximum point of (3). Then its KKT

condition reads

n∑
j=1

∫ τ

0
{Xj(t)−En(β̂, t)} dNj(t) − nλn u = 0, u ∈ ∂P (β̂),

with P (β) =
∑p

i=1 ρ(|βi|) and ∂P (β̂) is the subgradient of P at β̂. Coordinate-wise, uj =

ρ′(|β̂i|) sgn(β̂i) (i ∈ M̂∗),and |ui| ≤ ρ′(0+) (i ∈ M̂ c), with M̂={s : β̂s ̸= 0}.

PROOF OF THEOREM 4.1. Let β̂
o
1 is locally optimal for the problem of dimension s. It is

enough to note that

min
β1∈Ωs

λmin

{∫ τ

0
V(β1, t) dN̄(t)

}
> nλnκ(ρ,β1)

guarantees the concavity of the penalized objective C(β1, τ). Under these conditions, the crite-

rion admits a single global maximizer, namely β̂
o
1

PROOF OF THEOREM 4.6. Since β̂2 = 0 and β̂ be a maximum point of

C(β, τ) ≡
n∑
j=1

∫ τ

0
{βTwj(t)− log

(
S(0)
n (β, t)

)
} dNj(t)− n

p∑
s=1

pλn(|βs|), (A.2)

β̂1 is such that

U(β̂1)− nλnρ
′(|β̂1|) ◦ sgn(β̂1) = 0, (A.3)

for brevity, write U(β1) = U(β1, τ). By Taylor expansion, we can get

U(β̂1) = U(β∗
1) + ∂U(β∗

1)(β̂1 − β∗
1) + rn(β̃1), (A.4)
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with β̃1 ∈ [β∗
1, β̂1 ], and rn(β1) equals

1

2

∑
j,k

(β1j − β∗1j)(β1k − β∗1k)
∂2U(β1)

∂β1j∂β1k
.

Combine (A.3) and (A.4), we can get

√
n(β̂1 − β∗

1) = (−N−1∂U(β∗
1))

−1n−1/2U(β∗
1)

+ (−N−1∂U(β∗
1))

−1n−1/2rn(β̃1)

− (−N−1∂U(β∗
1))

−1n1/2λnρ
′(|β̂1|) ◦ sgn(β̂1). (A.5)

It can be shown that ∥N−1 ∂
2U(β1)
∂β1j∂β1k

∥2 = Op(
√
s) for β1 ∈ B(β∗

1, β
∗
n), hence

∥N−1rn(β̃1)∥2 = Op(
√
s∥β̂1 − β∗

1∥22).

Using (15), ∥β̃1 − β∗
1∥2 ≤ ∥β̂1 − β∗

1∥2 = Op(
√
s/n+

√
sλnρ

′(β∗n)), thus

∥N−1rn(β̃1)∥2 = Op{
√
s(
√
s/n+

√
sλnρ

′(β∗n))
2}.

We note that −N−1∂U(β∗
1) = Iβ∗

1
+Wβ∗

1
. Combining Lemmas 4.1 and 3 yields that for every

bn ∈ Rs with ∥bn∥2 = 1, if
s

n1/3
→ 0 (n→ ∞),

|bTnΣ
1/2
β∗
1
(−N−1∂U(β∗

1))
−1n−1/2rn(β̃1)|

≤ n1/2∥Σ1/2
β∗
1
∥2 · ∥ −N−1∂U(β∗

1)∥2Op(s
√
s/n+ s

√
sλ2nρ

′(β∗n)
2)

= n1/2Op(1 + s/
√
n)Op(s

√
s/n+ s

√
sλ2nρ

′(β∗n)
2) = op(1)

Using the conditions stated in Theorem 6.4 we can get

|bTnΣ
1/2
β∗
1
(−N−1∂U(β∗

1))
−1√nλnρ′(|β̂1|) ◦ sgn(β̂1)|

≤ ∥Σ1/2
β∗
1
∥2 · ∥ −N−1∂U(β∗

1)∥2
√
snλn|ρ′(β∗n)|

= Op(1 + s/
√
n)Op(

√
snλn|ρ′(β∗n)|) = op(1),

it demonstrates that the latter two terms in the right-hand side of (A.5), when pre-multiplied

by bTnΣ
0.5
β∗
1
, are op(1). Combining this and (A.5), we can get

√
nbTnΣ

0.5
β∗
1
(β̂1 − β∗

1) = bTnΣ
0.5
β∗
1
(−N−1∂U(β∗

1))
−1n−0.5U(β∗

1) + op(1)

≡ ϕn + op(1).

By using Lemma 4.2, we can get

√
nbTnΣ

0.5
β∗
1
(β̂1 − β∗

1) = ϕn1 + op(1).
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We only need to show ϕn1 is asymptotically Gaussian; consequently, β̂1 is asymptotically normal

by Slutsky’s theorem. For this purpose, we define Iβ∗
1
(t) =

∫ t
0 V(β∗

1, u)S
(0)
n (β∗

1, u)λ0(u) du and

ϕn1(t) = bTnΣ
−1/2
β∗
1

n−1/2U(β∗
1, t).

Let Iβ∗
1
(τ) = Iβ∗

1
, ϕn1(τ) = ϕn1, where ϕn1 is a centered martingale w.r.t. (Ft), whose previsible

quadratic variation is

⟨ϕn1(t)⟩ =

∫ t

0
bTnΣ

−1/2
β∗
1

N−1
n∑
i=1

(
Si(u)−E(1)

n (β∗, u)
)⊗2

d⟨Mi(u)⟩

=

∫ t

0
bTnΣ

−1/2
β∗
1

V(β∗, u)S(0)
n (β∗, u)λ0(u)Σ

−1/2
β∗
1

bn du

= bTnΣ
−1/2
β∗
1

Iβ∗
1
(t)Σ

−1/2
β∗
1

bn.

With ∥bn∥2 = 1. According to Lemma 4.1,
〈
ϕn1(τ)

〉
= b⊤

nΣ
−1/2
β∗
1

Iβ∗
1
Σ

−1/2
β∗
1

bn
p−→ 1. Applying

the martingale CLT [? ], ϕn1 is asymptotically N(0, 1).

Appendix II. Proofs of theorems

Proof of Theorem 1. Our idea is to derive from the Karush-Kuhn-Tucker (KKT) equations

an upper bound for ∥N̂∥0. Our proof consists of three steps: (i) We prove that ∥(θ̃ − θ∗)T∥2 =
OP {

√
(sn + qn)/n} and ∥(θ̃ − θ∗)Tc∥1 = OP {tn/(nλn)}, where tn = min{log rn, sn + qn}; (ii)

To build the inequality, ∥ρ(θ̃N̂, λn)∥2 ≥ c1

√
∥N̂∥0; (iii) To establish the desired bound in the

theorem; (iv) To show that, under condition (A6), P (Ŝ = S) → 1.

Step (i). Let δ = θ̃ − θ∗ and rn = pn + qn. By Lemma 4(ii), we have

∥δT∥2 = OP {
√
(sn + qn)/n} and ∥δTc∥1 = OP{tn/(nλn)}, (A.6)

where tn = min{log rn, sn + qn}.
Step (ii). Since θ̃ maximizes the objective function in (8), by the KKT conditions, we have

U(θ̃)− nλnh = 0, (A.7)

where hi = 0 for i ∈ D, hi = ρ′λn(|θ̃i|)sgn(θ̃i) for i ∈ Ŝ, and hi ∈ [−ρ′(0+), ρ′(0+)] for i ∈ T̂c.

This implies that

UŜ(θ̃)− nλnρ(θ̃Ŝ, λn) = 0,
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where ρ(θ̃Ŝ, λn) = {ρ′λn(|θ̃i|)sgn(θ̃i), i ∈ Ŝ}⊤ collects the entries of h whose indices lie in Ŝ. In

the same way, we can use ρ(θ̃N̂, λn) to collect the entries of h whose indices lie in N̂. Note that

N̂ = Ŝ \ S. Combining subadditivity of the norm with the mean–value theorem, we get

λn∥ρ(θ̃N̂, λn)∥2 = ∥UN̂(θ̃)∥2

≤ ∥UN̂(θ
∗)∥2 + ∥UN̂(θ̃)−UN̂(θ

∗)∥2,

= ∥UN̂(θ
∗)∥2 + ∥HN̂,N̂(θ∗)δ∥2, (A.8)

where θ∗ lies between θ∗ and θ̃. An application of Lemma 4(i) leads to

∥UN̂(θ̃)∥∞ ≤ ∥U(θ̃)∥∞ = OP (
√

log(rn)/n),

which, combined with λ−1
n

√
log(rn)/n→ 0, yields that

P
(
∥UN̂(θ̃)∥∞ ≤ c1λn/2

)
→ 1, (A.9)

where c1 is defined in condition (A1). For any j ∈ N̂, (A.6) ensures that

|θ̃j | = |θ̃j − θ∗j | ≤ ∥δTc∥1 = OP {tn/(nλn)},

which, combined with tn = min{log rn, sn + qn} and λ−1
n

√
log(rn)/n→ 0, leads to

P (|θ̃j | ≤ λn) → 1, j ∈ N̂.

By inft∈[0,λn] ρ(t, λn) ≥ c1 in condition (A1), we establish that

∥ρ(θ̃N̂, λn)∥2 =
√∑

j∈N̂
[ρ′λn(|θ̃j |)]

2, Pr

(
∥ρ(θ̃N̂, λn)∥2 ≥ c1

√
|N̂|

)
→ 1. (A.10)

Step (iii). It follows from (A.8)-(A.10) and Hölder’s inequality that, w.p. 1-o(1),

c1λn

√
∥N̂∥0 ≤ ∥UN̂(θ

∗)∥2 + ∥HN̂,N̂(θ∗)δ∥2

≤
√
∥N̂∥0 ∥UN̂(θ

∗)∥∞ + ∥HN̂,N̂(θ∗)δ∥2

≤ 0.5c1λn

√
∥N̂∥0 +

√
∥HN̂,N̂(θ∗)∥2 · ∥δ⊤HN̂,N̂(θ∗)δ∥2,

which combined with condition (A3) yields that√
∥N̂∥0 ≤ 2(ρ

1/2
1 c1λn)

−1
√

∥HN̂,N̂(θ∗)∥2 · {∥δT∥22 + ∥δcT∥21}. (A.11)

Applying the mean value theorem, then we can get

v2(θ∗) = v2(θ
∗) + diag[v3(θ̃

∗
) ◦ {Wδ̃}],
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with θ̃
∗ ∈ [θ∗, θ

∗] and δ̃ = θ̃∗ − θ∗. Thus, by Wδ̃ = WTδ̃T +WTc δ̃Tc and the definitions of

φ1(·), φ2(·) and φ3(·) in condition (A4), we get

∥HN̂,N̂(θ∗)∥2 ≤ ∥HN̂,N̂(θ
∗)∥2 + ∥N−1W⊤

N̂diag[v3(θ̃
∗
) ◦ {Wδ̃}]WN̂∥2

≤ φ1(∥N̂∥0) + φ2(∥N̂∥0)∥δ̃T∥1 + φ3(∥N̂∥0)∥δ̃Tc∥1.

This, combined with (A.6), (A.11), max{
√
(sn + qn)/n,

√
log(pn + qn)/n} = o(λn) in Condition

(A1), yields that√
∥N̂∥0 ≤ 2(ρ

1/2
1 c1)

−1{φ1(∥N̂∥0) + φ2(∥N̂∥0)∥δ̃T∥1 + φ3(∥N̂∥0)∥δ̃Tc∥1}1/2{λ−1
N (∥δT ∥2 + ∥δT c∥1)}

≤ (0.5ρ−1
1 )1/2{φ1(∥N̂∥0) + φ2(∥N̂∥0)(sn + qn)

√
cn/n+

√
tn/nφ3(∥N̂∥0)}1/2 (A.12)

holds with probability going to one, where the last equality follows from ∥δ̃T∥1 ≤ (sn +

qn)∥δT∥2 = oP ((sn + qn)
√
cn/n) and ∥δ̃Tc∥1 ≤ ∥δTc∥1 = oP

(
tn
nλn

)
in (A.6) for cn → ∞.

This provides an upper bound of ∥N̂∥0. But this upper bound is not an ideal one. Next, we

derive an ideal upper bound, which independent of ∥N̂∥0. Define the set

M = {m ∈ N | m ≥ ρ−1
1 {φ1(m) + φ2(m)(sn + qn)

√
cn/n+

√
tn/nφ3(m)}},

and let m = 3ρ2(sn + qn)/ρ1. Using condition (A4), we get

φ1(m) + φ2(m)(sn + qn)
√
cn/n+ φ3(m)

√
tn/n ≤ 3ρ2(sn + qn). (A.13)

This implies that 3ρ2(sn + qn)/ρ1 ∈ M, i.e. M is well defined and not empty. We will show

that

∥N̂∥0 ≤ 0.5ρ−1
1 min

m∈M
{φ1(m) + φ2(m)(sn + qn)

√
cn/n+

√
tn/nφ3(m)}. (A.14)

In fact, for any M ∈ M, if ∥N̂∥0 > M , then, by (A.12),

∥N̂∥0 ≤ 0.5ρ−1
1 {φ1(∥N̂∥0) + φ2(∥N̂∥0)(sn + qn)

√
cn/n+

√
tn/nφ3(∥N̂∥0)}

= 0.5ρ−1
1

{
φ1

(∥N̂∥0
M

M
)
+ φ2

(∥N̂∥0
M

M
)
(sn + qn)

√
cn/n+

√
tn/nφ3

(∥N̂∥0
M

M
)}

≤ 0.5ρ−1
1

{
φ1

(
M

)
+ φ2

(
M

)
(sn + qn)

√
cn/n+

√
tn/nφ3

(
M

)
}
⌈
∥N̂∥0/M

⌉
,

where we can get the final step from Lemma 3 and ⌈a⌉ represents the minimum integer greater

than a. Since
⌈∥N̂∥0

M

⌉
< 2∥N̂∥0

M , we have

∥N̂∥0 < ρ−1
1

[
φ1

(
M

)
+ φ2

(
M

)
(sn + qn)

√
cn/n+

√
tn/nφ3

(
M

)]∥N̂∥0
M

,
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which implies that

M < ρ−1
1

[
φ1

(
M

)
+ φ2

(
M

)
(sn + qn)

√
cn/n+

√
tn/nφ3

(
M

)]
.

This is in contradiction withM ∈ M. Thus, ∥N̂∥0 ≤M holds for anyM ∈ M, which combined

with functions φj(·) being increasing leads to (A.14). It follows from (A.13) and (A.14) that

∥N̂∥0 ≤ 1.5ρ−1
1 ρ2(sn + qn). Thus, P{∥N̂∥0 ≤ c0sn} → 1, where c0 = 1.5ρ−1

1 ρ2.

Step (iv). Under Condition (A6), we can show that P (Ŝ = S) → 1, following the argument

of Theorem 2.1 in Shi et al. (2019). Then the result holds. To this end, it suffices to verify that

their conditions are satisfied, that is,

(1) there is a local maximum point θ̃ of Qn(θ) − n
∑pn

j=1 pλn(θ) with the constraint θ̃Tc = 0

such that ∥θ̃ − θ∗∥2 = OP (
√
(sn + qn)/n);

(2) θ̃ is indeed a local maximizer Qn(θ)− n
∑pn

j=1 pλn(θ).

Similar to proof of Lemma 4, we have result (1). To prove result (2), by Theorem 1 in Fan

and Lv (2011), it suffices to show that

∥UTc(θ̃)∥∞ < nλnρ
′(0+),

which can be proved by adapting the argument for Theorem 2.1 in Shi et al. (2019).

Proofs of Theorems 2 and 3. For convenience, the proofs are put behind the argument

for Theorem 6.

Proof of Corollary 1. Using Lemma 13(i) that the result holds. In particular, if there

is no nuisance block or the cross-information between β and γ vanishes, we note tha that the

equality holds.

Proof of Theorem 4.

(i). The sparsity results are proven in Lemma 8.

(ii). Result (a) is obtained in Lemma 8(i), and Result (b) is straightforward from Lemma 8(ii).

(iii). Applying Lemma 11(ii),(iii) leads to

2{Q(k)
n (θ̂k)−Q(k)

n (θ̂0,k)} = ∥ζn,k∥22 + oP (mn),

Using Lemma 11(iii) with ∆n = 0, we establish that

ζn,k = N−1/2Ω
1/2
k (θ∗)ÃkI

−1
k (θ∗)U

(k)
T̂k

(θ∗) + op(1) = ζ∗n,k + oP (1).
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Denoted by Ão = (0mn×sn ,A) and Ωo(θ
∗) =

{
ÃoI

−1
o (θ∗)Ã⊤

o

}−1
. For convenience, by the

definition of WT, let WT = (w
(k)
1,T, . . . ,w

(k)
N,T)

⊤. Under condition (A6), P (Ŝ = S) → 1. Then

ζ∗n,k =

N∑
i=1

N−1/2Ω1/2
o (θ∗)ÃoI

−1
o (θ∗)U

(k)
T (θ∗) ≡

N∑
i=1

η∗i,k,

which be a sum of iid RVs for which Eη∗i,k = 0 and Eη∗i,k(η
∗
i,k)

⊤ = N−1ϕImn . Applying the

Cauchy-Schwarz inequality, condition (B2)(i), and ∥Ω1/2
o (θ∗)ÃoI

−1/2
o (θ∗)∥22 ≤ 1, then we can

get

m1/4
n

N∑
i=1

E(∥η∗i,k∥32) = m1/4
n

N∑
i=1

E∥N−1/2Ω1/2
o (θ∗)ÃoI

−1
o (θ∗)U

(k)
T (θ∗)∥32

≤ m1/4
n N−3/2

N∑
i=1

E∥I−1/2
o (θ∗)U

(k)
T (θ∗)∥32 → 0.

This, combined with Theorem 1 of Bentkus (2004), yields that

sup
ψ

∣∣P ( N∑
i=1

η∗i,k ∈ ψ)− P (Z ∈ ψ)
∣∣ ≤ c∗m

1/4
n

n∑
i=1

E∥η∗i,k∥32 → 0,

with Z be a Gaussian random vector for which E(Z) = 0 and Cov(Z) = ϕImn , and the supre-

mum is taken for all convex subsets in Rmn .

Proof of Corollary 2. It follows from Lemma 11(iv) that

Tn,2 =
∥∥{Ã∗I

−1
T̂

(θ∗)Ã⊤
∗ }−1/2

{
n−1/2Ã∗I

−1
T̂

(θ∗)U
(k)
T̂

(θ∗) + n1/2∆n

}∥∥2
2
+ oP (mn),

where Ã∗ = (0mn×∥Ŝ∥0 ,A). Under condition (A6), we have P (Ŝ1 = Ŝ2 = Ŝ) → 1. Then

UT(θ
∗) =

∑2
k=1U

(k)
T̂k

(θ∗), and

{Ã∗I
−1
T̂

(θ∗)Ã⊤
∗ }−1/2Ã∗I

−1
T̂

(θ∗) = Ω
1/2
k (θ∗)ÃkI

−1
k (θ∗),

where Ωk(θ
∗) = {ÃkI

−1
k (θ∗)Ã⊤

k }−1 and Ãk = (0mn×snk
,A) with snk = ∥Ŝk∥0. This implies

that

Tn,2 = 2−1
∥∥ 2∑
k=1

N−1/2Ω
1/2
k (θ∗)

{
N−1/2ÃkI

−1
k (θ∗)U

(k)
T̂k

(θ∗) +N1/2∆n

}∥∥2
2
+ oP (mn),

which, combined with Lemma 11(iii), leads to the result of Corollary 2.

Proof of Theorem 5. A specialization of Lemma 9 and ∆n = 0.
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Proofs of Theorems 5 and 6. Theorem 5 be a specialization of Theorems 6, so we

only prove Theorem 6. Since the random index sets Ŝ(1) and Ŝ(2) depend on the sub-samples

{Y (2)
j ,w

(2)
j , j = 1, . . . , N} and {Y (1)

j ,w
(1)
j , j = 1, . . . , N}, respectively, it is challenging to es-

tablish the limiting distribution of the refitted statistic T , where T is Tn,L, Tn,W, or Tn,S, since

the degrees of freedom are random. We surmount this difficulty by using the Bahadur repre-

sentation in Theorem 4, approximating T with a quadratic form in Lemma 11, and drawing a

parallel to the quadratic form of the oracle glr test statistic.

Denoted by Ãk = (0mn×snk
,A), Ão = (0mn×sn ,A), Ωk(θ

∗) =
{
ÃkI

−1
k (θ∗)Ã⊤

k

}−1
, and

Ωo(θ
∗) =

{
ÃoI

−1
o (θ∗)Ã⊤

o

}−1
. Let

ξ
(k)
i = Ω

1/2
k (θ∗)ÃkI

−1
k (θ∗)U

(k)
T̂k

(θ∗),

and ξ
(k)
i,o = Ω1/2

o (θ∗)ÃoI
−1
o (θ∗)U

(k)
T (θ∗),

where w
(k)
i,T̂ and w

(k)
i,T are subvectors of w

(k)
i with indexes in T̂ and T, respectively.

Step (i). From Lemma 11, we obtain that

T =
1

2
∥

2∑
k=1

Ω0.5
k (θ∗)

[
N−0.5ÃkI

−1
k (θ∗)U

(k)
T̂k

(θ∗) +N0.5∆n

]
∥2 + oP (mn)

=
1

2
∥

2∑
k=1

N−0.5
N∑
i=1

{ξ(k)i + (Ωk(θ
∗))0.5∆n}∥22 + oP (mn), (A.15)

where T is TnL, TnW or TnS . In the following, we will prove that

T = T∗ + oP (mn), (A.16)

where T∗ = 2−1∥
∑2

k=1N
−0.5

∑N
i=1{ξ

(k)
i,o + (Ωk(θ

∗))0.5∆n}∥22.
Case (a). Assume thatmn is fixed. Given k and Ŝk, {ξ

(k)
i }′s be iid with 0 mean and variance

Eξ
(k)
i {ξ(k)i }⊤ = Imn , and {ξ(k)i,o }′s be iid with 0 mean and variance Eξ

(k)
i,o {ξ

(k)
i,o }⊤ = Imn . By

condition (B2) and Theorem C (Serfling, 1980, p.36), with probability going to one, we have∑N
i=1 ξ

(k)
i√

2N log
(
log

√
N
) → 1 and

∑N
i=1 ξ

(k)
i,o√

2N log
(
log

√
N
) → 1.

Put ∆̄n,k = (NΩk(θ
∗))0.5∆n. Note that

∥∆n∥2√
mn/n

= O(1) and λmax(Ωk(θ
∗)) = O(1) in

Lemma 7, therefore

∥∆̄n,k∥2 ≤ N0.5λmax{(Ωk(θ
∗))0.5}∥∆n∥2 = O(

√
mn) = O(1). (A.17)
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Hence, with probability going to 1,

R =

∥∥∑2
k=1{∆̄n,k +N−0.5

∑N
i=1 ξ

(k)
i,o }

∥∥2
2
/ log

(
log

√
N
)

∥∥∑2
k=1{∆̄n,k +N−0.5

∑N
i=1 ξ

(k)
i }

∥∥2
2
/ log

(
log

√
N
) → 1.

This, combined with (A.15) and E
∥∥∆̄n,k +N−0.5

∑N
i=1 ξ

(k)
i ∥22 = O(mn) in Lemma 8(iv), yields

that

T = T∗ − 2−1
∥∥ 2∑
k=1

{∆̄n,k +N−0.5
N∑
i=1

ξ
(k)
i }∥22(R− 1) + oP (mn)

= T∗ + oP (mn),

which establishes (A.16).

Case (b). Assume that mn → ∞. Let Ln,1 =
∑2

k=1N
−1

∑N
i,j=1[{ξ

(k)
j }⊤ξ(k)i − {ξ(k)j,o }⊤ξ

(k)
i,o ],

Ln,2 = 2
∑2

k,l=1N
−0.5

∑N
i=1 ∆̄

⊤
n,l{ξ

(k)
i −ξ(k)i,o }, and Ln,3 = 2

∑N
i=1

∑N
j=1N

−1[{ξ(1)j }⊤ξ(2)i −{ξ(1)j,o}⊤ξ
(2)
i,o ].

Then it can be rewritten that

∥
2∑

k=1

N−0.5
N∑
i=1

{ξ(k)i + (Ωk(θ
∗))0.5∆n}∥22 = ∥N−0.5

2∑
k=1

N∑
i=1

{ξ(k)i,o + (Ωk(θ
∗))0.5∆n}∥22

+Ln,1 + Ln,2 + Ln,3,

and (A.16) holds if Ln,j = oP (mn) for j = 1, 2, 3. In the following we will show that Ln,j =

oP (mn) for each j.

(b1). Let Γ
(k)
i,j = {ξ(k)j }⊤ξ(k)i − {ξ(k)j,o }⊤ξ

(k)
i,o . Then

Ln,1 =
1

N

N∑
i=1

N∑
j=1

[{ξ(k)j }⊤ξ(k)i − {ξ(k)j,o }
⊤ξ

(k)
i,o ]

=
1

N

N∑
i=1

Γ
(k)
i,i +

1

N

N∑
i=1

N∑
j=1(̸=i)

Γ
(k)
i,j ≡ Ln,11 + Ln,12.

Notice that, for i ̸= j,

Eξ
(k)
i {ξ(k)i }⊤ = Imn , Eξ

(k)
i,o {ξ

(k)
i,o }

⊤ = Imn , Eξ
(k)
i {ξ(k)j }⊤ = 0, and Eξ

(k)
i,o {ξ

(k)
j,o }

⊤ = 0. (A.18)

Then EΓi,j = 0 for any 1 ≤ i, j ≤ N . It follows from E
(
ξ
(k)
i {ξ(k)i }⊤ | Ŝk

)
= Imn , and conditional

independence of ξ
(k)
i and ξ

(k)
j (given Ŝk for i ̸= j) that

E|{ξ(k)j }⊤ξ(k)i |2 = Trace[Eξ
(k)
i {ξ(k)i }⊤ξ(k)j {ξ(k)j }⊤]

= Trace
[
E
{
E
(
ξ
(k)
i {ξ(k)i }⊤ξ(k)j {ξ(k)j }⊤ | Ŝk

)}]
= Trace

[
E
{
E
(
ξ
(k)
i {ξ(k)i }⊤ | Ŝk

)
· E

(
ξ
(k)
j {ξ(k)j }⊤ | Ŝk

)}]
= mn

33



for i ̸= j. Similarly, E|{ξ(k)j,o }⊤ξ
(k)
i,o |2 = mn for i ̸= j. ∀ i, j ∈ [N ] = {1, . . . , N}, i ̸= j, It follows

that

E|Γ(k)
i,j |

2 = E|{ξ(k)j }⊤ξ(k)i |2 + E|{ξ(k)j,o }
⊤ξ

(k)
i,o |

2 − 2E
[
{ξ(k)j }⊤ξ(k)i · {ξ(k)j,o }

⊤ξ
(k)
i,o

]
= 2mn − 2Trace

(
E[ξ

(k)
i {ξ(k)i,o }

⊤] · E[ξ
(k)
i {ξ(k)i,o }

⊤]
)
.

which, combined with E[ξ
(k)
i {ξ(k)i,o }⊤] = (Ωk(θ

∗))−1/2Ω
1/2
o (θ∗), yields that

E|Γ(k)
i,j |

2 = 2mn − 2Trace{(Ωk(θ
∗))−0.5Ω0.5

o (θ∗)(Ωk(θ
∗))−0.5Ω0.5

o (θ∗)}

= 2mn − 2Trace{(Ωk(θ
∗))−0.5Ωo(θ

∗)(Ωk(θ
∗))−0.5},

where Trace(C⊤C) = Trace(C2), for any square matrix C. Thus, Var(Γ
(k)
i,j ) = O(mn) for i ̸= j.

Applying Lemma A (Serfling, 1980, p.185), we obtain that

1

N
√

Var(Γ
(k)
i,j )

N∑
i=1

N∑
j=1(̸=i)

Γ
(k)
i,j = OP (1).

It follows that Ln,12 = 1
N

∑N
i=1

∑N
j=1(̸=i) Γ

(k)
i,j = OP (

√
mn) = oP (mn), if mn → ∞. Further,

since EΓ
(k)
i,i = 0, it is easy to show that Ln,11 =

1
N

∑N
i=1 Γ

(k)
i,i = oP (mn). Thus, Ln,1 = oP (mn).

(b2). Obviously, Ln,2 = 0 if ∆̄n = 0. In the following, we consider ∆̄n ̸= 0. Observe that

N−0.5

∣∣∣∣ N∑
i=1

∆̄
⊤
n,lξ

(k)
i

∣∣∣∣ = N−0.5∥∆̄n,l∥2
∣∣∣ N∑
i=1

∆̄
⊤
n,lξ

(k)
i /∥∆̄n,l∥2

∣∣∣.
Using Chebyshev’s inequality, we establish that

P

(
N−0.5

∣∣∣ N∑
i=1

∆̄
⊤
n,lξ

(k)
i /∥∆̄n,l∥2

∣∣∣ > an

)
≤ a−2

n N−1
N∑
i=1

N∑
j=1

E[∆̄
⊤
n,lξ

(k)
i {ξ(k)j }⊤∆̄n,l/∥∆̄n,l∥22]

≤ a−2
n N−1

N∑
i=1

N∑
j=1

sup
a∈Rmn ,∥a∥2=1

∣∣a⊤E[ξ
(k)
i {ξ(k)j }⊤]a

∣∣,
for any an → +∞. This, combined with (A.18), yields that

P

(
N−0.5

∣∣∣ N∑
i=1

∆̄
⊤
n,lξ

(k)
i /∥∆̄n,l∥2

∣∣∣ > an

)
≤ a−2

n → 0.

Hence, N−0.5
∣∣∑N

i=1 ∆̄
⊤
n,lξ

(k)
i /∥∆̄n,l∥2

∣∣ = OP (1), which together with (A.17) yields

N−0.5

∣∣∣∣ N∑
i=1

∆̄
⊤
n,lξ

(k)
i

∣∣∣∣ = OP (
√
mn).
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Similarly, We prove that N−0.5

∣∣∣∣∑N
i=1 ∆̄

⊤
n,lξ

(k)
i,o

∣∣∣∣ = OP (
√
mn). Therefore,

Ln,2 = 2N−0.5
2∑

k,l=1

N∑
i=1

∆̄
⊤
n,l{ξ

(k)
i − ξ(k)i,o } = OP (

√
mn) = oP (mn).

(b3). Rewrite Ln,3 as

Ln,3 = 2N−1
N∑

i,j=1

{ξ(1)j }⊤ξ(2)i − 2N−1
N∑

i,j=1

{ξ(1)j,o}
⊤ξ

(2)
i,o ≡ L

(1)
n,3 − L

(2)
n,3.

Computing the mean and variance, we can show that L
(2)
n,3 = oP (mn), since ξ

(1)
j,o and ξ

(2)
i,o are

independent and Eξ
(1)
j,o = Eξ

(2)
i,o = 0, where i, j = 1, . . . , N . Notice that ∥N−0.5

∑N
i=1 ξ

(2)
i ∥2 =

OP (m
0.5
n ) and

L
(1)
n,3 = 2{N−0.5

N∑
i=1

ξ
(2)
i }⊤{N−0.5

N∑
j=1

ξ
(1)
j }.

We can replace ∆̄n with N−0.5
∑N

i=1 ξ
(2)
i in Part (b2) and show that L

(1)
n,3 = oP (mn). Thus,

Ln,3 = oP (mn).

Step (ii). Let ξi,o = {ξ(1)i,o + ξ
(2)
i,o }/

√
2. Note that Eξ

(1)
i,o = Eξ

(2)
i,o = 0 and ξ

(1)
i,o , and ξ

(2)
i,o

are independent. It follows from (A.18) that Cov(ξi,o) = Eξi,oξ
⊤
i,o = Imn . Combining Cauchy-

Schwarz inequality and Jessen’s inequality, we can get

N∑
i=1

E(∥ξi,o∥32) ≤
N∑
i=1

E{(∥ξ(1)i,o ∥
2
2 + ∥ξ(2)i,o ∥

2
2)

1.5} ≤ 2
N∑
i=1

2∑
k=1

E∥ξ(k)i,o ∥
3
2

= 2

N∑
i=1

2∑
k=1

E∥Ω0.5
o (θ∗)ÃoI

−1
o (θ∗)U

(k)
T (θ∗)∥32.

This, combined with ∥Ω0.5
o (θ∗)Ão{Io(θ∗)}−0.5∥22 ≤ 1, yields that

N∑
i=1

E(∥ξi,o∥32) ≤ 2
N∑
i=1

2∑
k=1

E∥{Io(θ∗)}−0.5U
(k)
T (θ∗)∥32

= 2
n∑
i=1

E∥{Io(θ∗)}−0.5UT(θ
∗)∥32.

It follows from condition (B2) that

m0.25
n N−1.5

n∑
i=1

E∥{Io(θ∗)}−0.5UT(θ
∗)∥32 → 0.

Thus, by Theorem 1 of Bentkus (2004), we get

sup
ψ∈Rmn

|P (
N∑
i=1

N−0.5ξi,o ∈ ψ)− P (Z ∈ ψ)| ≤ c∗m
0.25
n N−1.5

N∑
i=1

E(∥ξi,o∥32) → 0, (A.19)
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with Z ∈ Rmn be a Gaussian random vector for which E(Z) = 0, Cov(Z) = Imn , and the

supremum is taken for all convex subsets in Rmn . Now, let Ψ in (A.19) be the special convex

set

ψ(x) =
{
T ∈ Rmn :

∥∥T + 2−0.5
2∑

k=1

∆̄n,k

∥∥2
2
≤ x

}
.

Then

sup
x

|P (
N∑
i=1

N−0.5ξi,o ∈ ψ(x))− P (Z ∈ ψ(x))| → 0. (A.20)

Notice that T∗ = ∥
∑N

i=1N
−0.5ξi,o + 2−0.5

∑2
k=1 ∆̄n,k∥22, P{

∑N
i=1N

−0.5ξi,o ∈ ψ(x)} = P (T∗ ≤
x), and P{Z ∈ ψ(x)} = P{χ2

mn
(η2n,L) ≤ x}, where η2n,L = ∥2−0.5

∑2
k=1 ∆̄n,k∥22. In particular,

(A.20) coincides with

sup
x

|P (T∗ ≤ x)− P{χ2
mn

(ηL) ≤ x}| → 0,

which, together with (A.16), implies for every t ≥ 0,

P{χ2
mn

(η2n,L) ≤ x−mnt} ≤ P (T∗ ≤ x−mnt) + o(1)

≤ P (T ≤ x) + o(1)

≤ P (T∗ ≤ x+mnt) + o(1) ≤ P{χ2
mn

(η2n,L) ≤ x+mnt}+ o(1).

By Lemma S.7 in Shi et al. (2019), we have

lim
t↓0

|P (χ2
mn

(η2n,L) ≤ x−mnt)− P (χ2
mn

(η2n,L) ≤ x+mnt)| → 0.

Therefore, supx |P (T ≤ x)−P (χ2
mn

(η2n,L) ≤ x)| → 0. Notice that ∆̄n,k = (NΩk(θ
∗))0.5∆n with

N = 0.5n, therefore

η2n,L = (4ϕ)−1n∥
2∑

k=1

Ω0.5
k (θ∗)∆n∥22 = (4ϕ)−1n∥

2∑
k=1

{AI22k (θ∗)A⊤}−0.5∆n∥22.

Proofs of Theorems 2 and 3. Theorem 2 is a special case of Theorems 3, so we omit the

argument for Theorem 2. According to Lemma 11(iv), we can get

Tn,2 =
∥∥{Ã∗I

−1
T̂

(θ∗)Ã⊤
∗ }−0.5

[
n−0.5Ã∗I

−1
T̂

(θ∗)UT̂(θ
∗) + n0.5∆n

]∥∥2
2
+ oP (mn), (A.21)

where Ã∗ = (0mn×∥Ŝ∥0 ,A). Note that, by Theorem 1, P (Ŝ = S) → 1, if condition (A6) holds.

It follows that, with probability going to one,

Tn,2 =
∥∥{Ão{IT(θ∗)}−1Ã⊤

o }−0.5
[
n−0.5Ão{IT(θ∗)}−1UT̂(θ

∗) + n0.5∆n

]∥∥2
2
+ oP (mn),
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where Ão = (0mn×sn ,A). Then, using the argument in step (ii) for the argument for Theo-

rem 6, we can get supx |P (Tn,2 ≤ x) − P (χ2
mn

(η2n,o) ≤ x)| → 0. This finishes the argument for

the second result. For the first result, it can be proven similarly.

Proof of Theorems 7. Recall that

η2n,L = (4ϕ)−1n
∥∥ 2∑
k=1

{AI22k (θ∗)A⊤}−0.5∆n

∥∥2
2
and η2n,o = n∆⊤

n {AI22o (θ∗)A⊤}−1∆n.

Then applying the Jensen inequality and Lemma 13(i), we obtain that

η2n ≤ η2n,L ≤ 2−1
2∑

k=1

n∆⊤
n {AI22k (θ∗)A⊤}−1∆n ≤ n∆⊤

n {AI22o (θ∗)A⊤}−1∆n = η2n,o.

Using the triangle inequality and Lemma 13(ii), we establish that

√
η2n,o −

√
η2n,L ≤ (4ϕ)−0.5√n

∥∥2{AI22o (θ∗)A⊤}−0.5∆n −
2∑

k=1

{AI22k (θ∗)A⊤}−0.5∆n

∥∥
2
≤

√
4c2η2n,L.

Thus, η2n,L ≥ (1 + 2c)−2η2n,o = K(ρ∗)η2n,o.
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SUPPLEMENTALMATERIAL TO “DIMENSION-REDUCED TESTS FOR GENERALIZED

QUASI-LIKELIHOOD MODELS BASED ON REGULARIZATION”

Lemma 1. Assume that (A.26)–(A.27) holds. Then

(i) if (A.22) holds, conditions (A3) and (A4) hold for the linear regression;

(ii) if max1≤i≤n |w⊤
i θ

∗| = O(1) and (A.22) hold, conditions (A3) and (A4) hold for the logistic

and Poisson regressions;

(iii) if max1≤i≤n |w⊤
i θ

∗| = O(1) and condition (A2) and (A.31) hold, conditions (A3) and (A4)

hold for the Gamma and inverse Gaussian regression models with the log-link function.

Proof of Lemma 1. Firstly, we verify that, for m = O(sn + qn),

inf
θ ∈ Π2

min
a∈Π1,a̸=0

a⊤W⊤Wa

n∥aT∥22
≥ c, sup

θ ∈ Π2

max
a̸=0

a⊤W⊤Wa

n(∥aT∥22 + ∥aTc∥21)
= O(1), (A.22)

ψ1(m) ≡ max
∥b∥0≤m,b ̸=0

b⊤W⊤
TcWTcb

n∥b∥22
= O(sn + qn), (A.23)

ψ2(m) ≡ sup
θ ∈ Π2

max
j∈T

max
∥b∥0≤m,b̸=0

b⊤W⊤
Tcdiag{|Wj |}WTcb

n∥b∥22
= O(

√
n/cn), (A.24)

ψ3(m) ≡ sup
θ ∈ Π2

max
j∈Tc

max
∥b∥0≤m,b̸=0

b⊤W⊤
Tcdiag{|Wj |}WTcb

n∥b∥22
= O{(sn + qn)

√
n/tn}, (A.25)

where cn → ∞ and cn/ log n→ 0.

Applying Cauchy–Bunyakovsky–Schwarz, CBS inequality, we can get

N−1a⊤W⊤Wa ≤ 2N−1(a⊤TW
⊤
TWTaT + a⊤TcW⊤

TcWTcaTc)

≤ 2∥N−1W⊤
TWT∥2∥aT∥22 + 2N−1

∑
j,k∈Tc

|ajak| · |W⊤
j Wk|

≤ 2∥N−1W⊤
TWT∥2∥aT∥22 + 2∥aTc∥21max

j∈Tc
N−1∥Wj∥22,

and

N−1a⊤W⊤Wa ≥ N−1(a⊤TW
⊤
TWTaT + 2a⊤TW

⊤
TWTcaTc)

≥ λmin(N
−1W⊤

TWT)∥aT∥22 − 2N−1
√

a⊤TW
⊤
TWTaT · a⊤TcW⊤

TcWTcaTc

≥ λmin(N
−1W⊤

TWT)∥aT∥22 − 2∥aT∥2∥aTc∥1 max
j∈Tc∥

∥N−1Wj∥2∥W⊤
TWT∥1/22

= λmin(N
−1W⊤

TWT)∥aT∥22 − o(∥aT∥22)max
j∈Tc

∥N−1Wj∥2∥W⊤
TWT∥1/22 ,
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where the last equality follows from a ∈ Π1. This, combined with ∥N−1W⊤
TWT∥2 = O(1),

λmin(N
−1W⊤

TWT) ≥ c, and maxj∈Tc N−1∥Wj∥22 = O(1), establishes (A.22). Note that

ψ1(m) ≤ max
j∈Tc

N−1∥Wj∥22 × sup
∥b∥0≤m,b̸=0

∥b∥21/∥b∥22 ≤ mmax
j∈Tc

N−1∥Wj∥22,

ψ2(m) ≤ max
j∈Tc

N−1∥Wj∥22max
j∈T

∥Wj∥∞ × sup
∥b∥0≤m,b̸=0

∥b∥21/∥b∥22

≤ mmax
j∈Tc

N−1∥Wj∥22max
j∈T

∥Wj∥∞,

ψ3(m) ≤ max
j∈Tc

N−1∥Wj∥22max
j∈Tc

∥Wj∥∞ × sup
∥b∥0≤m,b̸=0

∥b∥21/∥b∥22

≤ mmax
j∈Tc

N−1∥Wj∥22max
j∈Tc

∥Wj∥∞.

It follows from 1√
n
max1≤j≤pn+qn ∥Wj∥2 = O(1), cn = O(log n),

max
j∈Tc

∥Wj∥∞ = O(
√
n/ log(rn)), max

j∈T
∥Wj∥∞ = O(n1/2(sn + qn)

−1(log n)−1/2), (A.26)

and m = O(sn + qn) that (A.23)-(A.25) hold.

(i). For linear regression models, conditions (A3) and (A4) are implied by (A.22)-(A.25).

(ii). For logistic regression, v2(g
−1(t), y) = − 1

et+2+e−t and v3(g
−1(t), y) = − et−e2t

1+3et+3e2t+e3t
; for

Poisson regression, v2(g
−1(t), y) = − exp(t) and v3(g

−1(t), y) = − exp(t). By (A.26), θ ∈ Π2

and cn ≤
√
log n, we have

sup
θ ∈ Π2

|w⊤
i (θ − θ∗)| ≤ |w⊤

i,T(θT − θ∗T)|+ |w⊤
i,TcθTc |

≤ sup
θ ∈ Π2

∥θT − θ∗T∥1max
j∈T

∥Wj∥∞ + sup
θ ∈ Π2

∥θTc∥1max
j∈Tc

∥Wj∥∞

= (sn + qn)n
−1/2√cnmax

j∈T
∥Wj∥∞ + o(

√
log(rn)/n)O(

√
n/ log rn)

= o(1), (A.27)

uniformly for i = 1, . . . , n and θ ∈ Π2, since supθ ∈ Π2
∥θTc∥1 = supθ ∈ Π2

∥θTc − θ∗∥1. This,

combined with max1≤i≤n |w⊤
i θ

∗| = O(1), yields that

sup
θ ∈ Π2

max
1≤i≤n

|w⊤
i θ| = O(1). (A.28)

Hence, supθ ∈ Π2
∥v2(θ)∥2 = O(1), infθ ∈ Π2

min1≤i≤n |v2(g−1(w⊤
i θ), Yi)| > 0, and supθ ∈ Π2

∥v3(θ)∥2 =
O(1). Then for logistic regression and Poisson regression models, conditions (A3) is implied by

(A.22), and condition (A4) by (A.23)-(A.25).

(iii). For the Gamma and inverse Gaussian regressions, the results can be proven similarly.

In the following we only show the result for the Gamma regression.

(a) For Gamma regression models with the log-link function, we get

v1(g
−1(t), y) =

y − exp(t)

exp(t)
, v2(g

−1(t), y) = −y exp(−t), and v3(g−1(t), y) = y exp(−t).
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Then

diag{v1(θ
∗)} = −v2(θ

∗)− In. (A.29)

Let u = (u1, . . . , un)
⊤ = Wa. Then∣∣a⊤W⊤{−v2(θ) + v2(θ

∗)}Wa
∣∣ =

∣∣u{−v2(θ) + v2(θ
∗)}u

∣∣
=

∣∣ n∑
i=1

{exp
(
w⊤
i θ

∗ −w⊤
i θ

)
− 1}u2iYi exp

(
−w⊤

i θ
∗
)∣∣

≤ max
1≤i≤n

| exp
(
w⊤
i θ

∗ −w⊤
i θ

)
− 1| ·

∣∣∣ n∑
i=1

u2iYi exp
(
−w⊤

i θ
∗
)∣∣∣

This, combined with (A.27), yields that

sup
θ ∈ Π2

∣∣a⊤W⊤{−v2(θ) + v2(θ
∗)}Wa

∣∣ = o(1) sup
θ ∈ Π2

a⊤W⊤{−v2(θ
∗)}Wa. (A.30)

Thus, condition (A3) holds if

min
a∈Π1,a ̸=0

−a⊤W⊤v2(θ
∗)Wa

n∥aT∥22
≥ ρ1 and max

a̸=0
− a⊤W⊤v2(θ

∗)Wa

n(∥aT∥22 + ∥aTc∥21)
= O(1). (A.31)

It suffices to show that (A.31) holds. By (A.31), we have

−a⊤W⊤v2(θ
∗)Wa ≥ −a⊤TW

⊤
Tv2(θ

∗)WTaT − 2a⊤TW
⊤
Tv2(θ

∗)WTcaTc

≥ cn∥aT∥22 − 2

√
a⊤TW

⊤
Tv2(θ

∗)WTaT · a⊤TcW⊤
Tcv2(θ

∗)WTcaTc

= cn∥aT∥22 −O(
√
n∥aT∥2)

√
−a⊤TcW⊤

Tcv2(θ
∗)WTcaTc (A.32)

and

−a⊤W⊤v2(θ
∗)Wa ≤ −2a⊤TW

⊤
Tv2(θ

∗)WTaT − 2a⊤TcW⊤
Tcv2(θ

∗)WTcaTc

= O(n)∥aT∥2 + a⊤TcW⊤
Tcv2(θ

∗)WTcaTc . (A.33)

By (A.29), we get

−a⊤TcW⊤
Tcv2(θ

∗)WTcaTc ≤ max
j,k∈Tc

|W⊤
j {−v2(θ

∗)}Wk| · ∥aTc∥21

= max
j,k∈Tc

|W⊤
j {−v2(θ

∗)− In}Wk +W⊤
j Wk| · ∥aTc∥21

≤ max
j,k∈Tc

{|W⊤
j diag{v1(θ

∗)}Wk|+ ∥Wj∥22}∥aTc∥21. (A.34)

Put cj,k = ∥Wj ◦Wk∥22v0 + ∥Wj ◦Wk∥∞nM0, where v0 and M0 are defined in condition (A2).

It follows from (A.26) that

max
j,k∈Tc

cj,k ≤ max
j,k∈Tc

n∑
i=1

w2
i,jw

2
i,kv0 + max

j,k∈Tc
max
1≤i≤n

|wi,jwi,k|nM0

≤ max
j,k∈Tc

∥Wj∥22∥Wk∥2∞v0 + max
j,k∈Tc

∥Wj∥∞∥Wk∥∞nM0

= O(n2/ log rn).
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Then using condition (A2), Bonferroni’s inequality and (21) in Fan and Lv (2011), we obtain

that, for any en → ∞,

P
{
max
j,k∈Tc

|W⊤
j diag{v1(θ

∗)}Wk| > enn
}

≤
∑
j,k∈Tc

P
{
|W⊤

j diag{v1(θ
∗)}Wk| > enn

}
≤ 2

∑
j,k∈Tc

exp
(
−0.5enn

2/cj,k
)

≤ 2 exp

(
log rn − 0.5enn

2/ max
j,k∈Tc

cj,k

)
→ 0.

Hence,

max
j,k∈Tc

|W⊤
j diag{v1(θ

∗)}Wk| = OP (n).

This, combined with (A.34), maxj,k∈Tc ∥Wj∥2 = O(
√
n) in condition (A5), yields that

−a⊤TcW⊤
Tcv2(θ

∗)WTcaTc = O(n)∥aTc∥21, (A.35)

which, together with (A.33), leads to

max
a̸=0

− a⊤W⊤v2(θ
∗)Wa

n(∥aT∥22 + ∥aTc∥21)
= O(1).

Applying (A.32) and ∥aTc∥1 = o(∥aT∥22) by a ∈ Π1, we establish that

−a⊤W⊤v2(θ
∗)Wa ≥ (c− o(1))n∥aT∥22

for any a ∈ Π1. Hence, There is a constant ρ1 ∈ (0, c) for which

min
a∈Π1,a̸=0

−a⊤W⊤v2(θ
∗)Wa

n∥aT∥22
≥ ρ1.

That is, (A.31) holds.

(b) Due to diag{|v3(θ)|} = v2(θ) for the Gamma regression, it holds that

b⊤W⊤
Tcdiag{|v3(θ)| ◦ |Wj |}WTcb

n∥b∥22
≤ ∥Wj∥∞

b⊤W⊤
Tcdiag{|v3(θ)|}WTcb

n∥b∥22

= ∥Wj∥∞
−b⊤W⊤

Tcv2(θ)WTcb

n∥b∥22
.

By condition (A3), we have

sup
θ ∈ Π2

max
∥b∥0≤m,b̸=0

−b⊤W⊤
Tcv2(θ)WTcb

n∥b∥22
≤ sup

θ ∈ Π2

max
∥b∥0≤m,b ̸=0

−mb⊤W⊤
Tcv2(θ)WTcb

n∥b∥21
= O(m).

This, combined with (A.26), yields condition (A4).
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Lemma 2. Assume that sup∥v∥2≤1 ∥v⊤wi∥ψ2 ≤ α0, max1≤i≤n |w⊤
i θ

∗| = O(1), and (sn +

qn)
2{log(nrn)}3/2 = o(n), where α0 is some positive constant and rn = pn + qn. Then the

following results hold:

(a) condition (B1)(iii) holds for linear, logistic and Poisson regression models;

(b) if max1≤j≤rn ∥wi,jv1,i(θ∗)∥ψ1 ≤ α1 holds for some constant α1 > 0, then condition

(B1)(iii) holds for gamma and inverse Gaussian regression models.

Proof of Lemma 2. Note that (sn + qn)
2{log(nrn)}3/2 = o(n), it follows that√

log(n) log(nrn)(sn + qn) = o(n1/2) and (sn + qn) log(nrn) log(rn) = o(n). (A.36)

By (S5.41) in Shi et al. (2019), we have

P
{

max
1≤i≤n,1≤j≤rn

|wi,j | > c
√

log(nrn)
}
→ 0 (A.37)

for any large constant c. Thus,

sup
θ ∈ Π3

|w⊤
i (θ − θ∗)| ≤ sup

θ ∈ Π3

∥θ − θ∗∥1 × max
1≤i≤n,1≤j≤rn

|wi,j | = OP {
√
log(nrn)} sup

θ ∈ Π3

∥θ − θ∗∥1.

This, combined with max1≤i≤n |w⊤
i θ

∗| = O(1) and (A.36), yields that

sup
θ ∈ Π3

|w⊤
i (θ − θ∗)| = oP (1) and sup

θ ∈ Π3

|w⊤
i θ| = OP (1). (A.38)

(a) Notice that v3(g
−1(t), y) ≡ 0 for linear regression models, v3(g

−1(t), y) = − et−e2t
1+3et+3e2t+e3t

for logistic regression models, and v3(g
−1(t), y) = − exp(t) for Poisson regression models. Since

supθ ∈ Π3
|w⊤

i θ| = OP (1), condition (B1)(iii) holds if

sup
M ∈ Y

max
1≤j≤rn

λmax(N
−1W⊤

Mdiag(|Wj |)WM) = OP (1), (A.39)

where Y = {M ⊆ {1, . . . , rn} : T ⊆ M, ∥M∥0 ≤ c(sn + qn)} for some constant c > 0. Let

t1 = supM ∈ Y max1≤j≤rn ∥Ewi,jwi,Mw⊤
i,M∥2 and

t2 = sup
M ∈ Y

max
1≤j≤rn

λmax{N−1W⊤
Mdiag(|Wj |)WM − Ewi,jwi,Mw⊤

i,M}.

By norm subadditivity, we get

sup
M ∈ Y

max
1≤j≤rn

λmax{N−1W⊤
Mdiag(|Wj |)WM} ≤ t1 + t2.
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Using Cauchy–Schwarz, sup∥v∥2≤1 ∥v⊤wi∥ψ2 ≤ α0, and the Strum theorem about eigenvalues

that

t1 ≤ max
1≤j≤rn

∥Ewi,jwiw
⊤
i ∥2 ≤ max

1≤j≤rn
sup

∥v∥2=1

√
E|wi,j |2

√
E(v⊤wi)4 = O(1).

Let t3 = max1≤i≤n,1≤j≤rn |wi,j |. Using (A.37), we obtain that

P (t2 ≥ 2) = P{t2 ≥ 2, t3 > c
√

log(nrn)}+ P{t2 ≥ 2, t3 ≤ c
√
log(nrn)}

= P{t2 ≥ 2, t3 ≤ c
√

log(nrn)}+ o(1).

Then (A.39) holds if

P
[
sup
M ∈ Y

max
1≤j≤rn

λmax

{
N−1

n∑
i=1

|wi,j |w̃i,Mw̃⊤
i,M − E|wi,j |w̃i,Mw̃⊤

i,M

}
> 2

]
→ 0, (A.40)

where w̃i,M = wi,M1(t3 ≤ c
√

log(nrn)) and 1(t3 ≤ c
√
log(nrn)) equals one when t3 ≤ c

√
log(nrn)

and zero otherwise.

By the definition of the Orlicz norm and sup∥v∥2≤1 ∥v⊤wi∥ψ2 ≤ α0, we obtain that

max
1≤j≤rn

∥wi,j∥ψ1 ≤ max
1≤j≤rn

∥wi,j∥ψ2/
√
log 2 ≤ α0/

√
log 2.

Then, following the argument for Lemma C.2 in Shi et al. (2018), For all j and M, we can get

P
{
λmax

(
N−1

n∑
i=1

|wi,j |w̃i,Mw̃⊤
i,M − E|wi,j |w̃i,Mw̃⊤

i,M

)
> 2

}
≤ ∥M∥0 exp

{
− 2n2

α̃0∥M∥0n
√
log(nrn)

}
.

where α̃0 = 2cα0/
√
log 2+4c3α3

0/ log 2. This, combined with Bonferroni’s inequality and (A.36),

yields that

P
[
sup
M ∈ Y

max
1≤j≤rn

λmax

{
N−1

n∑
i=1

|wi,j |w̃i,Mw̃⊤
i,M − E|wi,j |w̃i,Mw̃⊤

i,M

}
> 2

]
≤

∑
M∈Y,1≤j≤rn

P
[
λmax

{
N−1

n∑
i=1

|wi,j |w̃i,Mw̃⊤
i,M − E|wi,j |w̃i,Mw̃⊤

i,M

}
> 2

]
= crc(sn+qn)+1

n (sn + qn) exp
{
− 2n2

α̃0c(sn + qn)n
√
log(nrn)

}
→ 0.

This establishes (A.40).

(b) We only prove the result for the gamma regression. Similarly, we can prove the result for

the inverse Gaussian regression. For the gamma regression, v3(g
−1(t), y) = y exp(−t). Similar

to (A.30), we can show that

∥W⊤
M{diag(|v3(θ)|◦|Wj |)−diag(|v3(θ

∗)|◦|Wj |)}WM∥2 = oP (1)∥W⊤
Mdiag(|v3(θ

∗)|◦|Wj |)WM∥2,
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uniformly for M ∈ Y. Then (B1)(iii) follows if

sup
M ∈ Y

max
1≤j≤rn

λmax{W⊤
Mdiag(|v3(θ

∗)| ◦ |Wj |)WM} = OP (n). (A.41)

Since v1(g
−1(t), y) = y exp(−t)− 1, it holds that

sup
M ∈ Y

max
1≤j≤rn

λmax{W⊤
Mdiag(|v3(θ

∗)| ◦ |Wj |)WM}

≤ sup
M ∈ Y

max
1≤j≤rn

λmax{W⊤
Mdiag(|Wj |)WM}

+ sup
M ∈ Y

max
1≤j≤rn

λmax

[
W⊤

M{diag(|v3(θ
∗)| ◦ |Wj |)− diag(|Wj |)}WM

]
= sup

M ∈ Y
max

1≤j≤rn
λmax{W⊤

Mdiag(|Wj |)WM}+ sup
M ∈ Y

max
1≤j≤rn

λmax

[
W⊤

Mdiag{v1(θ
∗) ◦ |Wj |}WM

]
.

Since max1≤j≤rn ∥wi,jv1,i(θ∗)∥ψ1 ≤ α1, similar to (A.39), we get

sup
M ∈ Y

max
1≤j≤rn

λmax{W⊤
Mdiag(v1(θ

∗) ◦ |Wj |)WM} = OP (n).

Thus, condition (B2)(iii) holds for Gamma regression models.

Lemma 3. Given any k ∈ N and ℓ ≥ 1, we have

φ(⌈lk⌉)
φ(k)

≤ ⌈l⌉,

where φ(·) is φ1(·), φ2(·) or φ3(·), and ⌈l⌉ = min{a|a ≥ l, a ∈ N+} with N+ being the positive

integer set.

Proof of Lemma 3. Since −W⊤
Tcv2(θ

∗)WTc and W⊤
Tcdiag{|v3(θ)| ◦ |Wj |}WTc are posi-

tive semidefinite matrices, the result can be proven along the same line for the proof of Lemma 3

in Belloni and Chernozhukov (2013).

Lemma 4. Let δ = θ̃−θ∗ and tn = min{log(rn), sn+qn}, where rn = pn+qn. Under conditions

(A1) to (A5). We can get

(i) ∥U(θ∗)∥∞ = OP {
√

log(rn)/n} and ∥Un,T(θ∗)∥2 = OP {
√
(sn + qn)/n};

(ii) ∥δT∥2 = OP {
√
(sn + qn)/n} and ∥δTc∥1 = OP {tn/(nλn)}.

Proof of Lemma 4. (i) Under conditions (A2) and (A5), using (S5.13) in the supplementary

of Shi et al. (2019), we establish that***

∥U(θ∗)∥∞ = OP (
√
log(qn + pn)/n). (A.42)
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Applying Chebyshev’s inequality and condition (A2), we obtain that

P
{
∥UT(θ

∗)∥22 ≥ ann(sn + qn)
}

≤ Trace[E{UT(θ
∗)}⊗2]

ann(sn + qn)

≤ O(1)(sn + qn)

an(sn + qn)
→ 0

for any an → ∞. Hence,

∥UT(θ
∗)∥2 = OP (

√
(sn + qn)/n). (A.43)

(ii) Define

Ωτn =
{
θ∗ + a : ∥aT∥2 ≤ τn

√
sn + qn
n

, ∥aTc∥1 ≤
τntn
nλn

, and a ∈ Rpn+qn
}
,

where τn → ∞, τn
√

(sn + qn)/n ≤ dn,
τntn
nλn

= o(
√
n−1/2 log(pn + qn)), and τn/

√
log n → 0.

By the concavity of Qn(θ), It is enough to verify that, w.h.p., a local maximizer θ̃ lies in the

interior of Ωτn , or equivalently

Qn(θ
∗)− n

pn∑
j=1

pλn(|θ∗j |)− {Qn(θ∗ + a)− n

pn∑
j=1

pλn(|θ∗j + aj |)} > 0, (A.44)

for all θ∗ + a ∈ ∂Ωτn , where ∂Ωτn is the boundary of closed set Ωτn . Recall that v1(θ) =(
v1(w

⊤
1 θ, Y1), . . . , v1(w

⊤
n θ, Yn)

)⊤
,, v2(θ) = diag

(
v2(w

⊤
1 θ, Y1), . . . , v2(w

⊤
n θ, Yn)

)
with v1(t) =

∂Q(t,y)
∂t and v2(t) =

∂2Q(t,y)
∂t2

. By Taylor’s expansion, we can get

Qn(θ
∗ + a)−Qn(θ

∗) = a⊤U(θ∗) + 0.5a⊤H(θ0)a, (A.45)

where θ∗0 ∈ [θ∗, θ∗ + a ]. Because λ−1
n

√
log(qn + pn)/n→ 0, by (A.42), for some c > 0,

λn ≥ c∥n−1U(θ∗)∥∞. (A.46)

Combining Hölder’s inequality with (A.46), we can get

a⊤U(θ∗) ≤ a⊤TUT(θ
∗) + |a⊤TcUTc(θ∗)|

≤ a⊤TUT(θ
∗) + n∥N−1U(θ∗)∥∞∥aTc∥1

≤ a⊤TUT(θ
∗) + c−1nλn∥aTc∥1. (A.47)

Combining (A.45) and (A.47) leads to

Qn(θ
∗)−Qn(θ

∗ + a) ≥ −0.5a⊤H(θ∗0)a− a⊤TUT(θ
∗)− c−1nλn∥aTc∥1,
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which, together with condition (A3) and the definition of ∂Ωτn , yields that

Qn(θ
∗)−Qn(θ

∗ + a) ≥ 0.5nρ1∥aT∥22 − c−1nλn∥aTc∥1 − a⊤TUT(θ
∗)

≥ 0.5ρ1τ
2
n(sn + qn)− c−1τn(sn + qn)− a⊤TUT(θ

∗). (A.48)

Applying the mean–value formula, we have

pn∑
i=1

pλn(|θ∗i |)−
pn∑
i=1

pλn(|θ∗i + aj |) = −
pn∑
i=1

p′λn(|θ̆i|)aisgn(θ̆i)

= −
∑
i∈S

p′λn(|θ̆i|)aisgn(θ̆i)− λn
∑
i∈Tc

ρ′(|θ̆i|, λn)aisgn(θ̆i)

= −a⊤S ρ̄λn(|θ̆S|)− λn
∑
i∈Tc

ρ′(|θ̆i|, λn)aisgn(θ̆i), (A.49)

with θ̆ ∈ [θ∗, θ∗ + a ] and ρ̄λn(|θ̆S|) = (p′λn(|θ̆i|)sgn(θ̆i), i ∈ S)⊤. By condition (A3), we have

∥θ̆S − θ∗S∥∞ ≤ ∥aS∥∞ ≤ ∥aS∥2 = τn
√
(sn + qn)/n ≤ dn,

which implies that

|θ̆i| ≥ |θ∗i | − dn ≥ min
i∈S

|θ∗i | − dn = dn. (A.50)

Since ρ′λn(t) ≥ 0 and ρ′′λn(t) ≤ 0 for t ∈ [0,∞) for given λn, which implies that

|
∑
i∈Tc

ρ′λn(|θ̆i|)ajsgn(θ̆i)| ≤
∑
i∈Tc

ρ′λn(|θ̆i|)|ai| ≤
∑
i∈Tc

ρ′(0+)|ai| = ρ′(0+)∥aTc∥1,

which together with (A.49) and the definition of Ωτn , yields that

n

pn∑
i=1

pλn(|θ∗i + ai|)− n

pn∑
i=1

pλn(|θ∗i |) = na⊤S ρ̄λn(|θ̆S|) + nλn
∑
i∈Tc

ρ′λn(|θ̆i|)aisgn(θ̆i)

≥ na⊤S ρ̄λn(|θ̆S|)− nλnρ
′(0+)∥aTc∥1

≥ na⊤S ρ̄λn(|θ̆S|)− ρ′(0+)τntn. (A.51)

Under (A.48) and (A.51), we obtain that

Qn(θ
∗)−Qn(θ

∗ + a) + n

pn∑
i=1

pλn(|θ∗i + ai|)− n

pn∑
i=1

pλn(|θ∗i |)

≥ 0.5ρ1τ
2
n(sn + qn)− c−1τn(sn + qn)− a⊤TUn,T(θ

∗) + na⊤S ρ̄λn(|θ̆S|)− ρ′(0+)τn(sn + qn)

= 0.5ρ1τ
2
n(sn + qn)− (c−1 + ρ′(0+))τn(sn + qn)− a⊤TUT(θ

∗) + na⊤S ρ̄λn(|θ̆S|). (A.52)
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Note that p′λn(t) is decreasing in t ∈ [0,∞) and p′λn(dn) = O(n−1/2), it follows from Hölder’s

inequality, (A.50), and the definition of Ωτn that

∥na⊤S ρ̄λn(|θ̆S|)∥22 ≤ ∥aS∥22n2
∑
i∈S

{p′λn(|θ̆i|)}
2

≤ nτ2n(sn + qn)
∑
i∈S

{p′λn(dn)}
2

= O{τ2n(sn + qn)
2}. (A.53)

Again, from Hölder’s inequality and Ωτn , yields

∥a⊤TUT(θ
∗)∥2 ≤ ∥aT∥2∥UT(θ

∗)∥2 = τn
√
N−1(sn + qn)∥UT(θ

∗)∥2 = OP {τn(sn + qn)}.

This, combined with (A.52) and (A.53), establishes (A.44).

Lemma 5. Under conditions (A1)-(A5) and (B1). For both k = 1 and k = 2,

∥N−1H
(k)
T̂k

(θ, t) + Ik(θ
∗)∥2 = OP {n−0.5(sn + qn)}.

Proof of Lemma 5. By condition (B1), therefore

E(∥N−1H
(k)
T̂k

(θ, t) + Ik(θ
∗)∥22)

≤ N−2
∑

j,l∈Ŝk ∪ D

E
[ N∑
i=1

{
w

(k)
i,j w

(k)
i,l v2({w

(k)
i }⊤θ∗, Y (k)

i )− E[w
(k)
i,j w

(k)
i,l v2({w

(k)
i }⊤θ∗, Y (k)

i )
}]2

= O{N−1(snk + qn)
2}, (A.54)

Since the summands are independent (hence uncorrelated), Var
(∑

iXi

)
=

∑
iVar(Xi). By

Theorem 1, we know that snk + qn = O(sn + qn) with probability going to 1. This, combined

with (A.54), completes the proof.

Lemma 6. Under conditions (A1) to (A5) and (B1), If
sn+qn
n1/3 −→ 0 (n → ∞), and there

are two constant numbers C1, C2 ∈ (0,∞), independent of n, for which ∥AA⊤∥op ≤ C1 and

∥(AA⊤)−1∥op ≤ C2, and ∥∆n∥2 = O(
√
mn/n), then for k = 1, 2,

(i) under H
(2)
a,n, ∥θ̂k − θ∗∥2 = OP

(√
(sn + qn)/n

)
;

(ii) under H0,2, ∥θ̂0,k − θ∗∥2 = OP
(√

(sn + qn)/n
)
.
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Proof of Lemma 6. (i) Define

H = {θ∗ + a : ∥a∥2 = τn
√
(sn + qn)/n,aT̂c

k
= 0},

where τn → ∞, τn/
√
log n→ 0, and τn(sn + qn)/n→ 0. By the concavity of Q

(k)
n (θ), It will be

enough to verify that, w.p.a.1, the objective attains a local optimum at some θ̂ ∈ int(H). That

is,

P{max
θ ∈ H

Q(k)
n (θ)−Q(k)

n (θ∗) < 0} → 1. (A.55)

By the mean value theorem and the CBS inequality, we can get

Q(k)
n (θ)−Q(k)

n (θ∗) = U
(k)
n,T̂k

aT̂k
+

1

2
a⊤T̂k

H
(k)
T̂k

(θ∗)aT̂k

≤ τn
√

(sn + qn)/n∥U(k)
T̂k

∥2 +
1

2
a⊤T̂k

H
(k)
T̂k

(θ∗)aT̂k

≡ τn
√

(sn + qn)/nI4 − I5,

with θ∗ ∈ [θ∗, θ ]. Hence, (A.55) holds if

P
[
max
a

{τn
√
(sn + qn)/nI4 − I5} < 0

]
→ 1, as n→ ∞. (A.56)

By Theorem 1 and sn + qn = o(n1/3), we get

snk + qn = O(sn + qn) = o(n1/3). (A.57)

Applying Taylor’s expansion, condition (B1)(iii), (θ∗−θ∗)T̂c
k
= 0,and ∥(θ∗−θ∗)T̂k

∥2 ≤ ∥aT̂k
∥2 =

O(τn
√

(sn + qn)/n), we obtain that

∥N−1{H(k)
T̂k

(θ∗)−H
(k)
T̂k

(θ∗)}∥2

≤ max
∥b∥2=1

b⊤W⊤
k diag{|v3,k(θ0)| ◦ |Wk(θ∗ − θ∗)T̂k

|}Wkb/N

≤ ∥(θ∗ − θ∗)T̂k
∥1N−1max

j∈T̂k

λmax

[
W⊤

T̂k
diag{|v3(θ0)| ◦ |Wj |}WT̂k

]
= OP {τn(sn + qn)n

−1/2}, (A.58)

where θ0 is between θ∗ and θ∗. This, combined with τn(sn + qn)/n → 0 and Lemma 5, yields

that

∥N−1H
(k)
T̂k

(θ∗) + Ik(θ
∗)∥2 = OP {τn(sn + qn)n

−1/2} = oP (1).

Note that λmin(Ik(θ
∗)) ≥ 1/ρ4 in condition (B1), it follows that

λmin

(
−N−1H

(k)
T̂k

(θ∗)
)
≥ (2ρ4)

−1,
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with probability going to one. For the term I5, we have 2N
−1I5 ≥ (2ρ4)

−1∥a∥22 = (2ρ4)
−1τ2n(sn+

qn)/n. This implies that

I5 ≥ (8ρ4)
−1τ2n(sn + qn).

Since E{U(k)(θ∗)}⊗2 = ϕTrace(NIk(θ
∗)), by Chebyshev’s inequality, we get

P
(
I24 ≥ τnn(sn + qn)

)
≤ {τnn(sn + qn)}−1E(I24 ) = {τnn(sn + qn)}−1ϕTrace(NIk(θ

∗)).

By Condition (B1) and (A.57), we have

Trace(Ik(θ
∗)) ≤ (snk + qn)λmax(Ik(θ

∗)) = O{ρ4(sn + qn)}.

This, combined with τn → ∞, yields that

P
{
I24 ≥ τnn(snk + qn)

}
≤ O(τnn(sn + qn))

ρ̃2n(sn + qn)
→ 0.

Then |I4| <
√
τnn(sn + qn) with probability going to 1. Therefore, τn

√
(sn + qn)/nI4 = oP (I5).

Since I5 > 0, (A.56) holds.

(ii) Similar to Lemma 6 (i), the result holds.

Lemma 7. Let Ω̂k(θ) =
{
Ãk

(
Îk(θ)

)−1
Ã⊤
k

}−1
. Under conditions (A1)-(A5) and (B1). If

sn+qn
n1/3 −→ 0 (n → ∞), and there are two constant numbers C1, C2 ∈ (0,∞), independent of

n, for which ∥AA⊤∥op ≤ C1 and ∥(AA⊤)−1∥op ≤ C2., then the following results hold:

(i) ∥Î−1
k (θ∗)− I−1

k (θ∗)∥2 = OP ((sn + qn)n
−0.5), λmax(Ik(θ

∗)) = O(1), λmax(Îk(θ
∗)) = OP (1),

λmax(I
−1
k (θ∗)) = O(1), and λmax(Î

−1
k (θ∗)) = OP (1);

(ii) ∥Ω̂k(θ
∗) − Ωk(θ

∗)∥2 = OP ((sn + qn)n
−0.5), λmax(Ωk(θ

∗)) = O(1), λmax(Ω̂k(θ
∗)) =

OP (1), ∥Ω̂k(θ
∗)Ãk∥2 = OP (1), ∥Ωk(θ

∗)Ãk∥2 = O(1), ∥Ã⊤
k Ω̂k(θ

∗)Ãk∥2 = OP (1), and

∥Ã⊤
kΩk(θ

∗)Ãk∥2 = O(1);

(iii) ∥Ã⊤
k (Ω̂k(θ

∗) − Ωk(θ
∗))∥2 = OP {(sn + qn)n

−0.5}, and ∥Ã⊤
k (Ω̂k(θ

∗) − Ωk(θ
∗))Ãk∥2 =

OP {(sn + qn)n
−0.5}.

Proof of Lemma 7. (i) From condition (B1) and (A.57), we obtain that

1/ρ4 ≤ λmin(Ik(θ
∗)) ≤ λmax(Ik(θ

∗)) ≤ ρ4.
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In view of 5, ∥Îk(θ∗)− Ik(θ
∗)∥2 = OP (n

−0.5(sn+ qn)), which, combined with sn+ qn = o(n1/3),

leads to

λmax(Îk(θ
∗)) ≤ λmax(Ik(θ

∗)) + ∥Îk(θ∗)− Ik(θ
∗)∥2 = OP (1);

λmin(Îk(θ
∗)) ≥ λmin(Ik(θ

∗))− ∥Îk(θ∗)− Ik(θ
∗)∥2 ≥ 1/ρ1 − oP (1).

Thus, λmin(Î
−1
k (θ∗)) = OP (1) and λmax(Î

−1
k (θ∗)) = OP (1). This, combined with the CBS

inequality, yields

∥Î−1
k (θ∗)− I−1

k (θ∗)∥2 ≤ ∥Î−1
k (θ∗)∥2 · ∥I−1

k (θ∗)∥2 · ∥Îk(θ∗)− Ik(θ
∗)∥2 = OP (n

−0.5(sn + qn)).

(ii) Notice that

{λmax(Ω̂k(θ
∗))}−1 = inf

∥a∥2=1
a⊤Ãk(Îk(θ

∗)
)−1

Ã⊤
k a

≥ λmin{
(
Îk(θ

∗)
)−1}

inf
∥a∥2=1

a⊤ÃkÃ
⊤
k a

= λmin(ÃkÃ
⊤
k )/λmax(Îk(θ

∗)).

It follows from λmax((AA⊤)−1) = O(1) and result (i) that

λmax(Ω̂k(θ
∗)) ≤ λmax((AA⊤)−1)λmax(Îk(θ

∗)) = OP (1).

Similarly, we get that λmax(Ωk(θ
∗)) = O(1). Using the CBS inequality and

∥Ω̂0.5
k (θ∗)Ãk{Îk(θ∗)}−0.5∥2 = ∥Ω̂0.5

k (θ∗)Ãk{Îk(θ∗)}−1Ã⊤
k Ω̂

0.5
k (θ∗)∥0.52 = 1,

we establish that

∥Ω̂k(θ
∗)Ãk∥2 = ∥Ω̂k(θ

∗)Ãk{Îk(θ∗)}−0.5{Îk(θ∗)}0.5∥2 ≤ ∥{Îk(θ∗)}0.5∥2 · ∥(Ω̂k(θ
∗))0.5∥2;

∥Ã⊤
k Ω̂k(θ

∗)Ãk∥2 = ∥{Îk(θ∗)}0.5{Îk(θ∗)}−0.5Ã⊤
k Ω̂k(θ

∗)Ãk{Îk(θ∗)}−0.5{Îk(θ∗)}0.5∥2

≤ ∥{Îk(θ∗)}0.5∥22,

where the last inequality holds because {Îk(θ∗)}−0.5Ã⊤
k Ω̂k(θ

∗)Ãk{Îk(θ∗)}−0.5 is a projection

matrix. Thus, ∥Ã⊤
k Ω̂k(θ

∗)Ãk∥2 = OP (1) and ∥Ω̂k(θ
∗)Ãk∥2 = OP (1) . Similarly, we can prove

that ∥Ã⊤
kΩk(θ

∗)Ãk∥2 = O(1), and ∥Ωk(θ
∗)Ãk∥2 = O(1).

With ∥Î−1
k (θ∗)−I−1

k (θ∗)∥2 = OP ((sn+qn)n
−0.5), ∥Ω̂k(θ

∗)Ãk∥2 = OP (1) and ∥Ωk(θ
∗)Ãk∥2 =

O(1), we establish that

∥Ω̂k(θ
∗)−Ωk(θ

∗)∥2 = ∥Ω̂k(θ
∗)Ãk[Î

−1
k (θ∗)− I−1

k (θ∗)]Ã⊤
kΩk(θ

∗)∥2 (A.59)

≤ ∥Ω̂k(θ
∗)Ãk∥2 · ∥Ωk(θ

∗)Ãk∥2 · ∥Î−1
k (θ∗)− I−1

k (θ∗)∥2

= OP ((sn + qn)n
−0.5).

50



(iii) Combining the Hölder inequality with (A.59), we can get

∥Ã⊤
k (Ω̂k(θ

∗)−Ωk(θ
∗))Ãk∥2 ≤ ∥Ã⊤

k Ω̂k(θ
∗)Ãk∥2 · ∥Ã⊤

kΩk(θ
∗)Ãk∥2 · ∥Î−1

k (θ∗)− I−1
k (θ∗)∥2,

and

∥Ã⊤
k (Ω̂k(θ

∗)−Ωk(θ
∗))∥2 ≤ ∥Ã⊤

k Ω̂k(θ
∗)Ãk∥2 · ∥Ã⊤

kΩk(θ
∗)∥2 · ∥Î−1

k (θ∗)− I−1
k (θ∗)∥2.

This, combined with results (i)-(ii), establishes result (iii).

Lemma 8. Under conditions (A1)-(A5) and (B1). If sn+qn
n1/3 −→ 0 (n → ∞), and there

are two constant numbers C1, C2 ∈ (0,∞), independent of n, for which ∥AA⊤∥op ≤ C1 and

∥(AA⊤)−1∥op ≤ C2. Under H
(n)
a,2 and

∥∆n∥2√
mn/n

= O(1)., we obtain

(i) (θ̂k−θ∗)T̂c
k
= 0, and (θ̂k−θ∗)T̂k

= {NIk(θ
∗)}−1U

(k)
T̂k

(θ∗)+r
(k)
n,1, where ∥r

(k)
n,1∥2 = oP (n

−0.5);

(ii) (θ̂0,k − θ∗)T̂c
k
= 0 and

(θ̂0,k − θ∗)T̂k
= N−1I−1

k (θ∗)U
(k)
T̂k

(θ∗)− I−1
k (θ∗)Ã⊤

kΩk(θ
∗)∆n

−N−1I−1
k (θ∗)Ã⊤

kΩk(θ
∗)ÃkI

−1
k (θ∗)U

(k)
T̂k

(θ∗) + r
(k)
n,2,

where ∥r(k)n,2∥2 = oP (n
−1/2);

(iii) ∥(θ̂k − θ̂0,k)T̂k
∥2 = OP (

√
mn/n) and

(θ̂k − θ̂0,k)T̂k
= N−1I−1

k (θ∗)Ã⊤
kΩk(θ

∗)ÃkI
−1
k (θ∗)U

(k)
T̂k

(θ∗) + I−1
k (θ∗)Ã⊤

kΩk(θ
∗)∆n + r

(k)
n,3,

where r
(k)
n,3 = r

(k)
n,1 − r

(k)
n,2;

(iv)
∥∥{Ik(θ∗)}−1/2Ã⊤

kΩk(θ
∗)
[
N−1/2ÃkI

−1
k (θ∗)U

(k)
T̂k

(θ∗) +N1/2∆n

]∥∥
2
= OP (

√
mn).

Proof of Lemma 8. (i)-(ii). Results (i) and (ii) can be proven similarly, so we only show

result (ii). Notice that the optimization problem

max
θ

{Q(k)
n (θ), s.t. βŜc

k
= 0, A(γ − t) = 0}

is equivalent to

min
θ, µ1, µ2

{−Q(k)
n (θ) + µ⊤

1 A(γ − t) + µ⊤
2 βŜc

k
+ 0.5f1∥A(γ − t)∥22 + 0.5f2∥βŜc

k
∥22},

where µ1 ∈ Rmn , µ2 ∈ Rpn−snk , and f1, f2 are some positive constants. The definition of θ̂0,k

and the first order stationary condition imply that
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(a) (θ̂0,k − θ∗)T̂c
k
= 0, A(γ̂0,k − t) = 0 , and ∂Q

(k)
n (θ̂0,k)/∂θŜk

= 0.

(b) There exists some µ1 ∈ Rmn satisfies that ∂Q
(k)
n (θ̂0,k)/∂θD = A⊤µ1. That is,

U
(k)
T̂k

(θ̂0,k) = Ã⊤
k µ̃1, (θ̂0,k − θ∗)T̂c

k
= 0, and A(γ̂0,k − t) = 0, (A.60)

where µ̃1 = (0⊤,µ⊤
1 )

⊤.

Applying the Taylor expansion yields that

U
(k)
T̂k

(θ̂0,k) = U
(k)
T̂k

(θ∗) +H
(k)
T̂k

(θ∗)(θ̂0,k − θ∗)T̂k
+ 0.5Rn,k, (A.61)

where Rn,k =
{
(θ̂0,k − θ∗)⊤T̂k

W⊤
k diag

(
v3,k(θ̃k) ◦Wk,j

)
Wk(θ̂0,k − θ∗)T̂k

, 1 ≤ j ≤ snk + qn
}⊤

with

θ̃k lying in the line segment joining θ̂0,k and θ∗. Hence,

(θ̂0,k − θ∗)T̂k
= {N Îk(θ

∗)}−1
{
U

(k)
T̂k

(θ∗)− Ã⊤
k µ̃1 + 0.5Rn,k

}
, (A.62)

where the identity N Îk(θ
∗) = −H

(k)
T̂k

(θ∗) is used. By (A.60) and A(γ∗ − t) = ∆n, we have

Ãk(θ̂0,k − θ∗)T̂k
= −∆n. Thus, solving (A.62) for µ̃1, we get

µ̃1 = NΩ̂k(θ
∗)
[
∆n + Ãk{N Îk(θ

∗)}−1
{
U

(k)
T̂k

(θ̂0,k) + 0.5Rn,k

}]
. (A.63)

Then replacing µ̃1 in (A.62) by (A.63) gives us that

(θ̂0,k − θ∗)T̂k
= N−1Î−1

k (θ∗)U
(k)
T̂k

(θ∗)− Î−1
k (θ∗)Ã⊤

k Ω̂k(θ
∗)∆n

−N−1Î−1
k (θ∗)Ã⊤

k Ω̂k(θ
∗)ÃkÎ

−1
k (θ∗)U

(k)
T̂k

(θ∗)

+0.5N−1Î−1
k (θ∗){Rn,k − Ã⊤

k Ω̂k(θ
∗)ÃkÎ

−1
k (θ∗)Rn,k}

≡
4∑
j=1

Fk,j .

Let Gk,1 = N−1I−1
k (θ∗)U

(k)
T̂k

(θ∗), Gk,2 = −I−1
k (θ∗)Ã⊤

kΩk(θ
∗)∆n, and

Gk,3 = −N−1I−1
k (θ∗)Ã⊤

kΩk(θ
∗)ÃkI

−1
k (θ∗)U

(k)
T̂k

(θ∗).

Then

(θ̂0,k − θ∗)T̂k
=

3∑
j=1

Gk,j + r
(k)
n,2,

where r
(k)
n,2 =

∑3
j=1(Fk,j − Gk,j) + Fk,4. From here, it is enough to establish that ∥r(k)n,2∥2 =

oP (n
−1/2). In the following, we prove that n1/2 ∥Fk,j −Gk,j∥2

p−→ 0 with j can be 1, 2, and 3,

and ∥Fk,4∥2 = oP (n
−1/2), which leads to result (ii).
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First, using condition (B1) and (A.57), we get

Trace{E(U
(k)
T̂k

(θ∗))⊗2} = Trace{NϕIk(θ∗)} = O(n(sn + qn)). (A.64)

Thus,

∥U(k)
T̂k

(θ∗)∥2 = OP (
√
n(sn + qn)). (A.65)

This, combined with Lemma 7(i) and sn + qn = o(n1/3), yields that

∥Fk,1 −Gk,1∥2 ≤ ∥Î−1
k (θ∗)− I−1

k (θ∗)∥2 · ∥N−1U
(k)
T̂k

(θ∗)∥2

= OP ((sn + qn)n
−0.5) ·OP (

√
(sn + qn)/n) = oP (n

−0.5).

Second, by Lemma 7 and ∥∆n∥2 = O(
√
mn/n), it holds that

∥Fk,2 −Gk,2∥2 = ∥[Î−1
k (θ∗)− I−1

k (θ∗)]Ã⊤
k Ω̂k(θ

∗)∆n + I−1
k (θ∗)Ã⊤

k (Ω̂k(θ
∗)−Ωk(θ

∗))∆n∥2

≤ ∥Î−1
k (θ∗)− I−1

k (θ∗)∥2 · ∥Ã⊤
k Ω̂k(θ

∗)∥2 · ∥∆n∥2

+∥I−1
k (θ∗)∥2 · ∥Ã⊤

k (Ω̂k(θ
∗)−Ωk(θ

∗))∥2 · ∥∆n∥2

= OP ((sn + qn)n
−0.5) ·OP (

√
mn/n).

Since mn ≤ sn + qn = o(n1/3), we have ∥Fk,2 −Gk,2∥2 = oP (n
−0.5).

Thirdly, using the subadditivity of the norm, we establish that

∥Fk,3 −Gk,3∥2 ≤ ∥N−1[Î−1
k (θ∗)− I−1

k (θ∗)]Ã⊤
k Ω̂k(θ

∗)ÃkÎ
−1
k (θ∗)U

(k)
T̂k

(θ∗)∥2

+∥N−1I−1
k (θ∗)Ã⊤

k (Ω̂k(θ
∗)−Ωk(θ

∗))ÃkÎ
−1
k (θ∗)U

(k)
T̂k

(θ∗)∥2

+∥N−1I−1
k (θ∗)Ã⊤

kΩk(θ
∗)Ãk[Î

−1
k (θ∗)− I−1

k (θ∗)]U
(k)
T̂k

(θ∗)∥2

≤ ∥Î−1
k (θ∗)− I−1

k (θ∗)∥2 · ∥Ã⊤
k Ω̂k(θ

∗)Ãk∥2 · ∥Î−1
k (θ∗)∥2 · ∥N−1U

(k)
T̂k

(θ∗)∥2

+∥I−1
k (θ∗)∥2 · ∥Ã⊤

k (Ω̂k(θ
∗)−Ωk(θ

∗))Ãk∥2 · ∥Î−1
k (θ∗)∥2 · ∥N−1U

(k)
T̂k

(θ∗)∥2

+∥I−1
k (θ∗)∥2 · ∥Ã⊤

kΩk(θ
∗)Ãk∥2 · ∥Î−1

k (θ∗)− I−1
k (θ∗)∥2 · ∥N−1U

(k)
T̂k

(θ∗)∥2.

This, combined with Lemma 7 and (A.65), yields that

∥Fk,3 −Gk,3∥2 = OP ((sn + qn)n
−0.5) ·OP (

√
(sn + qn)/n) = oP (n

−0.5).

Lastly, by Lemma 6(ii), condition (B1), sn + qn = o(n1/3), and (A.57), it holds that

∥Rn,k∥2 ≤
√
snk + qn max

1≤j≤snk+qn
(θ̂0,k − θ∗)⊤T̂k

W⊤
k diag

(
|v3,k(θ̃k)| ◦ |Wk,j |

)
Wk(θ̂0,k − θ∗)T̂k

≤ (sn + qn)
3/2N−1max

j∈T̂k

λmax{W⊤
T̂k
diag

(
|v3(θ̃k)| ◦ |Wj |

)
WT̂k

}

= oP (n
1/2). (A.66)
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This, combined with Lemma 7(i)–(ii) and ∥∆n∥2 = O(
√
mn/n), yields that

∥Fk,4∥2 ≤ 0.5N−1∥Î−1
k (θ∗)∥2

{
1 + ∥Ã⊤

k Ω̂k(θ
∗)Ãk∥2 · ∥Î−1

k (θ∗)∥2
}
∥Rn,k∥2 = oP (n

−1/2).

(iii)-(iv). The asymptotic representation is obtained from (i)-(ii). To complete the proofs,

it suffices to show ∥(θ̂k − θ̂0,k)T̂k
∥2 = OP (

√
mn/n) and results (iv). By Lemma 7(i)–(ii) and

∥∆n∥2 = O(
√
mn/n), we have ∥I−1

k (θ∗)Ã⊤
kΩ

1/2
k (θ∗)∥2 ≤ ∥I−1

k (θ∗)∥2 · ∥Ã⊤
kΩ

1/2
k (θ∗)∥2 = O(1)

and

∥I−1
k (θ∗)Ã⊤

kΩk(θ
∗)∆n∥2 ≤ ∥I−1

k (θ∗)∥2 · ∥Ã⊤
kΩk(θ

∗)∥2 · ∥∆n∥2 = OP (
√
mn/n). (A.67)

This, combined with E∥Ω1/2
k (θ∗)ÃkI

−1
k (θ∗)U

(k)
T̂k

(θ∗)∥22 = Nmnϕ, yields that

∥I−1
k (θ∗)Ã⊤

kΩk(θ
∗)ÃkI

−1
k (θ∗)U

(k)
T̂k

(θ∗)∥2

≤ ∥I−1
k (θ∗)Ã⊤

kΩ
1/2
k (θ∗)∥2 · ∥Ω1/2

k (θ∗)ÃkI
−1
k (θ∗)U

(k)
T̂k

(θ∗)∥2 = OP (
√
nmn). (A.68)

Note that ∥Ik(θ∗)∥2 = O(1), it follows from (A.67)-(A.68) that ∥(θ̂k−θ̂0,k)T̂k
∥2 = OP (

√
mn/n).

Lemma 9. LetU(k)(θ) = N−1∂Q
(k)
n (θ)/∂γ.Under conditions (A1)-(A5) and (B1). If

sn+qn
n1/3 −→

0 (n→ ∞), and there are two constant numbers C1, C2 ∈ (0,∞), independent of n, for which

∥AA⊤∥op ≤ C1 and ∥(AA⊤)−1∥op ≤ C2, then under H
(n)
a,2 , we have

(i) U(k)(θ̂0,k) = N−1A⊤Ωk(θ
∗)ÃkI

−1
k (θ∗)U

(k)
T̂k

(θ∗) + A⊤Ωk(θ
∗)∆n + r

(k)
n,4, where ∥r(k)n,4∥2 =

oP (n
−1/2).

(ii) ∥(AA⊤)−1AU(k)(θ̂0,k)∥2 = OP (
√
mn/n).

Proof of Lemma 9. (i). Let ek = (0qn×snk
, Iqn). Then ekÃ

⊤
k = A⊤. By (A.61), we have

N−1U(k)(θ̂0,k) = N−1ekU
(k)
T̂k

(θ∗) +N−1ekH
(k)
T̂k

(θ∗)(θ̂0,k − θ∗)T̂k
+ 0.5N−1ekRn,k

= N−1ekU
(k)
T̂k

(θ∗)− ekIk(θ
∗)(θ̂0,k − θ∗)T̂k

+ 0.5N−1ekRn,k

+ek{N−1H
(k)
T̂k

(θ∗) + Ik(θ
∗)}(θ̂0,k − θ∗)T̂k

.

Then, by Lemma 8(ii),

N−1U(k)(θ̂0,k) = N−1ekU
(k)
T̂k

(θ∗)− ekIk(θ
∗)
{
N−1I−1

k (θ∗)U
(k)
T̂k

(θ∗)− I−1
k (θ∗)Ã⊤

kΩk(θ
∗)∆n

−N−1I−1
k (θ∗)Ã⊤

kΩk(θ
∗)ÃkI

−1
k (θ∗)U

(k)
T̂k

(θ∗) + r
(k)
n,2

}
+ 0.5N−1ekRn,k

+ek{N−1H
(k)
T̂k

(θ∗) + Ik(θ
∗)}(θ̂0,k − θ∗)T̂k

= N−1A⊤Ωk(θ
∗)ÃkI

−1
k (θ∗)U

(k)
T̂k

(θ∗) +A⊤Ωk(θ
∗)∆n − ekIk(θ

∗)r
(k)
n,2

+ek{N−1H
(k)
T̂k

(θ∗) + Ik(θ
∗)}(θ̂0,k − θ∗)T̂k

+ 0.5N−1ekRn,k,
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where ∥Rn,k∥2 = oP (n
1/2) and ∥r(k)n,2∥2 = oP (n

−1/2). Let

r
(k)
n,4 = −ekIk(θ

∗)r
(k)
n,2 + 0.5N−1ekRn,k + ek{N−1H

(k)
T̂k

(θ∗) + Ik(θ
∗)}(θ̂0,k − θ∗)T̂k

.

Then, by Lemmas 5 and 6,

∥ek{N−1H
(k)
T̂k

(θ∗) + Ik(θ
∗)}(θ̂0,k − θ∗)T̂k

∥2 = OP ((sn + qn)
3/2N−1) = oP (1/

√
n).

Thus, ∥r(k)n,4∥2 = oP (1/
√
n).

(ii). Now we prove ∥(AA⊤)−1AU(k)(θ̂0,k)∥2 = OP (
√
mn/n). Since ∥(AA⊤)−1A∥2 = O(1),

we obtain that

∥(AA⊤)−1AU(k)(θ̂0,k)∥2

= ∥N−1Ωk(θ
∗)ÃkI

−1
k (θ∗)U

(k)
T̂k

(θ∗) +Ωk(θ
∗)∆n + (AA⊤)−1Ar

(k)
n,4∥2

≤ ∥N−1Ωk(θ
∗)ÃkI

−1
k (θ∗)U

(k)
T̂k

(θ∗)∥2 + ∥Ωk(θ
∗)∆n∥2 + oP (1/

√
n)

≤ ∥Ω1/2
k (θ∗)∥2 · ∥N−1Ω

1/2
k (θ∗)ÃkI

−1
k (θ∗)U

(k)
T̂k

(θ∗)∥2 + ∥Ωk(θ
∗)∥2 · ∥∆n∥2 + oP (1/

√
n).

This, combined with E∥Ω1/2
k (θ∗)ÃkI

−1
k (θ∗)U

(k)
T̂k

(θ∗)∥22 = Nmnϕ, Lemma 7(i)–(ii) and ∥∆n∥2 =
O(

√
mn/n), yields that

∥(AA⊤)−1AU(k)(θ̂0,k)∥2 = OP (
√
mn/n).

Lemma 10. Under conditions (A1)-(A5) and (B1). Suppose sn+qn
n1/3 −→ 0 (n → ∞), and

there are two constant numbers C1, C2 ∈ (0,∞), independent of n, for which ∥AA⊤∥op ≤ C1

and ∥(AA⊤)−1∥op ≤ C2. If ∥θ − θ∗∥2 = O(
√

(sn + qn)/n) and (θ − θ∗)T̂k
c = 0, the following

results hold:

(i) ∥Îk(θ)− Ik(θ
∗)∥2 = OP ((sn + qn)/

√
n) and ∥Î−1

k (θ)− I−1
k (θ∗)∥2 = OP ((sn + qn)/

√
n);

(ii) ∥Ω̂k(θ)−Ωk(θ
∗)∥2 = OP ((sn + qn)/

√
n);

(iii) ∥Ω̂1/2
k (θ)−Ω

1/2
k (θ∗)∥2 = OP ((sn + qn)/

√
n);

(iv) ∥Ω̂−1/2
k (θ)−Ω

−1/2
k (θ∗)∥2 = OP ((sn + qn)/

√
n).

Proof of Lemma 10. (i) By Taylor’s expansion, we can get

∥N−1Wk{v2,k(θ)− v2,k(θ
∗)}Wk∥2 ≤ max

∥a∥2=1
a⊤W⊤

k diag{|v3,k(θ0)| ◦ |Wk(θ̂k − θ∗)T̂k
|}Wka/N

≤ ∥θ − θ∗∥1N−1max
j∈T̂k

λmax

[
W⊤

T̂k
diag{|v3(θ0)| ◦ |Wj |}WT̂k

]
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with θ0 ∈ [θ,θ∗]. Since ∥θ−θ∗∥2√
(sn+qn)/n

= OP (1) and ∥θ−θ∗∥0 = O(sn+ qn), we know that θ ∈ Π3

and
√
n ∥θ−θ∗∥1
sn+qn

= OP (1). In the same way as (A.58), we obtain that

∥N−1{H(k)
T̂k

(θ)−H
(k)
T̂k

(θ∗)}∥2 = OP (n
−1/2(sn + qn)). (A.69)

Using Lemma 5, together withthe definition of Îk(θ), yields that

∥Îk(θ)− Ik(θ
∗)∥2 = ∥ −N−1H

(k)
T̂k

(θ)− Ik(θ
∗)∥2

= ∥ −N−1[H
(k)
T̂k

(θ)−H
(k)
T̂k

(θ∗)]−N−1H
(k)
T̂k

(θ∗)− Ik(θ
∗)∥2

≤ ∥N−1[H
(k)
T̂k

(θ)−H
(k)
T̂k

(θ∗)]∥2 + ∥N−1H
(k)
T̂k

(θ∗) + Ik(θ
∗)∥2

= OP (n
−1/2(sn + qn)).

By condition (B1), we have

1/ρ4 ≤ λmin(Ik(θ
∗)) ≤ λmax(Ik(θ

∗)) ≤ ρ4, (A.70)

which, combined with (A.69), leads to

1/(2ρ4) ≤ λmin(Îk(θ)) ≤ λmax(Îk(θ)) ≤ 2ρ4, (A.71)

with probability going to 1, since ∥θ − θ∗∥2 = OP (
√

(sn + qn)/n) and (θ − θ∗)T̂k
c = 0. Thus,

∥Î−1
k (θ)− I−1

k (θ∗)∥2 ≤ ∥Î−1
k (θ)∥2∥I−1

k (θ∗)∥2∥Îk(θ)− Ik(θ
∗)∥2 = OP (n

−1/2(sn + qn)).

(ii). Notice that

λmin

{
ÃkÎ

−1
k (θ)Ã⊤

k

}
= inf

∥a∥2=1
a⊤ÃkÎ

−1
k (θ)Ã⊤

k a

≥ λmin{Î−1
k (θ)} inf

∥a∥2=1
a⊤ÃkÃ

⊤
k a

≥ λmin(ÃkÃ
⊤
k )λmin{Î−1

k (θ)}

= λmin(AA⊤)/λmax{Îk(θ)}.

It follows that

∥{ÃkÎ
−1
k (θ)Ã⊤

k }−1∥2 =
1

λmin

{
ÃkÎ

−1
k (θ)Ã⊤

k

} ≤ λmax{Îk(θ)}/λmin(AA⊤) = OP (1)

by λmax{(AA⊤)−1} = O(1) and λmax(Îk(θ̂)) ≤ 2ρ4. Similarly, we get that ∥{Ãk(Ik(θ))
−1Ã⊤

k }−1∥2 =
O(1). This, together with λmax(AA⊤) = O(1) and ∥Î−1

k (θ)− I−1
k (θ∗)∥2 = OP (n

−1/2(sn + qn))
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in Lemma 10(i), implies that

∥{ÃkÎ
−1
k (θ)Ã⊤

k }−1 − {ÃkI
−1
k (θ∗)Ã⊤

k }−1∥2

= ∥{ÃkÎ
−1
k (θ∗)Ã⊤

k }−1Ãk

{
Î−1
k (θ)− (Ik(θ

∗))−1
}
Ã⊤
k {Ãk(Ik(θ))

−1Ã⊤
k }−1∥2

≤ ∥Î−1
k (θ)− (Ik(θ

∗))−1∥2 · ∥Ã⊤
k {ÃkÎ

−1
k (θ)Ã⊤

k }−1∥2 · ∥Ã⊤
k {Ãk(Ik(θ

∗))−1Ã⊤
k }−1∥2

= OP (n
−1/2(sn + qn)).

(iii) Obviously,

{Ω1/2
k (θ∗)Ω̂

1/2
k (θ)− Ω̂

1/2
k (θ)Ω

1/2
k (θ∗)}⊤ = −{Ω1/2

k (θ∗)Ω̂
1/2
k (θ)− Ω̂

1/2
k (θ)Ω

1/2
k (θ∗)}.

For any squared matrix C with C⊤ = −C, let a and v be the eigenvalue and corresponding

eigenvector of C. Then

a2∥v∥22 = v⊤C⊤Cv = −v⊤CCv = −a2∥v∥22. (A.72)

Thus, all eigenvalues of C⊤C are 0. Hence,

∥Ω1/2
k (θ∗)Ω̂

1/2
k (θ)− Ω̂

1/2
k (θ)Ω

1/2
k (θ∗)∥2 = 0. (A.73)

Note that the identity

(Ω̂
1/2
k (θ) +Ω

1/2
k (θ∗))(Ω̂

1/2
k (θ)−Ω

1/2
k (θ∗)) = Ω̂k(θ)−Ωk(θ

∗) +Ω
1/2
k (θ∗)Ω̂

1/2
k (θ)

−Ω̂
1/2
k (θ)Ω

1/2
k (θ∗). (A.74)

For any positive definite matrix C1 and square matrix C2, we have

∥C1C2∥22 = sup
∥a∥2=1

a⊤C⊤
2 C1C1C2a ≥ λmin(C

2
1)∥C2∥22.

Hence, ∥C1C2∥2 ≥ λmin(C1)∥C2∥2. Then, by (A.73)-(A.74),

λmin(Ω
1/2
k (θ∗))∥Ω̂1/2

k (θ)−Ω
1/2
k (θ∗)∥2 ≤ ∥(Ω̂1/2

k (θ) +Ω
1/2
k (θ∗))(Ω̂

1/2
k (θ)−Ω

1/2
k (θ∗))∥2

≤ ∥Ω̂k(θ)−Ωk(θ
∗)∥2. (A.75)

By the definition of Ωk(θ
∗), λmax(AA⊤) = O(1), and (A.70), It is straightforward to check that

λmax(Ω
−1
k (θ∗)) ≤ λmax(AA⊤)/λmin(Ik(θ

∗)) = O(1).

Then, by result (ii) and (A.75), we have ∥Ω̂1/2
k (θ)−Ω

1/2
k (θ∗)∥2 = OP ((sn + qn)n

−1/2).
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(iv) Similar to (A.75), we can show that

λmin(Ω̂
−1/2
k (θ∗))∥Ω̂−1/2

k (θ)−Ω
−1/2
k (θ∗)∥2 ≤ ∥(Ω̂−1/2

k (θ) +Ω
−1/2
k (θ∗))(Ω̂

−1/2
k (θ)−Ω

−1/2
k (θ∗))∥2

≤ ∥Ω̂−1
k (θ)−Ω−1

k (θ∗)∥2.

That is,

∥Ω̂−1/2
k (θ)−Ω

−1/2
k (θ∗)∥2 ≤ ∥Ãk{I−1

k (θ∗)− Î−1
k (θ)}Ã⊤

k ∥2/
√
λmin(ÃkI

−1
k (θ∗)Ãk)

≤ λmax(Ik(θ
∗))λmax(AA⊤)∥I−1

k (θ∗)− Î−1
k (θ)∥2/λmin(AA⊤).

Hence, by result (i), λmax(AA⊤) = O(1), λmin((AA⊤)−1) = O(1), and λmax(Ik(θ
∗)) ≤ ρ4

in (A.70), we get

∥Ω̂−1/2
k (θ)−Ω

−1/2
k (θ∗)∥2 = OP ((sn + qn)n

−1/2).

Lemma 11. Let ωn,k = N−1/2ÃkI
−1
k (θ∗)U

(k)
T̂k

(θ∗)+N1/2∆n. Under conditions (A1)-(A5) and

(B1). If sn+qn
n1/3 −→ 0 (n → ∞), and there are two constant numbers C1, C2 ∈ (0,∞),

independent of n, for which ∥AA⊤∥op ≤ C1 and ∥(AA⊤)−1∥op ≤ C2, then the following results

hold:

(i) T = (2ϕ)−1∥
∑2

k=1Ω
1/2
k (θ∗)ωn,k∥22 + oP (mn), where T is Tn,L, Tn,W or Tn,S;

(ii) 2{Q(k)
n (θ̂k)−Q

(k)
n (θ̂0,k)} =

∥∥Ω1/2
k (θ∗)ωn,k

∥∥2
2
+ oP (mn);

(iii)
√
Nζn,k = Ω

1/2
k (θ∗)ωn,k + oP (1);

(iv) if condition (A6) holds, then

Tn,2 =
∥∥{Ã∗I

−1
T̂

(θ∗)Ã⊤
∗ }−1

[
n−1/2Ã∗I

−1
T̂

(θ∗)W⊤
T̂v1(θ

∗) + n1/2∆n

]∥∥2
2
+ oP (mn),

where Ã∗ = (0mn×∥Ŝ∥0 ,A).

Proof of Lemma 11. (i) We divide the proof into three steps for (1) T = Tn,L, (2)

T = Tn,W, and (3) T = Tn,S.

Step (1). Let Lk = (AA⊤)−1Ãk, Ĉk = Ω̂
−1/2
k (θ̂k)LkÎk(θ̂k)(θ̂k − θ̂0,k)T̂k

, and Ck =

Ω
−1/2
k (θ∗)LkIk(θ

∗)(θ̂k− θ̂0,k)T̂k
. It follows from AÎ22k (θ̂k)A

⊤ = ÃkÎk(θ̂k)Ã
⊤
k and the definition

of Tn,L that

Tn,L =
N

2ϕ̂R
∥

2∑
k=1

Ω̂
−1/2
k (θ̂k)LkÎk(θ̂k)(θ̂k − θ̂0,k)T̂k

∥22 =
N

2ϕ̂R
∥C1 +C2∥22 + Ln,1, (A.76)
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where Ln,1 = N
2ϕ̂R

(
∥Ĉ1 + Ĉ2∥2 + ∥C1 + C2∥2

)(
∥Ĉ1 + Ĉ2∥2 − ∥C1 + C2∥2

)
. Now we prove

that Ln,1 = oP (mn). By Ω̂k(θ̂k) = {ÃkÎk(θ̂k)Ã
⊤
k }−1, Ωk(θ

∗) = {ÃkIk(θ
∗)Ã⊤

k }−1, ∥Ã⊤
k Lk∥2 =

∥A(A⊤A⊤)−1A∥2 = 1, (A.70)-(A.71), Lemma 8(iii), and Lemma 10(i)&(iv), we obtain that

∥Ω−1/2
k (θ∗)LkIk(θ

∗)∥22 ≤ ∥L⊤
k ÃkIk(θ

∗)Ã⊤
k Lk∥2 · ∥Ik(θ∗)∥2 = O(1), (A.77)

∥Ĉk∥2 + ∥Ck∥2 ≤ {∥Ω̂−1/2
k (θ̂k)Lk∥2 · ∥Îk(θ̂k)∥2 + ∥Ω−1/2

k (θ∗)Lk∥2 · ∥Ik(θ̂k)∥2} · ∥(θ̂k − θ̂0,k)T̂k
∥2

= {∥L⊤
k ÃkÎk(θ̂k)Ã

⊤
k Lk∥

1/2
2 + ∥L⊤

k ÃkIk(θ
∗)Ã⊤

k Lk∥
1/2
2 }OP (

√
mn/n)

= OP (
√
mn/n),

and

∥Ĉk −Ck∥2 ≤ ∥Ω̂−1/2
k (θ̂k)−Ω

−1/2
k (θ∗)∥2 · ∥Lk∥2 · ∥Îk(θ̂k)∥2 · ∥(θ̂k − θ̂0,k)T̂k

∥2

+∥Ω−1/2
k (θ∗)Lk∥2 · ∥Îk(θ̂k)− Ik(θ

∗)∥2 · ∥(θ̂k − θ̂0,k)T̂k
∥2

= OP ((sn + qn)n
−1/2)OP (

√
mn/n), (A.78)

for k = 1, 2. Applying the triangle inequality and sn + qn = o(n1/3), we establish that

|Ln,1| ≤ N

2ϕ̂R

(
∥Ĉ1 + Ĉ2∥2 + ∥C1 +C2∥2

)∥∥ 2∑
j=1

(Ĉj −Cj)
∥∥
2

≤ N

2ϕ̂R

2∑
j=1

(
∥Ĉ1 + Ĉ2∥2 + ∥C1 +C2∥2

)∥∥Ĉj −Cj

∥∥
2

≤ N

2ϕ̂R

2∑
k,j=1

(∥Ĉk∥2 + ∥Ck∥2)∥Ĉj −Cj∥2

= oP (mn). (A.79)

This, combined with (A.76), yields that

Tn,L =
N

2ϕ̂R
∥

2∑
k=1

Ω
−1/2
k (θ∗)LkIk(θ

∗)(θ̂k − θ̂0,k)T̂k
∥22 + oP (mn). (A.80)

Applying Lemma 8(iii), we obtain that

Tn,L =
1

2ϕ̂R
∥

2∑
k=1

Ω
1/2
k (θ∗)ωn,k +N1/2Ω

−1/2
k (θ∗)LkIk(θ

∗)r
(k)
n,3∥

2
2 + oP (mn),

where ∥r(k)n,3∥2 = oP (n
−1/2). Using Lemma 8(iv) and (A.77), we get

∥Ω1/2
k (θ∗)ωn,k∥2 = ∥{Ik(θ∗)}−1/2Ã⊤

kΩk(θ
∗)ωn,k∥2 = OP (

√
mn);

∥N1/2Ω
−1/2
k (θ∗)LkIk(θ

∗)r
(k)
n,3∥2 = oP (1).

(A.81)
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Similar to (A.80), using (A.81), we arrive at

Tn,L =
1

2
∥

2∑
k=1

Ω
1/2
k (θ∗)ωn,k∥22 + oP (mn)

=
1

2
∥

2∑
k=1

Ω
1/2
k (θ∗)ωn,k∥22 + oP (mn). (A.82)

Step (2). Under H
(n)
a,2 , we have A(γ∗ − r) = ∆n. Then

A(γ̂k − r) = A(γ̂k − γ∗ + γ∗ − r) = Ãk(θ̂k − θ∗)T̂k
+∆n.

Note that ∥∆n∥2 = O(
√
mn/n), ∥Ãk∥2 = ∥A∥2 = O(1), and ∥(θ̂k−θ∗)T̂k

∥2 = OP (
√

(sn + qn)/n)

in Lemma 6(i). It follows that√
n

sn+qn
∥A(γ̂k − r)∥2 = OP (1). (A.83)

This, combined Lemma 7(ii) and Lemma 10(iii), implies that√
n

sn+qn

∥∥Ω̂1/2
k (θ̂k)A(γ̂k − r)

∥∥
2
= OP (1);

√
n

sn+qn

∥∥Ω1/2
k (θ∗)A(γ̂k − r)

∥∥
2
= OP (1). (A.84)

It follows from Lemma 8(i) that

Ω
1/2
k (θ∗)A(γ̂k − t) = Ω

1/2
k (θ∗)Ãk{NIk(θ

∗)}−1U
(k)
T̂k

(θ∗) +Ω
1/2
k (θ∗)Ãkr

(k)
n,1 +Ω

1/2
k (θ∗)∆n

= N−1/2Ω
1/2
k (θ∗)ωn,k +Ω

1/2
k (θ∗)Ãkr

(k)
n,1. (A.85)

Similar to (A.80), by Lemma 10(iii) and (A.83)-(A.84), we can show that

Tn,W =
N

2
∥

2∑
k=1

Ω̂
1/2
k (θ̂k)A(γ̂k − r)∥22

=
N

2
∥

2∑
k=1

Ω
1/2
k (θ∗)A(γ̂k − r)∥22 + oP (mn).

Thus, by (A.85), we have

Tn,W =
1

2
∥

2∑
k=1

Ω
1/2
k (θ∗)ωn,k +N1/2Ω

1/2
k (θ∗)Ãkr

(k)
n,1∥

2
2 + oP (mn).

Then, similar to Step (1), we can show that

Tn,W = ϕ∥
2∑

k=1

Ω
1/2
k (θ∗)ωn∥22 + oP (mn). (A.86)
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Step (3). Using λmax{(AA⊤)−1} = O(1), λmax(AA⊤) = O(1), ∥Ωk(θ
∗)∥2 = O(1), (A.81),

Lemma 7(ii), and Lemma 9, we obtain that

(AA⊤)−1AU(θ̂0,k) = N−1/2Ωk(θ
∗)ωn,k + (AA⊤)−1Ar

(k)
n,4,

and

∥(AA⊤)−1AU(θ̂0,k)∥2 ≤ ∥N−1/2Ωk(θ
∗)ωn,k∥2 + ∥(AA⊤)−1Ar

(k)
n,4∥2

≤ ∥N−1/2Ω
1/2
k (θ∗)∥2 · ∥Ω1/2

k (θ∗)ωn,k∥2 + ∥(AA⊤)−1/2∥2 · ∥r(k)n,4∥2

= OP (
√
mn/n),

where the second line is obtained by Hölder inequality and

∥(AA⊤)−1A∥22 = ∥(AA⊤)−1AA⊤(AA⊤)−1∥2 = ∥(AA⊤)−1∥2.

This, combined with (A.70)-(A.71), Ω̂k(θ̂0,k) = {ÃkÎk(θ̂0,k)Ã
⊤
k }−1, and λmax{(AA⊤)−1} =

O(1), yields that

∥Ω̂−1/2
k (θ̂0,k)(AA⊤)−1AU(θ̂0,k)∥2 ≤ ∥Ω̂−1

k (θ̂0,k)∥
1/2
2 ∥(AA⊤)−1AU(θ̂0,k)∥2

= OP (
√
mn/n)∥Î−1

k (θ̂0,k)∥
1/2
2 · ∥(AA⊤)−1∥1/22

= OP (
√
mn/n).

Similarly, ∥Ω−1/2
k (θ∗)(AA⊤)−1AU(θ̂0,k)∥2 = OP (

√
mn/n). Similar to (A.80), it holds that

Tn,S =
N

2
∥

2∑
k=1

Ω̂
−1/2
k (θ̂0,k)(AA⊤)−1AU(θ̂0,k)∥22

=
N

2
∥

2∑
k=1

Ω
−1/2
k (θ∗)(AA⊤)−1AU(θ̂0,k)∥22 + oP (mn)

=
1

2
∥

2∑
k=1

Ω
1/2
k (θ∗)ωn,k +N1/2Ω

−1/2
k (θ∗)(AA⊤)−1A⊤r

(k)
n,4∥

2
2 + oP (mn).

With the same argument as used in Step (1), we can also show that

Tn,S = (2ϕ)−1∥
2∑

k=1

Ω
1/2
k (θ∗)ωn,k∥22 + oP (mn).

(ii) For the k-th dataset, combining the mean value theorem with Lemma 8, then

Q(k)
n (θ̂0,k)−Q(k)

n (θ̂k) = {U (k)
n,T̂k

(θ̂k)}⊤(θ̂0,k − θ̂k)T̂k

+0.5
{
(θ̂0,k − θ̂k)T̂k

}⊤
H

(k)
T̂k

(θ̃k)(θ̂0,k − θ̂k)T̂k
, (A.87)

61



with θ̃k ∈ [θ̂0,k, θ̂k]. Since θ̂k = argmax{Q(k)
n (θ), s.t. βŜc

k
= 0}, we get U

(k)
n,T̂k

(θ̂k) = 0. By

Lemma 6(i), we have ∥θ̃k−θ∗∥2 ≤ ∥θ̂k−θ∗∥2 = OP (
√

(sn + qn)/n). Recall that (θ̃k−θ∗)T̂k
c =

(θ̂k − θ∗)T̂k
c = 0 in Lemma 8(i). Then, by Lemma 8(iii) and Lemma 10(i), we get

N
{
(θ̂0,k − θ̂k)T̂k

}⊤{H(k)
T̂k

(θ̃k)/N + Ik(θ
∗)}(θ̂0,k − θ̂k)T̂k

= OP {mn(sn + qn)n
−1/2}.

Note that ∥{Ik(θ∗)}−1/2Ã⊤
kΩk(θ

∗)ωn,k∥22 = ∥Ω1/2
k (θ∗)ωn,k∥22. It follows from Lemma 8(iii) and

(A.87) that

2Q(k)
n (θ̂k)− 2Q(k)

n (θ̂0,k)

= N
{
(θ̂0,k − θ̂k)T̂k

}⊤
Ik(θ

∗)(θ̂0,k − θ̂k)T̂k
+ oP (mn)

= ∥{Ik(θ∗)}−1/2Ã⊤
kΩk(θ

∗)ωn,k +N1/2{Ik(θ∗)}1/2r
(k)
n,3∥

2
2 + oP (mn)

= ∥Ω1/2
k (θ∗)ωn,k∥22 +N∥{Ik(θ∗)}1/2r

(k)
n,3∥

2
2 + 2N1/2{r(k)n,3}

⊤Ã⊤
kΩk(θ

∗)ωn,k + oP (mn)

= ∥Ω1/2
k (θ∗)ωn,k∥22 + oP (mn),

where the last equality follows from ∥{Ik(θ∗)}1/2r
(k)
n,3∥2 = oP (n

−1/2) and ∥{Ik(θ∗)}−1/2Ã⊤
kΩk(θ

∗)ωn,k∥2 =
OP (

√
mn) in Lemma 8(iv).

(iii) By the definition of ζn,k in Theorem 4, (A.78), (A.81), Lemma 8(iii) and mn ≤ sn+qn =

o(n1/3), we obtain that

√
Nζn,k =

√
NΩ

−1/2
k (θ∗)LkIk(θ

∗)(θ̂k − θ̂0,k)T̂k
+
√
N(Ĉk −Ck)

= Ω
1/2
k (θ∗)ωn,k +N1/2Ω

−1/2
k (θ∗)LkIk(θ

∗)r
(k)
n,3 + oP (1)

= Ω
1/2
k (θ∗)ωn,k + oP (1).

(iv) By Theorem 1, we know that P (Ŝ = S) → 1. Similar to result (ii), it can be shown that

Tn,2 =
∥∥{Ã∗I

−1
T̂

(θ∗)Ã⊤
∗ }−1/2

[
n−1/2Ã∗I

−1
T̂

(θ∗)UT̂(θ
∗) + n1/2∆n

]∥∥2
2
+ oP (mn).

Then

Tn,2 =
∥∥{Ã∗I

−1
T̂

(θ∗)Ã⊤
∗ }−1/2

[
n−1/2Ã∗I

−1
T̂

(θ∗)UT̂(θ
∗) + n1/2∆n

]∥∥2
2
+ oP (mn).

Lemma 12. (Bentkus, 2004, Th1) Let (Xi)ni=1 be independent random vectors in Rm with

E(Xi) = 0,
∑n

i=1Cov(Xi) = C2 and Z be a Gaussian random vector for which E(Z) = 0,

Cov(Z) = C2. Choose c∗ > 0 for which

sup
ψ

|P (
n∑
i=1

Xi ∈ ψ)− P (Z ∈ ψ)| ≤ c∗(m)1/4
n∑
i=1

E∥C−1Xi∥32,

with the supremum over C ⊂ Rmconvex.
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Lemma 13. Let η2
L,k = n∆⊤

n {AI22k (θ∗)A⊤}−1∆n for k = 1, 2. Assume conditions (A1)-(A5)

and (B2) hold. Then

(i) η2n ≤ η2n,o and η2n ≤ η2
L,k ≤ η2n,o;

(ii) n
∥∥[2{AI22o (θ∗)A⊤}−1/2 −

∑2
k=1{AI22k (θ∗)A⊤}−1/2

]
∆n

∥∥2
2
≤ 16c2η2n,L, where c =

ρ∗
√
1+ρ∗

1−ρ∗

and ρ∗ ∈ [0, 1) is the constant specified in (B3).

Proof of Lemma 13. For convenience, let Σ = I(θ∗). By the definitions of η2n, η
2
L,k, and η

2
n,o,

we obtain that

η2n = n∆⊤
n {A(ΣD −ΣD,DcΣ−1

DcΣDc,D)
−1A⊤}−1∆n;

η2L,k = n∆⊤
n {A(ΣD −ΣD, Ŝk

Σ−1
Ŝk

ΣŜk,D)
−1A⊤}−1∆n;

η2n,o = n∆⊤
n {A(ΣD −ΣD,SΣ

−1
S ΣS,D)

−1A⊤}−1∆n.

For any qn × qn positive definite matrix E1 and positive semi-definite matrix E2, we have

∥(AE−1
1 A⊤)−1/2A(E1 +E2)

−1A⊤(AE−1
1 A⊤)−1/2∥2

≤ ∥(Iqn +E
−1/2
1 E2E

−1/2
1 )−1∥2∥E−1/2

1 A⊤(AE−1
1 A⊤)−1/2∥22

≤ {1 + λmin(E
−1/2
1 E2E

−1/2
1 )}−1,

which implies that

∆⊤
n {A(E1 +E2)

−1A⊤}−1∆n

= ∥[(AE−1
1 A⊤)−1/2A(E1 +E2)

−1A⊤(AE−1
1 A⊤)−1/2]−1/2(AE−1

1 A⊤)−1/2∆n∥22

≥ {1 + λmin(E
−1/2
1 E2E

−1/2
1 )}∆⊤

n {AE−1
1 A⊤}−1∆n

≥ ∆⊤
n {AE−1

1 A⊤}−1∆n.

(i) Take E1 = ΣD − ΣD,DcΣ−1
DcΣDc,D and E2 = ΣD,DcΣ−1

DcΣDc,D − ΣD,S(ΣS)
−1ΣS,D. To

show η2n ≤ η2n,o, It is enough to establish that E2 is positive semidefinite. Let N = Dc/S,

Σ̃Dc =
( ΣN ΣN,S

ΣS,N ΣS

)
, and Σ̃Dc,D = (ΣD,N,ΣD,S)

⊤.

Thus one can find a permutation matrix U for which UΣDc,D = Σ̃Dc,D. It follows from the

property of U that

(UΣDcU⊤)⊤ =
( ΣN,DcU⊤

ΣS,DcU⊤
)⊤

= (UΣDc,N,UΣDc,S) =
( ΣN ΣN,S

ΣS,N ΣS

)
= Σ̃Dc .
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Since UU⊤ = I (the property of permutation matrix), we have

ΣD,DcΣ−1
DcΣDc,D = ΣD,DcU⊤UΣ−1

DcU⊤UΣDc,D

= Σ̃
⊤
Dc,D(UΣDcU⊤)−1Σ̃Dc,D

= Σ̃
⊤
Dc,D(Σ̃Dc)−1Σ̃Dc,D. (A.88)

Using the inverse formula of a block matrix, we obtain that

Σ̃
−1

Dc =
( G−1 −G−1ΣN,SΣ

−1
S

−Σ−1
S ΣS,NG

−1 Σ−1
S +Σ−1

S ΣS,NG
−1ΣN,SΣ

−1
S

)
,

where G = ΣN −ΣN,SΣ
−1
S ΣS,N. Then it is straightforward to verify that

Σ̃D,DcΣ̃
−1

Dc Σ̃Dc,D = ΣD,SΣ
−1
S ΣS,D +ΣD,SΣ

−1
S ΣS,NG

−1ΣN,SΣ
−1
S ΣD,S

−ΣD,SΣ
−1
S ΣS,NG

−1ΣN,D −ΣD,NG
−1ΣN,SΣ

−1
S ΣS,D

+ΣD,NG
−1ΣN,D,

which, combined with (A.88), leads to

ΣD,DcΣ−1
DcΣDc,D = (ΣD,N −ΣD,SΣ

−1
S ΣS,N)G

−1(ΣN,D −ΣN,SΣ
−1
S ΣS,D)

+ΣD,SΣ
−1
S ΣS,D. (A.89)

This implies that E2 is a positive semi-definite matrix. Hence, η2n ≤ η2n,o. Similarly, we can show

η2n ≤ η2
L,k ≤ η2n,o.

(ii) Let A(k) = (0mn×snk
,A), N̂k = Ŝk/S, F̃k = diag(ΣN̂k

,ΣD ∪ S), and

Fk =
( ΣN̂k

ΣN̂k,D ∪ S

ΣD ∪ S, N̂k
ΣD ∪ S

)
,

where ΣD ∪ S =
( ΣS ΣS,D

ΣD,S ΣD

)
. Similar to (A.88), we obtain that

AI22k (θ∗)A⊤ = A(ΣD −ΣD, Ŝk
Σ−1

Ŝk
ΣŜk,D)

−1A⊤ = A(k)F−1
k {A(k)}⊤;

AI22o (θ∗)A⊤ = A(ΣD −ΣD,SΣ
−1
S ΣS,D)

−1A⊤ = A(k)(F̃k)
−1{A(k)}⊤.

Put Hk = {A(k)F−1
k {A(k)}⊤}−1/2 and H̃ = {A(k)(F̃k)

−1{A(k)}⊤}−1/2. Then it holds that

∥∥[2{AI22o (θ∗)A⊤}−1/2 −
2∑

k=1

{AI22k (θ∗)A⊤}−1/2
]
∆n

∥∥2
2
= ∥{2H̃− (H1 +H2)}∆n∥22. (A.90)

It follows from the Cauchy-Schwarz inequality that

n∥{2H̃− (H1 +H2)}∆n∥22 ≤ n∥{2H̃− (H1 +H2)}(H1 +H2)
−1∥22 · ∥(H1 +H2)∆n∥22

= 4η2n,L∥{2H̃− (H1 +H2)}(H1 +H2)
−1∥22. (A.91)
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Notice that {HkH̃ − H̃Hk}⊤ = −{HkH̃ − H̃Hk}. By (A.72), we get ∥HkH̃ − H̃Hk∥2 = 0.

Further,

(H̃+Hk)(H̃−Hk) = H̃2 −H2
k +HkH̃− H̃Hk.

This, combined with Jensen’s inequality, yields that

∥{2H̃− (H1 +H2)}(H1 +H2)
−1∥22 ≤ 2

2∑
k=1

∥(H̃−Hk)(H1 +H2)
−1∥22

= 2

2∑
k=1

∥(H̃+Hk)
−1(H̃+Hk)(H̃−Hk)(H1 +H2)

−1∥22

= 2

2∑
k=1

∥(H̃+Hk)
−1(H̃2 −H2

k)(H1 +H2)
−1∥22. (A.92)

Applying the CBS inequality, we have

∥(H̃+Hk)
−1(H̃2 −H2

k)(H1 +H2)
−1∥22

= ∥(H̃+Hk)
−1H̃H̃−1(H̃2 −H2

k)H
−1
k Hk(H1 +H2)

−1∥22

≤ ∥(H̃+Hk)
−1H̃∥22 · ∥H̃−1(H̃2 −H2

k)H
−1
k ∥22 · ∥Hk(H1 +H2)

−1∥22, (A.93)

for k = 1, 2. Using Theorem 1.3.22 in Horn and Johnson (1985), we establish that

∥C1C2∥2 = ∥C2C1∥2.

for any square matrixes C1 and C2. Hence,

∥(H̃+Hk)
−1H̃∥22 = |H̃1/2(H̃+Hk)

−1H̃1/2∥22 ≤ 1;

∥Hk(H1 +H2)
−1∥22 ≤ ∥H1/2

k (H1 +H2)
−1H

1/2
k ∥22 ≤ 1. (A.94)

Therefore, by (A.92)-(A.93),

∥{2H̃− (H1 +H2)}(H1 +H2)
−1∥22 ≤ 2

2∑
k=1

∥H̃−1(H̃2 −H2
k)H

−1
k ∥22

= 2
2∑

k=1

∥H̃(H̃−2 −H−2
k )Hk∥22. (A.95)

From the definitions of Hk and H̃, ∥HkA(k)F
−1/2
k ∥2 = 1, and ∥H̃A(k)(F̃k)

−1/2∥2 = 1, it follows

immediately that

∥H̃(H̃−2 −H−2
k )Hk∥2

= ∥HkA(k)F
−1/2
k (Fk)

1/2
{
F−1
k − (F̃k)

−1
}
(F̃k)

1/2(F̃k)
−1/2{A(k)}⊤H̃∥2

≤ ∥(Fk)1/2
{
F−1
k − (F̃k)

−1
}
(F̃k)

1/2∥2

= ∥(Fk)1/2(F̃k)−1/2
[
{Iαn − (F̃k)

−1/2(F̃k − Fk)(F̃k)
−1/2}−1 − I−1

αn

]
(F̃k)

−1/2(F̃k)
1/2∥2,
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where αn = mn + snk and the last equality is from simple algebra. Thus,

∥H̃(H̃−2 −H−2
k )Hk∥2 ≤ ∥(Fk)1/2(F̃k)−1/2∥2

×∥{Iαn − (F̃k)
−1/2(F̃k − Fk)(F̃k)

−1/2}−1 − I−1
αn

∥2. (A.96)

Applying the Cauchy-Schwarz inequality, we get∣∣v⊤(F̃k)
−1/2(F̃k − Fk)(F̃k)

−1/2v
∣∣ = 2

∣∣v⊤
1 (ΣN̂k

)−1/2ΣN̂k,D ∪ S(ΣD ∪ S)
−1/2v2

∣∣
≤ 2∥v1∥2∥v2∥2∥(ΣN̂k

)−1/2ΣN̂k,D ∪ S(ΣD ∪ S)
−1/2∥2

for any v = (v⊤
1 ,v

⊤
2 )

⊤ with ∥v∥2 = 1. Using condition (B3) and ∥v1∥2∥v2∥2 ≤ 1/2, we get that

∥(F̃k)−1/2(F̃k − Fk)(F̃k)
−1/2∥2 ≤ ρ∗ < 1. (A.97)

Then, by (A.97) and Taylor’s expansion,

∥{Iαn − (F̃k)
−1/2(F̃k − Fk)(F̃k)

−1/2}−1 − I−1
αn

∥2 = ∥
∞∑
i=1

{(F̃k)−1/2(F̃k − Fk)(F̃k)
−1/2}i

∥∥
2

≤
∞∑
i=1

∥(F̃k)−1/2(F̃k − Fk)(F̃k)
−1/2∥i2

≤ ρ∗/(1− ρ∗); (A.98)

∥(Fk)1/2(F̃k)−1/2∥22 = ∥(F̃k)−1/2{Fk − F̃k + F̃k}(F̃k)−1/2∥2

≤ 1 + ∥(F̃k)−1/2(F̃k − Fk)(F̃k)
−1/2∥2

≤ 1 + ρ∗. (A.99)

Combining (A.96)-(A.99) yields that

∥H̃(H̃−2 −H−2
k )Hk∥2 ≤ c,

where c = ρ∗
√
1+ρ∗

1−ρ∗ . This, together with (A.91) and (A.95), leads to

n
∥∥[2{AI22o (θ∗)A⊤}−1/2 −

2∑
k=1

{AI22k (θ∗)A⊤}−1/2
]
∆n

∥∥2
2
≤ 16c2η2n,L.
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